
Originally published in Computer, Dec. 1996, pp. 66–76.
Copyright  1996 IEEE, Inc. All rights reserved.

1

Shared Memory Consistency Models:
A Tutorial

Sarita V. Adve
Rice University

Kourosh Gharachorloo
Digital Equipment Corporation

The memory consistency model of a system affects performance, programmability, and portability. This article de-
scribes several models in an easy to understand way.

The shared memory programming model has several
advantages over the message passing model. In par-
ticular, it simplifies data partitioning and dynamic load
distribution. Shared memory systems are therefore
gaining wide acceptance for both technical and com-
mercial computing.

To write correct and efficient shared memory pro-
grams, programmers need a precise notion of shared
memory semantics. For example, in the program in
Figure 1 (a fragment from a program in the Splash ap-
plication suite), processor P1 repeatedly updates a data
field in a new task record and then inserts the record
into a task queue. When no tasks are left, P1 updates a
pointer, Head, to point to the first record in the task
queue. Meanwhile, the other processors wait for Head
to have a non-null value, dequeue the task pointed to by
Head in a critical section, and read the data in the de-

queued task. To ensure correct execution, a program-
mer expects that the data value read should be the same
as that written by P1. However, in many commercial
shared memory systems, the processors may observe an
older value, causing unexpected behavior.

The memory consistency model of a shared memory
multiprocessor formally specifies how the memory
system will appear to the programmer. Essentially, a
memory consistency model restricts the values that a
read can return. Intuitively, a read should return the
value of the “last” write to the same memory location.
In uniprocessors, “last” is precisely defined by the se-
quential order specified by the program, called the pro-
gram order. This is not the case in multiprocessors. For
example, in Figure 1 the write and read of Data are
not related by program order because they reside on
two different processors.

Figure 1. Illustration of the need for a memory consistency model.

Originally published in Computer, Dec. 1996, pp. 66–76.
Copyright  1996 IEEE, Inc. All rights reserved.

2

The uniprocessor model, however, can be extended
to apply to multiprocessors in a natural way. The result-
ing model is called sequential consistency. Informally,
sequential consistency requires that all memory opera-
tions appear to execute one at a time and that all opera-
tions of a single processor appear to execute in the order
described by that processor’s program. For Figure 1, this
model ensures that the reads of the data field will return
the new values written by processor P1. Sequential con-
sistency provides a simple, intuitive programming model.
However, it disallows many uniprocessor hardware and
compiler optimizations. For this reason, many relaxed
consistency models have been proposed, several of which
are supported by commercial architectures.

The memory consistency model is an interface be-
tween the programmer and the system, so it influences
not only how parallel programs are written but virtually
every aspect of parallel hardware and software design.
A memory consistency model specification is required
at every interface between the programmer and the
system, including the interfaces at the machine-code
and high-level language levels. In particular, the high-
level language specification affects high-level language
programmers, compiler and other software writers who
convert high-level code into machine code, and the
designers of hardware that executes the code. At each
level, the memory consistency model affects both pro-
grammability and performance. Furthermore, due to a
lack of consensus on a single model, portability can be
affected when moving software across systems sup-
porting different models.

Unfortunately, the vast literature that describes con-
sistency models uses nonuniform and complex termi-
nology to describe the large variety of models. This
makes it difficult to understand the often subtle but
important differences among models and leads to sev-
eral misconceptions, some of which are listed in the
“Myths about memory consistency models” sidebar.

In this article, we aim to describe memory consis-
tency models in a way that most computer professionals
would understand. This is important if the performance-
enhancing features being incorporated by system de-
signers are to be correctly and widely used by pro-
grammers. Our focus is consistency models proposed
for hardware-based shared memory systems. Most of
these models emphasize the system optimizations they
support, and we retain this system-centric emphasis in
this article. We also describe an alternative, program-
mer-centric view of relaxed consistency models that
describes them in terms of program behavior, not sys-

tem optimizations. A more formal treatment is covered
in our other work. 1–3

Uniprocessor Memory Consistency

Most high-level uniprocessor languages present simple
sequential-memory semantics, which allow the pro-
grammer to assume that all memory operations will
occur one at a time in program order. Fortunately, this
illusion of sequentiality can be supported efficiently by
simply ensuring that two operations are executed in
program order if they are to the same location or if one
controls the execution of the other. The compiler or the
hardware can freely reorder other operations, enabling
several optimizations. Overall, the sequential-memory
semantics of a uniprocessor provide a simple and intui-
tive model and yet allow a wide range of efficient sys-
tem designs.

Understanding Sequential
Consistency

The most commonly assumed memory consistency
model for shared memory multiprocessors is sequential
consistency, which gives programmers a simple view of
the system. A multiprocessor system is sequentially
consistent “if the result of any execution is the same as
if the operations of all the processors were executed in
some sequential order, and the operations of each indi-
vidual processor appear in this sequence in the order
specified by its program.”4

There are two requirements for sequential
consistency:

• maintaining program order among operations from
a single processor, and

• maintaining a single sequential order among all
operations.

The second requirement makes a memory operation
appear to execute atomically (instantaneously) with
respect to other memory operations. A sequentially
consistent system can be thought of as consisting of a
single global memory connected to all the processors
by a central switch. At any time step, the switch con-
nects memory to an arbitrary processor, which may
then issue a memory operation. Each processor issues
memory operations in program order, and the switch
provides the global serialization among all memory
operations.

Originally published in Computer, Dec. 1996, pp. 66–76.
Copyright  1996 IEEE, Inc. All rights reserved.

3

Myths about memory consistency models

Myth: A memory consistency model applies only to systems that allow multiple copies of shared data (through
caching, for example).

Reality: There are several counterexamples, some of which are shown in Figure 3.

Myth: Most modern systems are sequentially consistent.
Reality: Several commercial systems are not, including the ones listed in Table 2.

Myth: Memory consistency models affect only hardware design.
Reality: Memory consistency models affect many aspects of system design, including which optimizations the

compiler can exploit.

Myth: A cache coherence protocol inherently supports sequential consistency.
Reality: The cache coherence protocol is only part of the memory consistency model. Other aspects include the

order in which a processor issues memory operations to the memory system and whether a write executes atomically.

Myth: The memory consistency model depends on whether the system supports an invalidate or update-based
coherence protocol.

Reality: A given memory consistency model can allow both invalidate and update coherence protocol.

Myth: A system’s memory model may be defined solely by specifying processor (or memory system) behavior.
Reality: The memory consistency model is affected by the behavior of both the processors and the memory sys-

tem.

Myth: Relaxed memory consistency models may not be used to hide read latency.
Reality: Many models can hide both read and write latencies.

Myth: Relaxed consistency models require the use of extra synchronization.
Reality: Most models do not. Our programmer-centric framework requires only that the operations be distin-

guished or labeled correctly. Other models provide safety nets that let the programmer enforce any constraints for
achieving correctness.

Myth: Relaxed memory consistency models do not allow chaotic (or asynchronous) algorithms.
Reality: Most do. With system-centric models, the programmer can reason about correctness of such algorithms

by considering the optimizations the model enables. The programmer-centric approach simply requires the pro-
grammer to explicitly identify operations involved in a race. For many chaotic algorithms, the former approach may
provide higher performance, since such algorithms often do not rely on sequential consistency.

Figure 2a illustrates the first requirement for program
order. The figure depicts Dekker’s algorithm for critical
sections. It involves two flag variables initialized to 0.
When processor P1 attempts to enter the critical sec-
tion, it updates Flag1 to 1, and checks the value of
Flag2. The value 0 for Flag2 indicates that processor
P2 has not yet tried to enter the critical section, so it is
safe for P1 to enter. The algorithm assumes that if P1’s
read returns 0, then P1’s write occurred before P2’s
write and read. P2 will read the flag and return 1, which
will prohibit it from also entering the critical section.

Sequential consistency ensures this by maintaining pro-
gram order.

Figure 2b illustrates the atomicity requirement. In
this case, three processors share variables A and B,
which are initialized to 0. Suppose P2 returns 1 when it
reads A and then writes to B, and suppose P3 returns 1
when it reads B. Atomicity allows us to assume that
P1’s write is seen by the entire system at the same time.
Since P3 sees P2’s write to B after P2 sees P1’s write
to A, it follows that P3 is guaranteed to see P1’s write
and return 1 when it reads A.

Originally published in Computer, Dec. 1996, pp. 66–76.
Copyright  1996 IEEE, Inc. All rights reserved.

4

Figure 2. Examples for sequential consistency.

Implementing Sequential Consistency

In this section we explain how to practically realize
sequential consistency in a multiprocessor system. We
will see that unlike uniprocessors, preserving only per-
processor data and control dependencies is insufficient.
We first focus on how sequential consistency interacts
with common hardware optimizations and then briefly
describe compiler optimizations. To separate the issues
of program order and atomicity, we begin with imple-
mentations for architectures without caches and then
discuss the effects of caching shared data.

Architectures without caches

The key issue in supporting sequential consistency in
systems without caches is program order. To illustrate
the interactions that arise in such systems, we will use
three typical hardware optimizations, shown in Figure
3. The notations t1, t2, and so on in the figure indicate
the order in which the corresponding memory opera-
tions execute at memory.

Write Buffers with Read Bypassing. The optimi-
zation depicted in Figure 3a shows the importance of
maintaining program order between a write and a fol-
lowing read, even if there is no data or control depend-
ence between them. In this bus-based system, assume
that a simple processor issues operations one at a time,
in program order. Now add the optimization of a write
buffer. A processor can insert a write into the buffer
and proceed without waiting for the write to complete.
Subsequent reads of the processor can bypass the buff-
ered writes (to different addresses) for faster
completion.

Write buffers can violate sequential consistency.
For the code in Figure 3a, a sequentially consistent
system must not allow both processors’ reads of flags
to return 0. However, this can happen in the system in
Figure 3a: Each processor can buffer its write and allow
the subsequent read to bypass it. Therefore, both reads
may be serviced by memory before either write, allow-
ing both reads to return 0.

Overlapping Writes. The optimization depicted in
Figure 3b shows the importance of maintaining pro-
gram order between two writes. Again, we consider
operations with no data or control dependencies. This
system has a general (nonbus) network and multiple
memory modules, which can exploit more parallelism
than the system in Figure 3a. Now multiple writes of a
processor may be simultaneously serviced by different
memory modules.

This optimization can also violate sequential con-
sistency. In the code fragment in Figure 3b, assume that
Data and Head reside in different memory modules.
Because the write to Head may be injected into the
network before the write to Data has reached its mem-
ory module, the two writes could complete out of pro-
gram order. Therefore, P2 might see the new value of
Head and yet get the old value of Data, a violation of
sequential consistency.

To maintain program order among writes, an ac-
knowledgment can be returned to the processor that
issued the write once the write has reached its target
memory module. The processor could be constrained
from injecting another write until it receives an ac-
knowledgment of its previous write.

This write acknowledgment technique can also
maintain program order from a write to a subsequent
read in systems with general networks.

Originally published in Computer, Dec. 1996, pp. 66–76.
Copyright  1996 IEEE, Inc. All rights reserved.

5

Figure 3. Optimizations that may violate sequential consistency; t1, t2, ... indicate the order in which the
corresponding memory operations execute at memory

Nonblocking Reads. The optimization in Figure 3c
illustrates the importance of maintaining program order
between a read and a following operation. While most
early RISC processors blocked on a read until it re-
turned a value, recent processors proceed past reads,
using techniques such as lockup-free caches and dy-
namic scheduling. In Figure 3c, two overlapped reads
violate sequential consistency in a manner similar to
overlapped writes. A read overlapped with a following
write causes similar problems, but this kind of overlap
is not common.

Program Order Requirement. The above discus-
sion shows that in straightforward hardware imple-
mentations, a processor must ensure that its previous

memory operation is complete before proceeding with
its next memory operation in program order. We call
this requirement the program order requirement.

Architectures with caches

Caching, or replication, of shared data can lead to sce-
narios similar to those described for systems without
caches. Systems that use caching must therefore take
similar precautions to maintain the illusion of program
order. Most notably, even if a read hits in its proces-
sor’s cache, reading the cached value without waiting
for the completion of previous operations can violate
sequential consistency. The replication of shared data
introduces three additional issues.

Originally published in Computer, Dec. 1996, pp. 66–76.
Copyright  1996 IEEE, Inc. All rights reserved.

6

Cache Coherence Protocols. The presence of
multiple cache copies requires a mechanism, often
called a cache coherence protocol, to propagate a new
value to all copies of the modified location. A new
value is propagated by either invalidating (or eliminat-
ing) or updating each copy.

The literature includes several definitions of cache
coherence (which is sometimes called cache consis-
tency). The strongest definitions are virtually synony-
mous with sequential consistency. Other definitions
impose extremely relaxed orderings. One common
definition requires two conditions for cache coherence:

• A write must eventually be made visible to all
processors.

• Writes to the same location must appear to be seen
in the same order by all processors.5

These conditions are clearly not sufficient to satisfy
sequential consistency. This is because sequential con-
sistency requires that writes to all locations (not just the
same location) be seen in the same order by all proces-
sors, and also explicitly requires that a single proces-
sor’s operations appear to execute in program order.

We do not use the term cache coherence to define a
consistency model. We view a cache coherence proto-
col as simply a mechanism to propagate a newly written
value. The memory consistency model is the policy that
places the bounds on when the value can be propagated
to a given processor.

Detecting Write Completion. When there are no
caches, a write acknowledgment may be generated
when the write reaches its target memory. However, an
acknowledgment at this time is too early for a system
with caches.

Suppose write-through caches were added to each
processor in Figure 3b. Assume P2 initially has Data
in its cache. Now suppose P1 proceeds to write to
Head after the write to Data reaches its target mem-
ory but before its value has been propagated to P2. It is
possible that P2 could read the new value of Head and
still return the old value of Data from its cache, a vio-
lation of sequential consistency.

P1 must wait for P2’s copy of Data to be updated
or invalidated before it writes to Head. Thus, a write to
a line replicated in other caches typically requires an
acknowledgment of invalidate or update messages as
well. Furthermore, the acknowledgments must be col-
lected either at the memory or at the processor that is-
sues the write. In either case, the writing processor
must be notified when all acknowledgments are re-
ceived. Only then can the processor consider the write
to be complete.

A common optimization is to have each processor
acknowledge an invalidate or update immediately on
receipt and potentially before its cache copy is affected.
This design can satisfy sequential consistency if it sup-
ports certain ordering constraints in processing all in-
coming messages.3

Maintaining Write Atomicity. Propagating
changes to multiple cache copies is inherently a nona-
tomic operation. Therefore, special care must be taken
to preserve the illusion of write atomicity.

In this section we describe two conditions that to-
gether ensure the appearance of atomicity. We will refer
to these conditions as the write atomicity requirement.

The first condition requires writes to the same loca-
tion to be serialized. That is, all processors should see
writes to the same location in the same order. Figure 4
illustrates the need for this condition: Assume an up-
date protocol and that all processors in Figure 4 exe-
cute memory operations one at a time and in program
order. Sequential consistency is violated if the updates
of the writes of A by P1 and P2 reach P3 and P4 in a
different order. If this happens, P3 and P4 will return
different values when they read A and the writes of A
appear nonatomic. This can occur in systems with a
general (nonbus) network that do not guarantee the
delivery order of messages that traverse different paths.
Requiring serialization of writes to the same location
solves this problem. One way to achieve serialization is
to ensure that all updates or invalidates for a location
originate from a single point (such as the directory) and
the network preserves the ordering of messages be-
tween a given source and destination. An alternative is
to delay updates or invalidates until those issued for a
previous write to the same line are acknowledged.

Figure 4. Example for serialization of writes.

Originally published in Computer, Dec. 1996, pp. 66–76.
Copyright  1996 IEEE, Inc. All rights reserved.

7

The second condition prohibits a read from return-
ing a newly written value until all cached copies have
acknowledged receipt of the invalidates or updates
generated by the write (that is, until the write becomes
visible to all processors). Assume, for example, that all
variables in Figure 2b are initially cached by all proces-
sors. Furthermore, assume a system with all the pre-
cautions for sequential consistency except for the above
condition. It is still possible to violate sequential con-
sistency with a general network with an update protocol
if

1. P2 reads the new value of A,
2. P2’s update of B reaches P3 before the update of

A, and
3. P3 returns the new value of B and the old value of

A from its cache.

P2 and P3 will thus appear to see the write of A at dif-
ferent times, violating atomicity. A similar situation can
arise in an invalidate scheme. This violation occurs
because P2 returns the value of P1’s write before the
update for the write reaches P3. Prohibiting a read from
returning a newly written value until all cached copies
have acknowledged the updates for the write avoids
this.

It is straightforward to ensure the second condition
with invalidate protocols. Update protocols are more
challenging because updates directly supply new values
to other processors. One solution for update protocols
is to employ a two-phase update scheme: The first
phase sends updates and receives acknowledgments. In
this phase, no processor is allowed to read the updated
location. In the second phase, a confirmation message
is sent to the updated processor caches to confirm the
receipt of all acknowledgments. A processor can use
the updated value from its cache once it receives this
confirmation.

Compilers

Compilers that reorder shared memory operations can
cause sequential consistency violations similar to hard-
ware. For all the program fragments discussed so far,
compiler-generated reordering of shared memory op-
erations will lead to sequential consistency violations
similar to hardware-generated reorderings. Therefore,
in the absence of more sophisticated analysis, the com-
piler must preserve program order among shared mem-
ory operations. This prohibits any uniprocessor com-
piler optimization that might reorder memory opera-
tions, including simple optimizations—code motion,
register allocation, and eliminating common subexpres-

sions—and more sophisticated optimizations—loop
blocking and software pipelining.

Besides reordering, compiler optimizations such as
register allocation can also cause the elimination of
shared memory operations. This can also lead to se-
quential consistency violations in subtle ways. In Fig-
ure 3b, for example, if the compiler register allocates
Head on P2 (by doing a single read of Head into a
register and then reading the value from the register),
the loop on P2 may never terminate if the single read
returns the old value of Head. Sequential consistency
requires this loop to terminate in every execution.

Optimizations like register allocation are key to per-
formance, so most compilers for sequentially consistent
systems perform them. It is left to the programmer to
explicitly disable them when necessary, using mecha-
nisms such as the volatile declaration. But it is difficult
to determine when disabling is necessary—it
requires reasoning that is similar to the reasoning for
relaxed consistency models.

The above discussion applies to compilers for ex-
plicitly parallel code; compilers that parallelize se-
quential code naturally have enough information about
the generated parallel program to determine when an
optimization is safe to apply.

Optimizations for sequential consistency

Several techniques have been proposed to enable the
use of some hardware and compiler optimizations
without violating sequential consistency. Here, we in-
clude the ones that have the potential to substantially
boost performance.

Hardware Techniques. Two hardware techniques
for cache-coherent systems are supported by several
recent microprocessors (the Hewlett-Packard PA-8000,
the Intel P6, and the MIPS R10000).6 The first tech-
nique automatically prefetches ownership for any write
operation that is delayed due to the program order re-
quirement (for example, by issuing prefetch-exclusive
requests for writes delayed in the write buffer), thus
partially overlapping the service of the delayed writes
with previous operations. The second speculatively
services read operations that are delayed due to the
program order requirement. Sequential consistency is
guaranteed by simply rolling back and reissuing the
read and subsequent operations, if the read line gets
invalidated or updated before the read could have been
issued in a more straightforward implementation. Be-
cause dynamically scheduled processors already in-
clude much of the necessary rollback machinery (to
deal with branch mispredictions), they are particularly
well-suited to this technique.

Originally published in Computer, Dec. 1996, pp. 66–76.
Copyright  1996 IEEE, Inc. All rights reserved.

8

A recent study has shown that these two techniques
dramatically improve the performance of sequential
consistency.7 However, in many cases a significant
performance gap remains between sequential consistency
and the relaxed consistency model of release consistency.

Other latency hiding techniques, such as nonbinding
software prefetching or hardware support for multiple
contexts, have also been shown to enhance the per-
formance of sequentially consistent hardware. How-
ever, these techniques are also beneficial when used in
conjunction with relaxed memory consistency.

Compiler Techniques. A compiler algorithm to
detect when memory operations can be reordered with-
out violating sequential consistency has been pro-
posed.8 Such an analysis can be used to implement both
hardware and compiler optimizations. This algorithm
has exponential complexity. More recently, a new algo-
rithm with polynomial complexity has been proposed.9

However, both algorithms require global depend-
ence analysis to determine whether two operations from
different processors can conflict. This analysis is diffi-
cult and often leads to conservative estimates that can
decrease the algorithms’ effectiveness. It remains to be
seen if these algorithms can approach the performance
of relaxed consistency models.

Relaxed Memory Models

Relaxed memory consistency models typically empha-
size the system optimizations they enable and are based
on widely varying specification methods and levels of
formalism. We retain the system-centric emphasis, but
describe the models using a simpler, more uniform ter-
minology. A more formal and unified system-centric
framework, along with formal descriptions of these
models, has been published elsewhere.2, 3

Model types

We use two key characteristics to categorize relaxed
memory consistency models:

• How they relax the program order requirement.
Models differ on the basis of how they relax the
order from a write to a following read, between
two writes, and from a read to a following read or
write. These relaxations apply only to operation
pairs with different addresses and are similar to the
optimizations for sequential consistency described
for architectures without caches.

• How they relax the write atomicity requirement.
Some models allow a read to return the value of
another processor’s write before the write is made

visible to all other processors. This relaxation ap-
plies only to cache-based systems.

We also consider a relaxation related to both pro-
gram order and write atomicity, where a processor is
allowed to read the value of its own previous write be-
fore the write is made visible to other processors and,
in a cache-based system, before the write is serialized.
A common optimization that exploits this relaxation is
forwarding the value of a write in a write buffer to a
following read from the same processor.

The relaxed models discussed here also typically
provide mechanisms for overriding their default re-
laxations. For example, explicit fence instructions may
be used to override program order relaxations. We call
these mechanisms safety nets. We discuss only the
more straightforward safety nets here.

Table 1 lists the relaxations and safety nets for the
models we discuss here, and Table 2 lists example
commercial systems that allow such relaxations. For
simplicity, we do not attempt to describe the models’
semantics with respect to issues such as instruction
fetches, I/O operations, or multiple granularity opera-
tions (byte versus word operations, for example), even
though some models define such semantics.

Throughout this section, we assume that the fol-
lowing constraints are satisfied:

• We assume that all models require both that a write
eventually be made visible to all processors and
that writes to the same location be serialized. If
shared data is not cached, these requirements are
trivial; otherwise they are met by a hardware cache
coherence protocol.

• We assume that all models enforce uniprocessor
data and control dependencies.

• We assume that models that relax the program
order from reads to following write operations also
maintain a subtle form of multiprocessor data and
control dependence.1, 2 This constraint is inherently
upheld by all processor designs we know of and
can be easily maintained by the compiler.

Relaxing write to read program order

These models allow a read to be reordered with respect
to previous writes from the same processor. Therefore,
programs such as the one in Figure 3a may fail to pro-
vide sequentially consistent results.

As Table 1 shows, the three models in this group—
IBM 370, total store ordering (TSO), and processor
consistency (PC)—differ in when they allow a read to
return the value of a write. Figure 5 illustrates these
differences.

Originally published in Computer, Dec. 1996, pp. 66–76.
Copyright  1996 IEEE, Inc. All rights reserved.

9

Table 1. Simple categorization of relaxed models.

Relaxation
W → R
order

W → W
order

R → RW
order

Read others’
write early

Read own
write early Safety net

SC1 ✓

IBM 3702 ✓ Serialization instructions

TSO3 ✓ ✓ Read-modify-write

PC4 ✓ ✓ ✓ Read-modify-write

PSO3 ✓ ✓ ✓ Read-modify-write, STBAR

WO5 ✓ ✓ ✓ ✓ Synchronization

RCsc4 ✓ ✓ ✓ ✓ Release, acquire, nsync, read-modify-write

RCpc4 ✓ ✓ ✓ ✓ ✓ Release, acquire, nsync, read-modify-write

Alpha6 ✓ ✓ ✓ ✓ MB, WMB

RMO3 ✓ ✓ ✓ ✓ Various MEMBARs

PowerPC7 ✓ ✓ ✓ ✓ ✓ Sync

A ✓ indicates that the corresponding relaxation is allowed by straightforward implementations of the corresponding model. It
also indicates that the relaxation can be detected by the programmer (by affecting the results of the program) except for the fol-
lowing cases. The read own write early relaxation is not detectable with the SC, WO, Alpha, and PowerPC models. The read
others’ write early relaxation is possible and detectable with complex implementations of RCsc.

1. L. Lamport, “How to Make a Multiprocessor Computer that Correctly Executes Multiprocess Programs,” IEEE Trans. Computers, Sept.
1979, pp. 690-691.

2. IBM System/370 Principles of Operation, IBM Pub. GA22-7000-9, File S370-01, 1983.

3. SPARC Architecture Manual, D.L. Weaver and T. Germond, eds., Prentice-Hall, Englewood Cliffs, N.J. 1994.

4. K. Gharachorloo et al., “Memory Consistency and Event Ordering in Scalable Shared-Memory Multiprocessors,” Proc. 17th Int’l Symp.
Computer Architecture, 1990, pp. 15-26.

5. M. Dubois, C. Scheurich, and F. Briggs, “Memory Access Buffering in Multiprocessors,” Proc. 13th Int’l Symp. Computer Architecture,
IEEE CS Press, Los Alamitos, Calif., 1986, pp. 434-442.

6. Alpha AXP Architecture Reference Manual 2nd Ed., R.L. Sites and R.T. Witek, eds., Digital Press, Boston, 1995.

7. The PowerPC Architecture: A Specification for a New Family of RISC Processors, C. May et al., eds., Morgan Kaufmann, San Francisco,
1994.

Table 2. Some commercial systems that relax sequential consistency.

Relaxation Example commercial systems providing relaxation

W → R order AlphaServer 8200/8400, Cray T3D/T3E, Sequent Balance and NUMA-Q, SparcCenter

1000/2000, Ultra Enterprise Servers, Convex SPP systems in weak ordering mode

W → W order AlphaServer 8200/8400, Cray T3D/T3E, Convex SPP systems in weak ordering mode

R → RW order AlphaServer 8200/8400, Cray T3D/T3E, Convex SPP systems in weak ordering mode

Read others’ write early Cray T3D

Read own write early AlphaServer 8200/8400, Cray T3D/T3E, SparcCenter1000/2000, Ultra Enterprise Servers

Originally published in Computer, Dec. 1996, pp. 66–76.
Copyright  1996 IEEE, Inc. All rights reserved.

10

Figure 5. Differences between 370, TSO, and PC. The result for the program in part (a) is possible with
TSO and PC because both models allow the reads of the flags to occur before the writes of the flags on
each processor. The result is not possible with IBM 370 because the read of A on each processor is not
issued until the write of A on that processor is complete. Consequently, the read of the flag on each proc-
essor is not issued until the write of the flag on that processor is done. The program in part (b) is the same
as in Figure 2b. The result shown is possible with PC because it allows P2 to return the value of P1’s write
before the write is visible to P3. The result is not possible with IBM 370 or TSO.

As a safety net, the IBM 370 provides special seri-
alization instructions that can be used to enforce pro-
gram order between a write and a following read. Some
serialization instructions, such as compare&swap,
are memory operations used for synchronization. Oth-
ers are nonmemory instructions, such as a branch. The
IBM 370 does not need a safety net for write atomicity
because it does not relax atomicity.

In contrast, the TSO and PC models do not provide
explicit safety nets. Nevertheless, programmers can use
read-modify-write operations to provide the illusion
that program order is maintained from a write to a read
or that writes are atomic.2, 3 Fortunately, most programs
do not depend on write-to-read program order or write
atomicity for correctness.

Relaxing program order as these models do can
substantially improve performance at the hardware
level by effectively hiding the latency of write opera-
tions.10 At the compiler level, however, this relaxation
alone is not beneficial. Most compiler optimizations
require the extra flexibility of reordering any two op-
erations (read or write) with respect to one another.

Relaxing write to read and write to write pro-
gram order

These models allow writes to different locations from
the same processor to be pipelined or overlapped, and
so they may reach memory or other cached copies out
of program order. Therefore, these models can violate
sequential consistency for the programs in Figures 3a
and b. The partial store ordering model (PSO) is the
only model we describe here.

With respect to atomicity requirements, PSO is
identical to TSO. However, PSO adds a safety net, the
STBAR instruction, which imposes program order be-
tween two writes. As with the previous three models,
the optimizations allowed by PSO are not sufficiently
flexible to be useful to a compiler.

Relaxing all program orders

The final set of models relax program order between all
operations to different locations, allowing a read or
write to be reordered with respect to a following read
or write. Thus, they may violate sequential consistency
for all the examples shown in Figure 3. The key addi-
tional optimization relative to the previous models is
that memory operations following a read operation may
be overlapped or reordered with respect to the read.
This flexibility allows hardware to hide the latency of
reads with either statically (in-order) or dynamically
(out-of-order) scheduled processors.3, 7

We discuss six models in this class: the weak or-
dering (WO) model, two flavors of the release consis-
tency model (RCsc and RCpc), and three models pro-
posed for commercial architectures—the Digital Alpha,
Sparc relaxed memory order (RMO), and IBM
PowerPC. Except for Alpha, these models also allow
the reordering of two reads to the same location.

Regarding atomicity, all models in this group allow
a processor to read its own write early. RCpc and
PowerPC are the only models whose straightforward
implementations allow a read to return the value of
another processor’s write early. This can also happen in
more complex implementations of WO, RCsc, Alpha,

Originally published in Computer, Dec. 1996, pp. 66–76.
Copyright  1996 IEEE, Inc. All rights reserved.

11

and RMO. From the programmer’s perspective, how-
ever, all implementations of WO, Alpha, and RMO
must preserve the illusion of write atomicity (while
extremely aggressive implementations of RCsc may
violate it). For WO, we assume that if a read and a fol-
lowing write are related by data or control dependence,
then the write is delayed until both the read and the
write read by the read are complete.

These six models fall into two main categories, on
the basis of the type of safety net they provide. The
WO, RCsc, and RCpc models distinguish memory op-
erations based on their type and provide stricter order-
ing constraints for some operations. The Alpha, RMO,
and PowerPC models provide explicit instructions to
impose program orders between various memory
operations.

Weak Ordering. The weak ordering model classi-
fies memory operations into two categories: data op-
erations and synchronization operations. To enforce
program order between two operations, the programmer
must identify at least one of them as a synchronization
operation. Memory operations between two synchroni-
zation operations may still be reordered and over-
lapped. This model is based on the intuition that reor-
dering memory operations to data regions between syn-
chronization operations does not typically affect pro-
gram correctness. Since WO ensures that writes appear
to be atomic to the programmer, no safety net is re-
quired for write atomicity.

Release Consistency. The release consistency
models further distinguish memory operations. Opera-
tions are first distinguished as ordinary or special,
categories that loosely correspond to the distinction
between data and synchronization in WO. Special op-
erations are further distinguished as sync or nsync.
Sync operations are synchronization operations; nsyncs
are either asynchronous data operations or special op-
erations not used for synchronization. Finally, sync
operations are further distinguished as acquire or re-
lease operations. An acquire is a read operation per-
formed to gain access to shared locations (for example,
a lock operation or spinning for a flag to be set). A re-
lease is a write operation performed to grant permission
to access shared locations (for example, an unlock op-
eration or setting of a flag).

There are two flavors of release consistency, RCsc
and RCpc. RCsc maintains sequential consistency
among special operations, while RCpc maintains proc-
essor consistency among such operations. RCsc main-
tains the program order from an acquire to any opera-
tion that follows it, from any operation to a release, and
between special operations. RCpc is similar, except that

the write-to-read program order among special opera-
tions is not maintained.

Thus, for the RC models, program order between a
pair of operations can be enforced by distinguishing or
labeling appropriate operations based on the preceding
information.

For RCpc, imposing program order from a write to
a read or making a write appear atomic requires using
read-modify-write operations as in the PC model.2, 5

Complex implementations of RCsc may also make
writes appear nonatomic; one way to enforce atomicity
is to label sufficient operations as special. 2, 3 The RCsc
model is accompanied by a higher level abstraction that
relieves the programmer from having to use the lower
level specification to reason about many programs.5

Alpha, RMO, and PowerPC. The Alpha, RMO,
and PowerPC models all provide explicit fence instruc-
tions, as their safety nets.

The Alpha model provides two fence instructions:
memory barrier (MB) and write memory barrier
(WMB). Memory barrier instructions maintain program
order between any memory operations that come before
them and any memory operations that come after them.
Write memory barrier instructions provide this guaran-
tee only among write operations. The Alpha model
does not require a safety net for write atomicity.

The RMO model provides more flavors of fence in-
structions. Effectively, a programmer can customize a
memory barrier instruction (MEMBAR) to specify any
combination of four possible pairs of orderings—be-
tween all writes followed by all reads, all writes fol-
lowed by all writes, all reads followed by all reads, and
all reads followed by all writes. This model also does
not require a safety net for write atomicity.

The PowerPC model provides a single fence in-
struction, Sync. Sync behaves like the Alpha memory
barrier, with one exception that can create subtle cor-
rectness problems: Even if a Sync is placed between
two reads to the same location, the second read may
return the value of an older write than the first read. In
other words, the reads appear to occur out of program
order. Unlike Alpha and RMO, PowerPC does not pre-
serve write atomicity and may require the use of read-
modify-write operations to make a write appear
atomic.3

Compiler optimizations

The last set of models described are flexible enough to
allow common compiler optimizations on shared mem-
ory operations. With WO, RCsc, and RCpc, the com-
piler can reorder memory operations between two con-
secutive synchronization or special operations. With
the Alpha, RMO, and PowerPC models, the compiler

Originally published in Computer, Dec. 1996, pp. 66–76.
Copyright  1996 IEEE, Inc. All rights reserved.

12

can reorder operations between fence instructions.
Most programs use these operations or instructions
infrequently, so the compiler can safely optimize large
regions of code.

Programmer-Centric Models

Relaxed memory models enable a wide range of op-
timizations that have been shown to substantially im-
prove performance.3, 7, 10, 11 However, they are harder
for programmers to use. Furthermore, the wide range of
models supported by different systems requires pro-
grammers to deal with various semantics that differ in
subtle ways and complicate porting.

We need a higher level abstraction that provides
programmers a simpler view, yet allows system design-
ers to exploit the various optimizations.

Relaxed models are complex to program because
their system-centric specifications directly expose the
programmer to the reordering and atomicity optimiza-
tions, requiring the programmer to consider such op-
timizations when reasoning about program correctness.
Even though relaxed models do provide safety nets, the
programmer must still identify the ordering constraints
necessary for correctness.

Instead of exposing optimizations directly to the
programmer, a programmer-centric specification re-
quires the programmer to provide certain information
about the program. This information is then used by the
system to determine whether a certain optimization can
be applied without affecting the correctness of program
execution. To provide a formal programmer-centric
specification, we must first define when a program is
considered to be executed correctly by the system. An
obvious choice for correctness is sequential consis-
tency, because it is a natural extension of the uniproc-
essor notion of correctness and the most commonly
assumed multiprocessor correctness model. Once we
have defined a correctness notion, we must precisely
define the information required from the programmer.

So our programmer-centric approach describes a
memory model in terms of program-level information
that a programmer must provide, and then exploits this
information to perform optimizations without violating
sequential consistency.

We have described various programmer-centric ap-
proaches elsewhere: The data-race-free-0 approach
allows WO-like optimizations,12 the properly-labeled
approach is a simpler way to write programs for RCsc,5

and other approaches exploit more aggressive optimi-
zations.1, 3 We have also developed a unified frame-
work to explore the design space of programmer-
centric models and optimizations.1

Sample programmer-centric framework

To illustrate the programmer-centric approach, we
describe program-level information that can enable
WO-like optimizations. Recall that weak ordering is
based on the intuition that memory accesses can be
classified as either data or synchronization, and that
data operations can be executed more aggressively
than synchronization operations. However, the infor-
mal nature of this classification makes it ambiguous
when applied over a wide range of programs. A key
goal of the programmer-centric approach is to for-
mally define the operations that should be distin-
guished as synchronization.

An operation is a synchronization operation if it
forms a race with another operation in any sequentially
consistent execution. All other operations are data op-
erations. Given a sequentially consistent execution, two
operations form a race with each other if they access
the same location, if at least one is a write, and if there
are no other operations between them. For example, in
every sequentially consistent execution of the program
in Figure 3b, the write and read of Data are separated
by intervening operations on Head. In this case the
former set are data operations. In contrast, operations
on Head are not always separated by other operations,
so they are synchronization operations.

To provide this information, the programmer must
reason only about sequentially consistent executions of
the program and does not have to deal with any reor-
dering optimizations. With this information, the optimi-
zations enabled by the weak ordering model can be
safely applied. In fact, this information enables more
aggressive optimizations than those exploited by weak
ordering,5, 12 and can also be used to efficiently port
programs to all the other relaxed models.1, 3

Figure 6 depicts the decision process for distin-
guishing memory operations. Correctness is not guar-
anteed if the programmer incorrectly distinguishes a
race operation as data. However, an operation may be
conservatively distinguished as a synchronization op-
eration if the programmer is not sure whether the op-
eration is involved in a race. This don’t-know option is
important because it allows a programmer to trivially
ensure correctness by conservatively identifying all
operations as synchronization. Of course, this forgoes
any performance gains but potentially allows a faster
path to an initial working program. The don’t-know
option also lets the programmer incrementally tune
performance: The programmer can provide accurate
information for memory operations in performance-
critical areas of the program and conservative informa-
tion for other areas.

Originally published in Computer, Dec. 1996, pp. 66–76.
Copyright  1996 IEEE, Inc. All rights reserved.

13

Figure 6. Deciding how to distinguish a memory operation.

Distinguishing memory operations

To provide the system with information on memory
operations, we need a mechanism to distinguish opera-
tions at the language level. We also need a mechanism
to pass this information to the hardware level.

Language Level. Here we consider languages that
have explicit parallel constructs. The mechanism for
conveying information about memory operations de-
pends on how the language supports parallelism. Lan-
guage support for parallelism may range from high-
level parallelism constructs (such as doall loops) to
low-level use of memory operations for achieving syn-
chronization.

• A high-level doall loop implies that the parallel
iterations of the loop do not access the same loca-
tion if at least one of these accesses is a write.
Thus, correct use of doall implicitly conveys that
accesses across iterations are not involved in a
race.

• A language may require that programmers use only
low-level synchronization routines, such as those
provided in a library, to eliminate races between
other operations in the program. Again, correct use
of such routines implies that only accesses within
the synchronization library are involved in races.
Of course, the compiler or library writers must en-
sure that appropriate information (synchronization
or data) for operations used to implement the syn-
chronization routines is appropriately conveyed to
the lower levels of the system (for example, the
hardware).

• At the lowest level, the programmer may be al-
lowed to directly use any memory operation for
synchronization purposes. For example, any loca-
tion may be used as a flag variable. In this case, the
programmer must explicitly convey information
about operation types. One way to do this is to as-
sociate the information with static instructions at
the program level. For example, special constructs
may statically identify regions of code to be syn-
chronization. Another option is to associate the
synchronization attribute with a shared variable or
address through, for example, type declarations. Or
the language may provide a default mode that as-
sumes, for example, that an operation is a data op-
eration unless specified otherwise. Even though
data operations are more common, making syn-
chronization the default may make it simpler to
bring up an initial working program and may de-
crease errors by requiring data operations (which
are aggressively reordered) to be identified explic-
itly. We are not aware of any languages that pro-
vide appropriate mechanisms for conveying infor-
mation at this lowest level. Mechanisms such as
C’s volatile type declaration lack the appropriate
semantics.3

Hardware Level. The information conveyed at the
language level must ultimately be provided to the un-
derlying hardware. Often the compiler is responsible
for doing this.

Information about memory operations at this level
may also be associated with either specific address
ranges or static memory instructions. The former may
be supported by distinguishing different virtual or

Originally published in Computer, Dec. 1996, pp. 66–76.
Copyright  1996 IEEE, Inc. All rights reserved.

14

physical pages. The latter may be supported through
unused opcode bits (that is, multiple flavors of memory
instructions) or unused address bits (that is, address
shadowing) or by treating certain instructions (such as
compare&swap) as synchronization by default.

Most commercial systems do not provide these
mechanisms. Instead, this information must be trans-
formed to explicit fence instructions supported at the
hardware level. For example, to provide the semantics
of synchronization operations in weak ordering on
hardware that supports Alpha-like memory barriers, the
compiler can precede and follow every synchronization
operation with a memory barrier. Due to the wide-
spread adoption of fence instructions, several languages
also let programmers explicitly invoke them at the pro-
gram level.

Conclusion

There is strong evidence that relaxed memory consis-
tency models provide better performance than sequen-
tial consistency models.3, 7, 10, 11 The increase in proces-
sor speeds relative to memory and communication
speeds will only increase the potential benefit from
these models. In addition to gains in hardware perform-
ance, relaxed memory consistency models also play a
key role in enabling compiler optimizations. For these
reasons, many commercial architectures, such as the
Digital Alpha, Sun Sparc, and IBM PowerPC, support
relaxed consistency.

Unfortunately, relaxed memory consistency models
increase programming complexity. Much of this com-
plexity arises because many of the specifications pre-
sented in the literature expose the programmer to the
low-level performance optimizations enabled by a
model. Our previous work has addressed this issue by
defining models using a higher level abstraction that
provides the illusion of sequential consistency as long
as the programmer provides correct program-level in-
formation about memory operations. Meanwhile, lan-
guage standardization efforts such as High Performance
Fortran have led to high-level memory models that are
different from sequential consistency. In short, the
question of which is the best memory consistency
model is far from resolved. This question can be better
resolved with a more active collaboration between lan-
guage and hardware designers.

Acknowledgments

Most of this work was performed as part of our disser-
tations at the University of Wisconsin, Madison, and
Stanford University. We thank our respective advisors,
Mark Hill and Anoop Gupta and John Hennessy, for

their direction. We especially thank Mark Hill for sug-
gesting the need for this article and for encouraging us
to write it.

We thank Sandhya Dwarkadas, Anoop Gupta, John
Hennessy, Mark Hill, Yuan Yu, and Willy Zwaenepoel
for their valuable comments. We also thank Tony
Brewer, Andreas Nowatzyk, Steve Scott, and Wolf-
Dietrich Weber for information on products developed
by Hewlett-Packard, Sun Microsystems, Cray Re-
search, and HaL Computer Systems. Finally, we thank
the anonymous referees for their valuable comments
and guest editor Per Stenström for his support. At Wis-
consin, Sarita Adve was partly supported by an IBM
graduate fellowship. At Rice, this work was partly sup-
ported by the US National Science Foundation under
grants CCR-9502500 and CCR-9410457 and by the
Texas Advanced Technology Program under grant
003604016. At Stanford, Kourosh Gharachorloo was
supported by DARPA contract N00039-91-C-0138 and
partly supported by a fellowship from Texas Instruments.

References

1. S.V. Adve, “Designing Memory Consistency Models for
Shared Memory Multiprocessors,” PhD thesis, Tech. Report
1198, CS Department, Univ. of Wisconsin, Madison, 1993.

2. K. Gharachorloo et al., “Specifying System Requirements for
Memory Consistency Models,” Tech. Report CSL-TR-93-594,
Stanford Univ., 1993.

3. K. Gharachorloo, “Memory Consistency Models for Shared
Memory Multiprocessors,” PhD thesis, Tech. Report CSL-TR-
95-685, Stanford Univ., 1995.

4. L. Lamport, “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Trans.
Computers, Sept. 1979, pp. 690-691.

5. K. Gharachorloo et al., “Memory Consistency and Event Or-
dering in Scalable Shared Memory Multiprocessors,” Proc.
17th Int’l Symp. Computer Architecture, IEEE CS Press, Los
Alamitos, Calif., 1990, pp. 15-26.

6. K. Gharachorloo, A. Gupta, and J.L. Hennessy, “Two Tech-
niques to Enhance the Performance of Memory Consistency
Models,” Proc. Int’l Conf. Parallel Processing, The Pennsyl-
vania State Univ. Press, University Park, Penn., 1991, pp. 355-
364.

7. V.S. Pai et al., “An Evaluation of Memory Consistency Models
for Shared Memory Systems with ILP Processors,” Proc. 7th
Int’l Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, ACM Press, New York, 1996,
pp. 12-23.

8. D. Shasha and M. Snir, “Efficient Correct Execution of Parallel
Programs That Share Memory,” ACM Trans. Programming
Languages and Systems, Apr. 1988, pp. 282-312.

9. A. Krishnamurthy and K. Yelick, “Optimizing Parallel SPMD
Programs,” Proc. Workshop on Languages and Compilers for
Parallel Computing, 1994.

10. K. Gharachorloo, A. Gupta and J.L. Hennessy, “Performance
Evaluation of Memory Consistency Models for Shared memory
Multiprocessors,” Proc. 4th Int’l Conf. Architectural Support
for Programming Languages and Operating Systems, ACM
Press, New York, 1991, pp. 245-257.

Originally published in Computer, Dec. 1996, pp. 66–76.
Copyright  1996 IEEE, Inc. All rights reserved.

15

11. R.N. Zucker and J.-L. Baer, “A Performance Study of Memory
Consistency Models,” Proc. 19th Ann. Int’l Symp. Computer
Architecture, ACM Press, New York, 1992, pp. 2-12.

12. S.V. Adve and M.D. Hill, “Weak Ordering—A New
Definition,” Proc. 17th Symp. Computer Architecture, IEEE
CS Press, Los Alamitos, Calif., 1990, pp. 2-14.

Sarita V. Adve is an assistant professor in the Electri-
cal and Computer Engineering Department at Rice
University. Her research interests are parallel computer
hardware and software, including the interaction be-
tween instruction-level and thread-level parallelism,
architectural techniques to aid and exploit parallelizing
compilers, and simulation methodology for parallel
architectures. Adve received a BTech in electrical en-
gineering from the Indian Institute of Technology,
Bombay, and an MS and a PhD in computer science
from the University of Wisconsin, Madison.

Kourosh Gharachorloo is a research scientist in the
Western Research Laboratory at Digital Equipment
Corporation. His research interests are parallel com-
puter architecture and software, including hardware and
software distributed shared memory systems and the
study of commercial applications. Before joining Digi-
tal, he was a key contributor in the Stanford Dash and
Flash projects. Gharachorloo received a BS in electrical
engineering, a BA in economics, an MS in electrical
engineering, and a PhD in electrical engineering and
computer science, all from Stanford University.

Contact Adve at Dept. of Electrical and Computer En-
gineering, MS 366 Rice University, Houston, TX
77005; sarita@rice.edu. Contact Gharachorloo at
Western Research Laboratory, Digital Equipment
Corp., 250 University Ave., Palo Alto, CA 94301-
1616; kourosh@pa.dec.com.

	banner: From the companion CD-ROM to the IEEE CS Press book: "The Anatomy of a Microprocessor: A Systems Perspective," by Shriver & Smith

