
The Virtual Resource Manager 

Thomas G. Lang, Mark S. Greenterg. and Charles H. Sauer 

Introduction 
The Virtual Resource Manager, or VRM, is a 
software package that provides a high-level 
operating system environment. The VRM was 
designed to build upon a hardware base 
consisting ot a Reduced Instruction Set 
Computer (RISC) and a PC AT compatible I/O 
channel, although it is not limited to this 
environmental] In fact, the VRM can be easily 
extended to support different I/O hardware. 
An example of this is the VRM's support of 

Application Program 

Opetaiing System 

Virtual Macnino 

the IBM 5060 graphics hardware, which is 
designed to an IBM System/370 channel 
interface. 

The concept of RISC architecture is the 
minimization of function in hardware, 
providing only a limited set of primitives.[2] 
This allows the processor to be designed with 
simplified logic and a corresponding increase 
in the speed of its instruction set. In this 
environment, the software must provide 
function that traditionally is provided in 
hardware, such as integer multiply and divide 
functions and character string manipulation. 
The VRM builds on this hardware base to: 

• Provide a high-level machine interface, 
which simplifies the development and 
implementation of operating systems and 
their applications. 

Simple Device 0>ww Model Device Manager/Dryer Modal 

Denro Drivers and 
Device Managers 

Virtual Resource Martnger 

-Hardware Inlerlace-

1(0 
Adapts 

f1, 
Figurs 1 RT PC Software Design 

Virtual ln1 

_ 1 
Vinua mi 

I 
Device Manager 

Figure 2 Virtual Device Models 

• Maximize performance to support real-time 
process control type applications. 

• Allow users to easily customize the system 
to meet their needs by providing an 
extendable, flexible interface. 

• Provide compatibility with IBM-PC 
applications by supporting an Intel 80286 
coprocessor. 

The approach used to accomplish these goals 
was to design a Virtual Machine Interface, or 
VMI, with a set of functions to facilitate the 
use of a variety of operating systems. The 
VMI has features that support concurrency of 
multiple operating systems and applications, 
while insulating ihem from most details of the 
implementation of the hardware, except for 
the problem state instruction set. Also, the 
VMI allows operating system programmers to 
install extensions to the VRM to support 
additional I/O devices, or even to replace the 
IBM-supplied I/O subsystems. 

Traditionally, virtual machine implementations 
have suffered in performance due to the 
overhead of simulating hardware function. 
The key to maximizing the performance of the 
VRM is that the vast majority of instructions 
issued by the operating systems and 
applications are directly executed by the 
hardware. The VRM software is invoked 
mainly to handle I/O operations at a relatively 
high functional level. 

119 



Fundamental to the design of the RT PC is 
that the VRM is the underlying support layer 
for an operating system. In particular, the 
UNIX kernel[6] was chosen as the principal 
operating environment supported by the 
RT PC product, and the design of the VRM 
was influenced by this selection. 

The concept of a virtual machine has been 
implemented on IBM mainframe computers 
with a software product known as VM/370.J3] 
The VRM is similar to VM/370 in that it 
supports the concurrent execution of multiple 
operating systems. However, there is a 
significant difference. VM/370 provides a 
complete functional simulation of the real 
System/370 hardware, such that an operating 
system built for the real hardware, like MVS, 
can run in a virtual machine. The Virtual 
Machine Interface supported by the VRM 
provides considerably more function than the 
RT PC hardware; an operating system 
implemented to the VMI will not run on the 
real hardware. The design of the VMI traded 
off complete hardware compatibility for the 
benefits of a high-level, high-function machine 
definition. 

Along with the concept of concurrent virtual 
machines, the VRM supports virtual 
memory.[4] The hardware memory 
management capabilities include a 24-bit 
address space for real memory (i.e.. the 
ability to address up to 16 megabytes of real 
memory) and a 40-bit address space for 
virtual memory (1024 gigabytes, or one 
terabyte).[5] The virtual address space is 
comprised of 4096 segments of 256 
megabytes each. Sixteen segment registers 
are provided by the hardware, and one of 
them is permanently dedicated to addressing 
I/O devices. Thus, up to 15 segments can be 
accessed simultaneously. The VRM software 

takes advantage of these features to logically 
separate the address spaces of the virtual 
machines from each other and from the VRM 
address space. 

Another VRM feature, related to virtual 
memory, is "mapped file" support. Mapped 
files are a relation of logical disk blocks to 
virtual memory addresses, such 'hat a disk 
file can be read from or written to simply by 
reading from or writing lo its associated 
memory addresses. Explicit disk reading and 
writing is not required. 

The AIX operating system contains a 
complete file system, based on explicit disk 
reading and writing. When modif/ing AIX for 
the VMI, it was desirable to salvage as much 
software as possible. Also, the concept of 
mapping files does not work well with 
removable media, such as tapes or diskettes. 
So. mapped file support is augirented with a 
minidisk manager in the VRM. providing more 
conventional file access support. 

The minidisk manager provides access to 
disks partitioned into separate spaces, or 
minidisks. In turn, the minidisks are 
partitioned into logical blocks whose size is 
determined by the operating system, 
independent of the characteristics of the 
physical disk. The minidisk manager also 
includes functions not normally 'ound in 
simple hardware access methods, such as 
error recovery and bad block relocation. 
Further, the VMI for the minidisk manager 
allows the potential for "remote" minidisks, 
accessed across a communication link such 
as a high speed local area network. 

The "virtual resource" concept is also applied 
by the VRM to I/O devices, sucli as virtual 
terminals.[7] The VMI includes a high-level 

Interface to I/O devices that is consistent for 
all devices. Also, the VMI includes provisions 
for bypassing the VRM and accessing devices 
directly. The preferred method of using a 
device from a virtual machine is to take 
advantage of the I/O support functions 
supplied by the VRM. But, there are graphics 
applications, for example, which can gain 
enough performance by writing directly to a 
display device to offset the loss of flexibility 
suffered when bypassing the VRM services. 
Another reason for allowing direct access to 
I/O devices was compatibility with existing 
applications; for example, a BASIC language 
program written using the PEEK and POKE 
functions to access an I/O device. 

Extendable Virtual Machine Architecture 
Another feature that distinguishes the VRM is 
the extendability of the architecture. Users of 
microcomputers have become accustomed to 
plugging new devices into a machine's I/O 
channel. However, getting the machine's 
software to use the device usually requires 
some ingenuity. One approach is to design 
the new device such that it "looks like" an 
existing device, so that the existing software 
can recognize and use it. Another approach is 
to run an application program that drives the 
device directly, independent of the existing 
operating system. For example, a program 
could communicate with a device by sending 
commands to its I/O port, then using a 
software "spin loop" to poll its status port to 
determine when the commands complete. The 
former approach limits the flexibility of the 
new device, while the latter destroys the 
effectiveness of a multiprogramming 
operating system by tying up the processor 
during I/O operations. 

The VRM allows a new approach, whereby 
software for a new device can be fully 

120 



integrated into the existing operating system. 
Further, the reconfiguration of the VRM to 
add or replace software can be performed in 
real time without disrupting the normal 
function of the machine. 

A data structure, known as a Define Device 
Structure, or DDS, is included in the VMI so 
that a programmer can describe the attributes 
of a new device and its related software 
support to the VRM. Information in the DDS 
includes the I/O port address(es) used by the 
device, which channel interrupt level it uses, 
which DMA channel it uses (if any), whether it 
has any resident RAM or ROM. etc. Also, the 
DDS indicates which program module should 
be called to process such functions as: 

• Device initialization 
• Interrupt handling 
• I/O initialion 
• Timeout or exception handling 
• Device termination 

Using information from the DDS, the VHM is 
able to determine which user-installed 
program to call to handle an interrupt 
generated by an installed device. The 
additional software required to support a new 
device is added in real time, in contrast to 
existing systems that require the use of an 
off-line or stand-alone program to reconfigure 
the system. 

To use devices, the VMI contains a set of 
functions including: 

Define Code Install software into the 
VRM, or delete installed 
software. 

Define Device Install a DDS into the VRM, 
or delete an installed DDS. 

Attach Reserve a device and 
allocate any resources its 
software may require. 

Detach Undo the function of 
•Attach." 

Send Command Send a command to a 
device. 

Start I/O A variation on "Send 
Command," which allows a 
set of commands, or 
buffers, to be sent to a 
device. 

To use a device, a logical connection ("path") 
is established between the user and the 
device. The Attach (unction is used to 
establish a path, and a path identifier token is 
returned to the user. Subsequently, the path 
identifier is used to send requests to the 
device. When the device completes the 
request, it returns status information or an 
interrupt to the user, using the path identifier 
to route the data. 

The VMI defines two ways to send requests 
to a device, the Send Command and Start I/O 
functions. Parameters for these functions 
include the path identifier in addition to device 
specific parameters such as a request code 
and buffer pointer. The difference between 
the two functions is that the latter passes its 
parameters in a data structure, know as a 
Channel Control Block, or CCB, which allows 
the specification of a chain of commands or 
buffer pointers. This can be useful, for 
example, when using a device that supports 
"scatter/gather" functions. During a read 
request data can be input from a device and 
"scattered" into different memory buffers. Or, 
during a write request data can be 

"gathered" from different buffers and output 
to a device. 

Another parameter for the two request 
functions is an operation option that 
determines if the request is to be processed 
by the VRM synchronously or 
asynchronously. Implicitly, this also 
determines how completion status is returned 
to the virtual machine. For synchronous 
requests, completion status is supplied as a 
return code from the requested function, 
while the completion of an asynchronous 
request is indicated by a "virtual interrupt". 
The VMI defines nine interrupt levels for a 
virtual machine, which allows the assignment 
of relative priorities to interrupting conditions. 
When not processing an interrupt, the virtual 
machine is considered to be on level 7. Seven 
levels can be assigned to interrupting I/O 
devices. In order of decreasing priority, they 
are levels 0 through 6. In addition, there are 
two other levels. The machine 
communications level is used for messages 
between the VRM and the virtual machine. 
The highest priority level is the program 
check level, which is used by the VRM to 
report exception or error conditions to the 
virtual machine. The return code from a 
synchronous request provides 32 bits of 
status, while up to 20 bytes of status can be 
supplied with each virtual interrupt. 

Two types of programs can be installed into 
the VRM: device drivers and device 
managers. A device driver is a collection of 
subroutines that support a specific hardware 
device. The VRM synchronously calls the 
subroutines to handle device-specific 
functions, such as handling interrupts and 
time-out conditions, and processing I/O 
commands from virtual machines. The VRM 
device driver support is intended to be 

121 



sufficient for implementing relatively simple 
devices, such as printers, diskette drivers, 
and tape drives. 

Device managers provide an additional level 
of support for more sophisticated devices, 
such as virtual terminals or communications 
subsystems (see Figure 2). These types of 
device subsystems typically have 
requirements to handle multiple asynchronous 
events and to manage different types of 
resources. For example, the Virtual Terminal 
Manager coordinates the activities of device 
drivers for the keyboard, display, speaker, 
and locator to simulate a higher level device 
known as a "terminal." 

Allocation of System Resources 
Resources in the VRM are categorized as 
serially reusable or shared. Serially reusable 
resources are those that can be used by 
different applications, but only by one at a 
time. For example, multiple applications may 
use the printer but one application must finish 
before the next takes over. Otherwise, the 
result would be scrambled printer output. 
Shared resources, though, may be used 
"simultaneously." Examples include the disks 
and memory, which are shared by dividing 
them into logical pieces (minidisks and 
segments), and the processor and 
communication lines, which are shared on a 
time basis. 

The VRM manages several shared devices, 
most notably the keyboard, locator, speaker, 
display, and hard files. Virtual machines can 
have many logical terminals. The user 
controls which logical terminal is associated 
with the physical hardware via a set of 
reserved key sequences. Virtual terminal input 
is routed by the VRM to the owner of the 
screen that has been selected for display by 

the user. Output to virtual terminals is 
updated in memory if that display is not 
selected. 

Support of the PC AT coprocessor presented 
some interesting challenges for resource 
management.[9] The main constraint was that 
the VRM had to be transparent to the 
applications using the coprocessor. A 
considerable amount of hardware support is 
dedicated to this purpose, in the form of 
"trap" logic that monitors access by the 
coprocessor of I/O addresses.[6] For 
nonshared devices, the VRM reserves the 
device for exclusive use by the coprocessor. 
I/O operations using devices of this type 
proceed with no further intervention required 
by the VRM. When using shared devices, 
however, the VRM must intercept each I/O 
operation requested by the coprocessor and 
simulate the function as if it were dedicated to 
the coprocessor. For example, when the 
coprocessor writes data to what it thinks is 
the display screen, the VRM saves this data 
in a memory buffer. And, when the 
coprocessor's virtual terminal becomes the 
"active" terminal, the data is moved to the 
actual display buffer. Also, at this time 
keystrokes are routed to the coprocessor 
when it accesses what it thinks is the 
keyboard adapter's I/O port. Notice that since 
the coprocessor accesses nonshared devices 
directly, they perform at precisely the same 
speed as they do in a PC AT. However, 
shared devices suffer some performance 
penalty since functions must be simulated by 
the VRM software. 

Another resource that can be shared with the 
coprocessor is memory. The VRM can 
reserve some of its own memory for use by 
the coprocessor. In this mode, memory 
translation hardware detects memory 

references by the coprocessor and routes 
them to the VRM's memory. Alternatively, a 
memory card can be plugged into the I/O 
channel, and coprocessor memory references 
will be directed to it. This allows a great deal 
of flexibility to trade Off the lower cost of 
shared memory against the higher 
performance of dedicated memory. The trade 
Off is not "all or nothing." For example, a 
1-megabyte address space can be provided 
for the coprocessor using a 512-kilobyte 
memory card and sharing 512 K of system 
memory. 

Virtual memory is utilized by the VRM to 
eliminate arbitrary restrictions on resource 
usage. It is not uncommon for operating 
systems to restrict the number of processes 
in the system or the number of devices that 
are supported. The VRM defines internal 
control block areas in virtual memory that are 
large enough to support thousands of 
processes and device drivers. Thus, 
limitations are a function of the amount of real 
memory, disk space, and I/O channel slots 
available on a particular machine. 

Designs for Real-Time Performance 
The VRM was customized for the real-time 
processing environment, compensating for 
the shortcomings of the kernel in this area. 
Features of this design include: 

• Low overhead creation and deletion of new 
processes and interrupt handlers 

• Efficient interprocess communication 

• Preemptable processes and interrupt 
handlers, to minimize interrupt latency time 

• Prioritized scheduling of processes and 
interrupt handlers 

122 



• Interval timer support with 1-millisecond 
granularity. 

Multi-programming is implemented in the 
VRM by dividing work into logical units, or 
"processes," which are scheduled by priority. 
In addition, the VRM contains "interrupt 
handlers," which are invoked in response to 
interrupt signals from hardware devices. In 
"Extendable Virtual Machine Architecture" on 
page 120, programs in the VRM were 
characterized as device managers or device 
drivers. Device managers, and virtual 
machines, are represented as processes in 
the VRM, while interrupt handlers are among 
the subroutines that comprise a device driver. 

Processes and interrupt handlers can 
communicate using shared memory, or by 
using the VRM's interprocess communication 
functions, which include queues (for message 
passing! arid semaphores (for serialization 
and synchronization). 

Particular emphasis was placed on supporting 
high-speed devices, with stringent latency 
time requirements. Hardware interrupt 
processing is the highest priority work in the 
system. Interrupts from devices are further 
divided into four priority classes, such that the 
servicing of an interrupt can be preempted by 
a higher priority interrupt. 

Also, an "off-level" interrupt handler 
capability is available that allows a device 
interrupt handler to process time-critical 
operations without being preempted, and to 
defer less critical processing to a lower 
priority level that can be preempted by other 
device interrupts. 

After all pending interrupts are handled, the 
VRM selects the next process to execute 
based on 16 priority levels. The selected 

process will remain executing until it "waits" 
for some condition (such as the completion of 
an I/O operation or the arrival of a new work 
request), or until it is interrupted. Among 
processes with the same priority, "time 
slicing" is implemented; that is, if a process 
does not relinquish control after a period of 
time, the VRM will suspend it and pass 
control to another process. The default time 
slice interval is 16 milliseconds, and this value 
may be increased in increments of 16 
milliseconds. If a sufficiently large increment 
is selected, time slicing is effectively disabled. 

The design of the data structures for 
multiprogramming was influenced by 
performance considerations. The processor 
has a large number of registers (16 system 
registers, 16 segment registers, and 16 
general-purpose registers), which makes 
context switching between applications a 
lengthy job. In a typical operating system, 
when an interrupt occurs, the state of the 
interrupted program is saved in a known 
location, then transferred to a control block 
associated with the interrupted program if it 
becomes necessary to switch control of the 
processor to a different program. In the VRM, 
this would require moving a large amount of 
data, so the interrupt handlers are set up 
such that the state of an interrupted program 
is saved directly into its control block. This 
contributes to faster context switching. 

Another aspect of the control block design 
that contributes to fast context switching is 
that the "dispatcher," which selects which 
program next gets control of the processor, 
never has to search through queues of 
control blocks. The control blocks for 
programs that are ready to execute are 
always kept sorted by priority, thus only 
about 1 % of the total time required for a 
context switch is required to select the next 

program. The remaining time is spent saving 
the state of the current program and restoring 
the state of the next program. 

The VRM was designed using top-down 
structured programming techniques. The 
program code was written first in a high-level 
language, using primarily PL.8 (an internal 
IBM development language, derived from 
PL/I).[10, 11, 12] After the system was 
functioning to the point where meaningful 
applications could be implemented and run, 
the performance of the system was measured 
in detail. The performance data was used to 
determine critical paths in the software, or 
"bottlenecks." These psrts of the system 
were then tuned to maximize performance. 
The first step in tuning was to attempt to 
make the PL.8 code mce efficient. In many 
cases, this tuning turned out to be sufficient 
to meet performance objectives. However, 
some critical paths required recoding in 
assembler language to achieve desired 
performance. 

The process of tuning the system was an 
iterative one for the measurement and 
recoding steps. For exa-nple, one 
performance objective was that the disk 
device driver be able to handle a disk 
formatted with a 2:1 interleave factor without 
missing revolutions, with enough of a margin 
to allow for an interrupt from an Async 
communications adapter during the critical 
path. A factor that increased the difficulty in 
meeting this objective was the disk hardware, 
which does not support DMA for transferring 
data between the adapter and memory. The 
disk hardware, chosen mainly on cost and 
compatibility considerations, is similar to the 
PC AT disk hardware. Using that hardware, 
the PC AT supports a 3:1 interleave. 

123 



In pursuit of the 2:1 objective, the VRM 
interrupt handling logic and disk device driver 
were measured and recoded numerous times, 
each time squeezing out a few more 
microseconds from the path length, until the 
objective was met. At several stages in the 
process, software ingenuity was required to 
surmount hardware timing limits. Some of 
these software "tricks" included: 

• Sorting the queue of disk requests 
according to sector/track number, 
influenced by the current position of the 
disk arm 

• Looking ahead in the queue when one 
request completed, to anticipate the 
requirements of subsequent requests 

• Sending the next command to the disk 
adapter before processing of the current 
command is complete 

• Using a table look-up algorithm to 
determine how long a "seek" operation 
should take, based on current and future 
arm position, then setting a timer to wake 
up the disk driver just prior to the operation 
completing 

• Taking full advantage of the overlapped 
load, store, and branch capabilities of the 
pipelined processor. 

In this extreme example, the large tuning 
effort paid off when a difficult objective was 
met. Fortunately, most other tuning problems 
were easier to solve. Also, there were "spin
off" benefits gained in the disk driver tuning. 
The path length reductions in the VRM 
common interrupt handling logic benefitted all 
device drivers, and some of the techniques 
used in the disk driver were applied to other 

device drivers. In particular, the overlapped 
processing of queued requests increases the 
throughput of all devices. 

Critical to the job of performance tuning was 
accurate measurement of the system. Three 
different techniques were used. First, selected 
operations were executed repetitively, so that 
elapsed time could be measured. The 
measurement device was a stop watch, so to 
eliminate reaction-time errors and to increase 
accuracy, the repetition factors were chosen 
to be very large (e.g., thousands or even 
millions of iterations). Some of these "bench 
mark" loops were internally developed, while 
others were selected from bench marks 
published in trade journals. The latter type of 
bench mark was especially useful when 
comparing performance of competing 
systems. 

The second type of measurement was done 
by inserting "hooks" into critical paths. These 
hooks consist of I/O instructions that output 
data to reserved channel addresses. To 
Obtain measurements, a special I/O adapter is 
plugged into the channel to monitor the 
output from the hooks. The data collected by 
this adapter is saved on a tape. Afterwards, 
the tape is input to a data reduction program 
that generates a path flow analysis with 
timings. This technique allows very 
sophisticated path analysis, but suffers the 
drawback that the hooks themselves take a 
small amount of time to execute. Although the 
hook execution time is relatively small, the 
cumulative times can, in some cases, add up 
to a significant amount. Also, as the interval 
between hooks decreases, the hook's 
execution time becomes proportionately more 
significant. 

The third technique involved a logic analyzer 
to monitor the output of signals from the 
processor chip. Using the analyzer, it is 
possible to measure precisely the time it 
takes to execute individual instructions or 
sequences Of instructions. This is impractical 
for measuring large programs, but is well 
suited for analyzing small sections of program 
code that are executed very frequently. For 
example, program context switching and 
interrupt handling functions execute hundreds 
of times per second. In these critical paths, a 
few microseconds can be significant. 

A great deal of performance tuning effort was 
spent maximizing the "pipeline" effects of the 
ROMP processor. The pipeline effects result 
from the processor's ability to overlap various 
stages of instruction execution. Two different 
situations illustrate these effects. First, if the 
next instructions) after a memory load 
instruction do not use the value being loaded 
from memory, they may be executed in 
parallel with the memory access. By properly 
interleaving instructions, this effect can be 
exploited to reduce the total execution time of 
a sequence of instructions. Second, when a 
branch instruction is executed, the processor 
must reload its instruction pre-fetch buffer 
with the new instruction stream. By using the 
processor's Branch-with-Execute instructions, 
it is possible to overlap the execution of one 
instruction with the pre-fetch buffer reload 
time. 

The high level language compilers for the 
RT PC, in particular the PL.8 compiler, are 
designed to take advantage of the pipeline 
effects of the processor. For assembler 
programmers, the pipeline effects can be 
utilized, although usually at the cost of cleanly 
structured programming. For the lightly 
optimized critical paths in the VRM this has 

124 



been done, but the programming effort 
required, contrasted with the high efficiency 
of the compilers, has resulted in the majority 
of the VRM being implemented in high-level 
language. 

Conclusions 
The VRM builds upon the low level RT PC 
hardware interface to provide a high-function 
system environment. It brings to a desk-top 
microcomputer many features that formerly 
were found only on much larger, more 
expensive systems, such as virtual memory 
and virtual I/O subsystems. It also includes 
features, such as dynamic reconfiguration and 
an extendable architecture, which are unique; 
and it allows for the migration of existing 
UNIX and IBM PC based applications to a 
new architecture. 

During the past several years of development, 
the RT PC hardware underwent several major 
changes, but the Virtual Machine Interface 
has remained relatively stable throughout this 
time, thus minimizing the impact of the 
hardware changes to the implementation of 
AIX and its applications. 

The VRM's functions complement the 
hardware instruction set, providing features 
such as virtual memory, virtual devices, 
minidisks, and multi-programming. This 
creates an environment for implementing 
operating system extensions and hardware 
device support that has the flexibility to 
evolve as the hardware technology evolves 
without forcing radical changes to existing 
software. 

Acknowledgments 
The authors would like to acknowledge the 
efforts of the people who contributed to the 
development of the VRM. The virtual terminal 

software was developed by Lynn Rowell's 
department. The RAS and Install were 
developed by Hira Advani's department. The 
VRM device drivers were developed by Mark 
Wieland's department. Special thanks go to 
Joe Corso and each member of his 
department thoughout the VRM development 
for the VRM design, the testing methodology, 
and the technical leadership for integration of 
the product. 

References 
1. George Radin, "The 801 Minicomputer," IBM Journal 

of Research ana Development, 27, pp. 237-246, 
May 19S3. 

2. b.A. Patterson and C.H. Sequin. "RISC: A Reduced 
Instruction Set Computer." Prac. 6th Annual 
Symposium on Computer Architecture, May 1981, 

3. R.A. Meyer and L.H. Seawright, "A Virtual Machine 
Time-sharing System," IBM Journal of Research and 
Development. Volume 9 Mumper 3, 1970. 

4. J.C. O'Quin, J.T. O'Quin, Mark D. Rogers, T.A. Smith, 
•Design of the IBM RT PC Virtual Memory Manager," 

IBM RT Personal Computer Technology, p. 126. 

5. P.O. Hester, Richard O. Simpson. Albert Chang "IBM 
RT PC ROMP and Memory Management Unit 
Architecture," IBM RT Personal Computer Technology, 
p. 48 

6 Larry Loucks. "IBM RT PC AIX Kernel — 
Modifications and Extensions IBM RT Personal 
Computer Technology, p. 96. 

7. b.C. Baker, G.A. Flurry, and K.O, Nguyen, 
"Implementation of a Virtual Terminal Subsystem." 
IBM RT Personal Computer Technology, p. 134. 

8. John W. Irwin, "Use of a Coprocessor for Emulating 
the PC AT," IBM RT Personal Computer Technology. 
p. 137. 

9. Rajan Krishna murty and Terry Mothersole. 
"Coprocessor Software Support." IBM RT Personal 
Computer Technology, p. 142. 

10. M. Auslander, et a l „ "An Overview of the PL.8 
Compiler." ACM. 0-89791-074-5/82/006/0022 

11. Alan MacKay and Ahmed Chibib, "Software 
Development Tools tor ROMP," IBM RT Personal 
Computer Technology, p. 72. 

12. M.E Hopkins. "Compiling tor the RT PC ROMP." IBM 
RT Personal Computer Technology, p. 76 


