IEEE 1394-1995 High Performance Serial Bus

Michael D. Johas Teener Chief Executive & Technical Officer, Firefly, Inc. 269 Mt. Herman Rd. #111 Scotts Valley, CA 95066-4000 mike@fireflyinc.com

Background (the way things are now)

		twork rial	yboard und wer
video floppy SCSI	modem		

No I/O Integration
 lots of PCB area, silicon & software
 no common architecture
 Hard to change
 no realtime transport
 performance not scalable

Michael Johas Teener / 1394 Technical Summary (Permission to copy granted as long as this notification is retained. Based on 5/96 1394 Technical Summary from Apple Computer.)

Goals

- Low cost, high performance ergonomic peripheral bus
- Read/write memory architecture
 NOT an I/O channel
- Compatible architecture with other IEEE busses

Follow IEEE 1212 CSR (Control and Status Register) standard

Isochronous service

"Isochronous" ??

Iso (same) chronous (time) :
 Uniform in time

- Having equal duration
- Recurring at regular intervals

Data Type	Sample size & rate	Bit rate
ISDN	8 kHz x 8 bits	64 kbps
CD	44.1 kHz x 16 bits x 2 channels	1.4 Mbps
DAT	48 kHz x 16 bits x 2 channels	1.5 Mbps
Video	variable to 30 fps	1.5 – 216 Mbps

Asynch vs. Isoch

Asynchronous transport

"Guaranteed delivery"

Reliability more important than timing

Retries are OK

Isochronous transport

"Guaranteed timing"

- Late data is useless
- Never retry

Data paths (peer-to-peer)

Digitized sound direct playback

Direct printing of scanned image

Michael Johas Teener / 1394 Technical Summary (Permission to copy granted as long as this notification is retained. Based on 5/96 1394 Technical Summary from Apple Computer.)

Clean up the desktop cable mess!

© 1997 Firefly, Inc

Michael Johas Teener / 1394 Technical Summary (Permission to copy granted as long as this notification is retained. Based on 5/96 1394 Technical Summary from Apple Computer.)

Protocols

• IEEE 1394-1995 High Speed Serial Bus

- "Memory-bus-like" logical architecture
- Serial implementation of 1212 architecture

• IEEE 1212-1991 CSR Architecture

- Standardized addressing
- Well-defined control and status registers
- Standardized transactions

X3T10 Serial Bus Protocol-2 and IEC 1883

- SBP-2 integrates DMA into I/O process
- IEC 1883 defines control and data for A/V devices

Some terminology

- "quadlet" 32-bit word
- "node" basic addressable device
- "unit" part of a node, defined by a higher level architecture ... examples:
 - SBP disk drive (X3T10 standard)
 - A/V device VCR, camcorder (1394 TA standard)

IEEE 1212 addressing

= all cycle timer registers on local bus

The serial bus uses "64-bit fixed" addressing

© 1997 Firefly, Inc

Michael Johas Teener / 1394 Technical Summary (Permission to copy granted as long as this notification is retained. Based on 5/96 1394 Technical Summary from Apple Computer.)

IEEE 1394 protocol Stack

Michael Johas Teener / 1394 Technical Summary (Permission to copy granted as long as this notification is retained. Based on 5/96 1394 Technical Summary from Apple Computer.)

Cable interface

 PHY transforms point-to-point cable links into a logical bus

Cables and transceivers are bus repeaters

Michael Johas Teener / 1394 Technical Summary (Permission to copy granted as long as this notification is retained. Based on 5/96 1394 Technical Summary from Apple Computer.)

Cable media

- 3-pair shielded cable
 - **Two pairs for data transport**
 - One pair for peripheral power
- Small and rugged connector
 - Two sockets in the same area as one mini-DIN socket
- CMOS transceiver
 - 220 mv differential
 - 4 ma drive

Cable media example

Power pair: 22 AWG /0.87 Dia twisted pair 60% braided shield over foil shield (over signal pairs - 2X) Signal pairs: (2X) 28 AWG/0.87 Dia twisted pairs 97% braided overall shield 0.70 thk PVC jacket Fillers for roundness (if req'd)

Capable of operation at 400 Mbit/sec for 4.5 m
Slightly thicker wire allows 10 meter operation
p1394b encoding allows 800 Mbit/sec on the same media ... perhaps even 1.6 to 3.2 Gbit/sec

© 1997 Firefly, Inc

Michael Johas Teener / 1394 Technical Summary (Permission to copy granted as long as this notification is retained. Based on 5/96 1394 Technical Summary from Apple Computer.)

Cable interface features

• Live attach/detach

- System protected from power on/ off cycling
- Higher layers provide simple management

Peripheral power

• 8-40 VDC carried by cable

- 1394 TA defining tighter standards
- 20-33 VDC recommended for power sources
- Total available power is system dependent
 - Node power requirements must be declared in configuration ROM

• Cable system allows up to 1.5 A (60 watts) per link

- Nodes can either source or sink power
- Multiple power sources on one bus provide additional flexibility

Physical layer

98.304 Mbit/sec half duplex transport

- Data reclocked at each node
- **196.608, 393.216, ... Mbit/sec growth paths**
 - 1394b provides 786.432, 1572.864, 3145.728 Mbit/ sec
- Data encoding
 - Data and strobe on separate pairs
 - 1394b uses 8b10b encoding full duplex
 - Automatic speed detection
- Fair and priority access
 - Tree-based handshake arbitration
 - Automatic assignment of addresses

Example cable PHY IC

• Two twisted pairs for data: TPA and TPB

- **TPA** is transmit strobe, receive data
- TPB is receive strobe, transmit data
- Both are bidirectional signals, both are used in arbitration
- **Reclocks** repeated packet data signals using local clock

Michael Johas Teener / 1394 Technical Summary

(Permission to copy granted as long as this notification is retained. Based on 5/96 1394 Technical Summary from Apple Computer.)

Data-strobe encoding

Either Data or Strobe signal changes in a bit cell, not both

Gives 100% better jitter budget than conventional clock/data

© 1997 Firefly, Inc

Michael Johas Teener / 1394 Technical Summary (Permission to copy granted as long as this notification is retained. Based on 5/96 1394 Technical Summary from Apple Computer.)

Cable arbitration phases

Reset

- Used whenever reconfiguration needed
- Live insertion & new cycle master are examples

Tree Identification

Transforms a simple net topology into a tree

Self Identification

- Assigns physical node number (Node ID)
- Exchange speed capabilities with neighbors
- Normal Arbitration
 - Root has highest priority

Tree identification #1

 After reset, each node only knows if it is a leaf (one connected port) or a branch (more than one connected port)

© 1997 Firefly, Inc Michael Johas Teener / 1394 Technical Summary (Permission to copy granted as long as this notification is retained. Based on 5/96 1394 Technical Summary from Apple Computer.)

Tree identification #2

- After Tree ID process, the Root node is determined and each port is labeled as pointing to a child or a parent
 - Root assignment is "sticky", will normally persist across a bus reset.

Self identification

 After the self ID process, each node has a unique physical node number, and the topology has been broadcast

 Suppose nodes #0 and #2 start to arbitrate at the same time, they both send a request to their parent ...

• The parents forward the request to their parent and deny access to their other children ...

 The root grants access to the first request (#0), and the other parent withdraws it's request and passes on the deny ...

• The winning node #0 changes its request to a data transfer prefix, while the loosing node #2 withdraws its request ...

• The parent of node 1 sees the data prefix and withdraws the grant, and now all nodes are correctly oriented to repeat the packet data (a "deny" is a "data prefix!) ...

Link layer

 Implements acknowledged datagram service

Called a "subaction" of arbitration, packet transmission, and acknowledge

- Flexible addressing using 1212 architecture
 - Direct 64-bit addressing (48 bits per node)
 - Hierarchical addressing for up to 63 nodes on 1023 busses

Isochronous transport

Optional

- But required for multimedia applications
- Multiple "channels" each 125 μsec "cycle" period
 - Channel count limited by available bandwidth
- Variable channel size up to ≈1000 bytes/cycle
 - Up to ≈2000 bytes/cycle at 196 Mbit/sec

Link layer operation

Michael Johas Teener / 1394 Technical Summary (Permission to copy granted as long as this notification is retained. Based on 5/96 1394 Technical Summary from Apple Computer.)

Example packets

- Actual efficiency very good
 - 10 Mbyte/sec information throughput including all of the SBP disk protocol using 100 Mbit/sec rate (~80%)

Fairness interval

- Fairness Interval is bounded by "arbitration reset gaps"
- Reset gaps are longer than normal subaction gaps

Fair arbitration

special case for isochronous data

Cycle structure

The cycle start is sent by the cycle master, which must be the root node

Transaction layer

Michael Johas Teener / 1394 Technical Summary (Permission to copy granted as long as this notification is retained. Based on 5/96 1394 Technical Summary from Apple Computer.)

Multiple transaction types

- Simplified 4-byte (quadlet) read and write are required
- Variable-length block read and write are optional
- Lock transactions optional
 - Swap, Compare-and-swap needed for bus management

Efficient media usage

- Split transactions required
 - Transactions have request and response parts
 - Bus is never busy unless data is actually being transferred
- Request and response can be unified two ways
 - "Read" and "Lock" can have concatenated subactions
 - "Write" can have immediate completion

Michael Johas Teener / 1394 Technical Summary (Permission to copy granted as long as this notification is retained. Based on 5/96 1394 Technical Summary from Apple Computer.)

Split transaction

Requester Responder

Michael Johas Teener / 1394 Technical Summary

(Permission to copy granted as long as this notification is retained. Based on 5/96 1394 Technical Summary from Apple Computer.)

Concatenated transaction

 Used if responder is fast enough to return data before ack is completed

the responder does not release the bus after sending the ack, sends response packet within 1.5µsec

> Read Confirmation (complete, with data)

Request

Conf

(compl)

Resp

Packet

Ack

(compl)

Link

Indication

Resp

(compl)

Read Response (complete, with data)

© 1997 Firefly, Inc

Michael Johas Teener / 1394 Technical Summary (Permission to copy granted as long as this notification is retained. Based on 5/96 1394 Technical Summary from Apple Computer.)

Unified transaction

Only used for write transactions

Bus management

- Automatic address assignment
 - Done in physical layer with self-ID process
 - Root (cycle master) is "sticky" between bus resets
- Resource management
 - Isochronous channels and bandwidth (also "sticky" ... stay allocated between bus resets).
 - Power

Standardized addresses and configuration ROM from IEEE 1212 architecture

Resource management

- Done with 4 registers, each with compare-swap capability
 - Bus manager ID
 - holds 6-bit physical ID of current bus manager
 - Bandwidth available
 - holds 13-bit count of time available for isochronous transmission
 - Channels available
 - two 32-bit registers with a bit for each of the 64 possible isochronous channels

Michael Johas Teener / 1394 Technical Summary (Permission to copy granted as long as this notification is retained. Based on 5/96 1394 Technical Summary from Apple Computer.)

Compare-swap operation:

- request has "new data" and "compare" values
- responder compares current value ("old data") at requested address with "compare" value
- if equal, the data at the address is replaced with "new data" value
- in all cases, "old data" is returned to requester

Using compare-swap

• Example: allocate bandwidth

test_bw = read4 (addr = bandwidth_available); old_bw = test_bw + 1; // force entry into loop 1st time while (old_bw != test_bw) { old_bw = test_bw; new_bw = old_bw - bandwidth_needed; if (new_bw < 0) fail; // all out of bandwidth test_bw = compare_swap (addr = bandwidth_available, new data = new bw, compare = old bw); }

 test_bw will be equal to old_bw if no other node has altered the bandwidth_available register between the time it was read and the time of the compare_swap

Where are the bus resource registers?

- On bus reset PHY builds network, assigns addresses, sends self-ID packets
 - power requirements/capabilities, maximum speed rating, port status (child, parent, unconnected)
 - "contender" or not
 - link (higher layers) running or not
- Highest numbered node with both contender and link-on bit is "isochronous resource manager"
 - this is the node that has the four resource manager registers

Automatic reallocation & recovery of resources

- When self_ID completes:
 - all nodes with allocated bandwidth and channels before bus reset reallocate their resources

• after one second:

- nodes with new bandwidth or channel request may ask for new resources
- nodes keep resources they had before bus reset!
- resources allocated to nodes removed from bus are automatically restored!

Bus manager reallocated the same way

© 1997 Firefly, Inc

Michael Johas Teener / 1394 Technical Summary (Permission to copy granted as long as this notification is retained. Based on 5/96 1394 Technical Summary from Apple Computer.)

Automatic restart of isochronous operation

Root assignment is persistent across bus reset

- Cycle master operation restarts after bus reset if node is still root (normal case)
- Nodes assume that bandwidth and channel allocations are still good
 - Automatically restart sending when receive cycle start

Only fails if two operating subnets are joined

- If reallocation fails, node terminates sending
- If bus overallocated, cycle master detects isoch data sent for longer than 100 µsec and stops sending cycle starts

© 1997 Firefly, Inc Michael Johas Teener / 1394 Technical Summary (Permission to copy granted as long as this notification is retained. Based on 5/96 1394 Technical Summary from Apple Computer.)

Futures

- Gigabit rates and fiber (P1394B high speed)
 - 800 Mbit/sec 3.2 Gbit/sec
- Incremental addition of nodes without bus reset (P1394A)
- Redundant gap removal (P1394A)
 - "Accelerated ACK", fly-by concatenation
- Bridging issues (P1394.1)
 - for > 63 devices, or for isolation of highbandwidth local traffic

Michael Johas Teener / 1394 Technical Summary (Permission to copy granted as long as this notification is retained. Based on 5/96 1394 Technical Summary from Apple Computer.)

How does 1394 help?

Much better human interface

- smaller, more rugged connectors with defined usage
- Hot plugging, no manual configuration

Excellent real performance

- High true data rates
- Direct map to processor I/O model
- DMA is simple: CPU memory directly available to peripherals
 - example: SBP supports direct scatter/gather buffers

... but even more important

• It's inexpensive

For computers, it's already almost as cheap as single-ended 8-bit SCSI

will be cheaper since it's silicon-intensive

Much less expensive for peripherals and consumer electronics

- Direct support for isochronous data
 Likely choice for digital consumer
 - video, high-end audio
 - Media servers get cheaper

Getting documentation

- "IEEE 1394-1995 High Performance Serial Bus"
 - IEEE Standards Office +1-908-981-1393
 - http://www.ieee.org
- Internet email reflector
 - "p1394@Sun.COM" and "p1394.1@Sun.COM" administrator is "Bob.Snively@Eng.Sun.COM"
 - "p1394b@fireflyinc.com", subscription information at http://www.fireflyinc.com/p1394b
- 1394 Trade Association
 - http://www.1394ta.org