
The IBM 6x86 and 6x86L 
Microprocessor Architectural 
Overview

Superscalar, Superpipelined x86 Compatible CPU

Y SUPERSCALAR, SUPERPIPELINED ARCHITECTURE
Dual 7-stage integer pipelines
High performance on-chip FPU
100 MHz and greater operating frequency

Y X86 INSTRUCTION SET COMPATIBLE
Runs Windows, DOS, UNIX, Novell and others

Y OPTIMUM PERFORMANCE WITHOUT RECOMPILATION
Intelligent instruction dispatch
Out-of-order instruction completion
Register renaming
Data forwarding
Branch prediction
Speculative execution
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Introduction
The superscalar, superpipelined IBM 6x86 and 6x86L processor architecture provides next generation
performance to IBM PC-compatible software.  Because the IBM 6x86 and 6x86L processor is fully
compatible with the 486 instruction set, it is capable of executing a wide range of existing and future
operation systems and applications including Windows, DOS, UNIX, Windows NT, Novell, OS/2, and
Solaris.

The IBM 6x86 and 6x86L processor achieves unsurpassed performance levels through the use of super-
pipelined integer units and an on-chip floating point unit.  The superpipelined architecture reduces timing
constraints and allows the IBM 6x86 and 6x86L processor to operate at core frequencies of 100 MHz
and above.  Additionally, the IBM 6x86 and 6x86L processor integer and floating point units are
optimized for maximum instruction throughput by using advanced architectural techniques including
register renaming, out-of-order completion, data forwarding, branch prediction, and speculative execu-
tion.  These design innovations eliminate many data dependencies and resource conflicts that otherwise
would degrade performance of existing non-optimized software programs.
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Overview
The IBM 6x86 and 6x86L processor architecture achieves performance by incorporating both superscalar
and superpipelined features.  The superscalar architecture enables the IBM 6x86 and 6x86L microproc-
essor to execute multiple instructions in parallel.  Traditionally, the disadvantage of a superscalar archi-
tecture is that the circuit complexity prohibits high frequency of operation.  In contrast, the IBM 6x86
and 6x86L processor architecture divides the most complex stages of operation into simpler sub-stages.
This technique is referred  to as superpipelining and allows the superscalar IBM 6x86 and 6x86L
processor architecture to operate at very high core frequencies (100 MHz and above).

The IBM 6x86 and 6x86L processor architecture consists of five major functional blocks as shown in the
high-level block diagram:

Y Integer Unit (IU)
Y Floating Point Unit (FPU)
Y Cache
Y Memory Management Unit (MMU)
Y Bus Interface Unit (BIU)

The IU, FPU and Cache are discussed in more detail in the following sections.
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Figure 1. IBM 6x86 and 6x86L Microprocessor Architecture Overview

Page 3 of 14 January 17, 1997 Fax #40202



Interger Unit

Pipeline Description
The IBM 6x86 and 6x86L processor integer unit contains dual 7-stage integer pipelines, referred to as the
X and Y pipelines, that provide parallel instruction execution capability.  The 7 pipeline stages are:

Y Prefetch (PF)
Y Instruction Decode 1 (ID1)
Y Instruction Decode 2 (ID2)
Y Address Calculation 1 (AC1)
Y Address Calculation 2 (AC2)
Y Execute (EX)
Y Write-back (WB)
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The Prefetch (PF) stage is common to both the X and Y pipe.  During this stage, 16 bytes of code are
fetched per core clock from the memory subsystem.  Additionally, the code stream is checked to identify
the presence of instructions that modify the normal sequential execution of the program.  These instruc-
tions are referred to as branch instructions.  Two types of branch instructions exist: (1) unconditional
branches that always modify the instruction flow, and (2) conditional branches that modify the instruction
flow based on a variable.  If either type of branch instruction is detected, the branch prediction logic
provides the predicted target address for the instruction.  The prefetch stage then begins fetching at the
predicted address.

The Instruction Decode stage is superpipelined and consists of two sub-stages ID1 and ID2.  The ID1
stage evaluates the code stream provided by the prefetch stage and determines the number of instruction
bytes for up to two instructions per clock.  The ID2 stage then decodes the two instructions and selects
either the X or Y pipeline for further execution.  A load balancing algorithm is used for pipeline selection.
This algorithm determines which pipeline is least likely to delay instruction completion due to interactions
with previously dispatched instructions.

The Address Calculation stage is also superpipelined and consists of the two sub-stages AC1 and AC2.
If the current instructions require memory operands, the AC1 stages calculate up to two linear memory
addresses per clock (one per pipeline) and AC2 then performs the associated memory management
functions and cache accesses.  For register operands, register renaming occurs during AC1 and AC2 then
accesses the register file.  Additionally, floating point instructions aredispatched to the FPU during the
AC2 stage.  All instructions are kept in program order up to and during the AC1 and AC2 stages.

The Execute (EX) stage actually performs the instruction operation using the operands provided by the
address calculation stage.  The operation results are written to the register file and write buffers during
the Write-Back  (WB) stage.  Once instructions have entered the EX stage, instructions in one pipeline
may complete  independently of the second pipeline.  In other words, instructions may complete in a
different order than they were dispatched.  This is referred to as out-of-order completion.  However, any
resulting bus cycles are always issued in program order.

Optimized Pipeline Utilization
The IBM 6x86 and 6x86L processor architecture optimizes parallel use of the X and Y pipelines by
allowing the majority of instructions to be dispatched in pairs, and by allowing the two pipelines to
operate in a relatively independent fashion.  These techniques maximize performance by reducing the
number of clocks in which pipeline stages are idle.

Instruction Dispatch

The IBM 6x86 and 6x86L processor architecture enforces very few instruction pairing constraints.  The
most commonly used instructions in the X86 instruction set may be dispatched in pairs (from ID2) to
either pipeline, regardless of dependencies that may exist  between the two instructions.  However, there
are three categories of instructions that must be dispatched only in the X pipeline: (1) branch instructions,
(2) floating point instructions, and (3) exclusive instructions.
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The first two X-pipe-only instruction types, branch and floating point, may be paired with another
instruction in the Y pipeline.  Exclusive instructions may not be paired.    Instructions are classified as
exclusive if they may fault in the EX pipe stage and are typically instructions that require multiple
memory accesses.  Although exclusive instructions may not be paired, hardware from both pipelines is
used to accelerate instruction completion.  The IBM 6x86 and 6x86L processor exclusive instruction
types are listed below:

Y Protected mode segment loads
Y Special register accesses (Control, Debug and Test registers)
Y String instructions
Y Multiply and divide
Y I/O port accesses
Y Push all (PUSHA) and pop all (POPA)
Y Task switches

Out-Of-Order Completion

Out-of-order completion occurs in the EX and WB stages when an instruction in one pipeline completes
prior to a previously dispatched instruction in the adjacent pipeline that requires multiple clocks to
complete.  This type of processing is primarily used when an instruction  in one pipeline is stalled waiting
for a memory access to complete.  Under this condition, the current and subsequent instructions in the
EX stage of the adjacent pipe can be completed without waiting for the pending access to complete,
assuming no inter-instruction dependencies.

The IBM 6x86 and 6x86L processor architecture always supplies instructions in program order to the EX
stage, and allows instructions to complete out of order only from that point on.  In conjunction with
exclusive instructions, this ensures that exceptions occur in program order.  Also, writes resulting from
instructions completed out of order are always issued to the cache or external bus in program order.
Thus, X86 software compatibility is maintained.

Data Dependency Removal
The IBM 6x86 and 6x86L microprocessor incorporates key architectural features that eliminate idle
pipeline stages resulting from inter-instruction data dependencies.  A combination of register renaming,
data forwarding and data bypassing techniques are used to eliminate write-after-write (WAW), write-
after-read (WAR) and read-after-write (RAW) data dependencies.

Register Renaming

The IBM 6x86 and 6x86L processor architecture contains 32 physical general purpose registers.  These
32 registers are mapped, or renamed, to any one of the 8 logical general purpose registers defined by the
X86 architecture (EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP).  This renaming is controlled entirely
by on-chip hardware and is therefore transparent to software.

Each time a write to a logical register occurs, a new physical register is assigned to the logical register.
This prevents overwriting the previous data in the logical register and thus eliminates write-after-write
(WAW) and write-after-read (WAR) dependencies as illustrated in the following examples.
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WAR Dependency Removal Example

Assume the following instructions are executing simultaneously in the X and Y pipelines:

(1) MOV BX, AX
(2) ADD AX, CX

X PIPE Y PIPE

(1) BX <- AX (2) AX <- AX + CX

A WAR dependency exists with the AX register because the Y pipe must wait for the X pipe to read AX
before the add instruction in the Y pipe updates the value of AX.  This causes the Y pipe to stall in an
architecture where register renaming is not used and out-of-order completion is allowed.

In the IBM 6x86 and 6x86L microprocessor, physical registers are substituted for the logical registers.
The operations are completed in parallel with no Y pipeline stall as shown below.

Initial assignments: AX = reg0
BX = reg1
CX = reg2

X PIPE Y PIPE

(1) reg3 <- reg0(2) reg4 <- reg0 + reg2

Final assignments: AX = reg4
BX = reg3
CX = reg2

WAW Dependency Removal Example

Assume the following instructions are executing simultaneously in the X and Y pipelines:

(1) MOV AX,[mem]
(2) ADD AX, BX

X PIPE Y PIPE

(1) AX <- mem (2) AX <- AX + BX

The X pipe issues a memory access.  The Y pipe is waiting for the same memory data as the X pipe to be
used in the ADD calculation.  Using data forwarding (see Data Forwarding), the memory operand is
available to both pipelines at the same time.  A WAW dependency is created with AX because the Y pipe
must wait for the X pipe to update AX before the Y pipe can write the result of the ADD instruction to
AX.  This causes the Y pipe to stall in an architecture where register renaming is not used. Using register
renaming, the IBM 6x86 and 6x86L processor substitutes physical registers for the logical registers.  The
operations are completed in parallel with no Y pipeline stall as shown below:

Initial assignments: AX = reg0 BX = reg1
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X PIPE Y PIPE

(1) reg2 <- mem (2) reg3 <- mem + reg1

Final assignments: AX = reg3
BX = reg1

Data Forwarding

In addition to register renaming, the IBM 6x86 and 6x86L processor architecture incorporates a
technique called Data Forwarding that is used to eliminate read-after-write register and memory depend-
encies.  Data forwarding allows pairs of instructions with RAW register dependency to execute simulta-
neously, thus eliminating pipeline stalls.  The IBM 6x86 and 6x86L processor architecture implements
two types of data forwarding: (1) operand forwarding, and (2) result forwarding.  

Operand forwarding occurs when a MOV instruction is used to load data into a register or memory
location.  The register or memory location is then used in a subsequent instruction as an operand creating
a RAW dependency on the operand register or memory location.  Using operand forwarding, the load
data is immediately made available to the subsequent instruction without waiting for the completion of
the MOV instruction.  Operand forwarding is illustrated in the following example.

Operand Forwarding Example

Assume the following instructions are executing simultaneously in the X and Y pipelines:

(1) MOV AX, [mem]
(2) ADD BX, AX

X PIPE Y PIPE

(1) AX <- (mem) (2) BX <- AX + BX

A RAW dependency exists with AX because the Y pipe must wait for the X pipe to load the memory
data into AX before AX register can be used as an operand in the Y pipe's add instruction.  The IBM
6x86 and 6x86L microprocessor uses operand forwarding to eliminate the RAW dependency and the
associated Y pipe stall.  Thus, the two instructions complete in parallel instead of serially as illustrated
below.

Initial assignments: AX = reg0
BX = reg1

X PIPE Y PIPE

(1) reg2 <- [mem] (2) reg3 <- [(mem] + reg1

Final Assignments: AX = reg2
BX = reg3
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Result forwarding occurs when an instruction stores the results of its operation in either a register or
memory location.  A subsequent MOV instruction is then used to transfer the result data to a second
location creating a RAW dependency on the result data location.  Using result forwarding, the result data
is transferred to the second location without waiting for the first instruction to complete its store.  Result
forwarding is illustrated in the following example.

Result Forwarding Example

Assume the following instructions are executing simultaneously in the X and Y pipelines:

(1) ADD AX, BX
(2) MOV [mem], AX

X PIPE Y PIPE

(1) AX <- AX + BX   (2) [mem] <- AX

A RAW dependency exists with AX because the Y pipe must wait for the X pipe to store the result of the
add instruction in AX before the AX register can be stored in the desired memory location.  The 6x86
and 6x86L microprocessor uses result forwarding to eliminate the RAW dependency and associated Y
pipe stalls.  Thus, the two instructions complete in parallel instead of serially as illustrated below.

Initial assignments: AX = reg0
BX = reg1

X PIPE Y PIPE

(1) reg2 <- reg0 + reg1 (2) [mem] <- reg0 + reg1

Final assignments: AX = reg2
BX = reg1

Data Bypassing

The IBM 6x86 and 6x86L processor architecture incorporates a third technique, referred to as data
bypassing, to reduce the performance penalty associated with read-after-write memory dependencies.
Data bypassing occurs when a memory location used to store the result of an operation is then used as an
operand in a subsequent instruction.  This creates a RAW dependency with the memory location.  Using
data bypassing, the result of the first instruction is immediately available for use as an operand in the
subsequent instruction without waiting for completion of the memory write.  Data bypassing is illustrated
in the following example.

Data Bypassing Example

Assume the following instructions are executing simultaneously in the X and Y pipelines:

(1) ADD [mem], AX
(2) SUB BX, [mem]
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X PIPE Y PIPE

(1) mem <- mem + AX (2) BX <- BX - mem

A RAW dependency exists with [mem] because the Y pipe must wait for the X pipe to store the result of
the ADD instruction in[mem]  before [mem] can be used as an operand in the Y pipe's subtract instruc-
tion.  Using data bypassing, the Y pipe must still wait for the X pipe to complete an add operation before
performing the subtract instruction.  However, data bypassing minimizes the number of clocks that the Y
pipe is stalled by passing the result of the add instruction directly to the Y pipe without waiting for the
result to be written to and then read from memory as shown below.

Initial assignments: AX = reg0
BX = reg1

X PIPE Y PIPE

(1) mem <- mem + reg0 (2) reg2 <- reg1 - (mem + reg0)

Final assignments: AX = reg0
BX = reg2

Branch Control
Branch instructions occur, on average, every four to six instructions in x86 compatible programs. Branch
instructions typically change the normal sequential flow of the program.  This can cause pipeline stages to
stall waiting for the CPU to calculate, retrieve and decode the new instruction stream.  The IBM 6x86
and 6x86L processor architecture minimizes the performance impact of latency of branch instructions
through the use of branch prediction and speculative execution.

Branch Prediction

The IBM 6x86 and 6x86L processor architecture uses a Branch Target Buffer (BTB) to store branch
target addresses and branch prediction information.  During the prefetch stage, the instruction stream is
checked for the presence of branch instructions.  If an unconditional branch instruction is encountered,
the processor access the BTB to check for the branch instruction's target address.  If the branch instruc-
tion hits in the BTB, the processor begins fetching at the target address specified by the BTB.

In the case of conditional branches, the BTB also provides history information to indicate whether the
branch is more likely to be taken or not taken.  If the conditional branch instruction hits in the BTB, the
IBM 6x86 and 6x86L processor begins fetching instructions at the predicted target address.  If the condi-
tional branch misses in the BTB, the IBM 6x86 and 6x86L processor predicts the branch will not be
taken and instruction fetching continues with the next sequential instruction.  The decision to fetch the
taken or not taken target address is based on a 4-state branch prediction algorithm that achieves approxi-
mately 90% prediction accuracy.

Once prefetched, a branch instruction is decoded and then dispatched to the X pipeline only.  The branch
instruction proceeds through the X pipeline and is then resolved in either the EX stage or the WB stage.
The branch is resolved in the EX stage if the instruction responsible for setting the condition codes is
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completed prior to the execution of the branch.  If the instruction setting the condition codes is executed
in parallel with the branch, the branch instruction is resolved in the WB stage.

Correctly predicted branch instructions execute in a single clock.  If resolution of a branch indicates that a
misprediction has occurred, the IBM 6x86 and 6x86L processor flushes the pipeline and fetches from the
correct target address.  The correct instruction stream is then fed directly from the cache to the ID1
stage.  The resulting misprediction latency is 4 or 5 cycles depending on whether the branch is resolved in
EX or WB, respectively.

Since the target address of return (RET) instructions is dynamic rather than static, the microprocessor
caches target addresses for RET instructions in a return stack rather than in the BTB.  The return address
is pushed on the return stack during a CALL instruction and popped during the corresponding RET
instruction.  Using the return stack, RET instructions execute in a single clock.

Speculative Execution

The IBM 6x86 and 6x86L processor architecture is capable of speculative execution following a
predicted branch or floating point instruction.  Speculative execution allows the pipelines to continuously
execute instructions following a branch without stalling the pipelines waiting for branch resolution.  The
same mechanism is used to execute floating point instructions in parallel with integer instructions.

The processor architecture is capable of up to four levels of speculation (i.e. combination of four condi-
tional branches and/or floating point operations).  After generating the prefetch address using branch
prediction, the CPU checkpoints the machine state (registers, flags, and processor environment), incre-
ments the speculation level counter and begins operating on the predicted instruction stream.

Once the branch instruction is resolved, the CPU decreases the speculation level.  For a correctly
predicted branch, the status of the checkpointed resources is cleared.  For a branch misprediction, the
processor generates the correct prefetch address and uses the checkpointed values to restore the machine
state in a single clock.

In order to maintain compatibility, writes that result from speculatively executed instructions are not
permitted to update the cache or external memory until the appropriate branch is resolved.  Speculative
execution continues until one of the following conditions occurs:

1)  A branch or floating point operation is decoded and the speculation level is already at four.
2)  An exception or a fault occurs.
3)  The write buffers are full.
4)  An attempt is made to modify a non-checkpointed resource (segment registers, system flags).
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Floating Point Unit
The IBM 6x86 and 6x86L processor Floating Point Unit (FPU) interfaces to the integer unit and the
cache via a 64-bit bus.  The processor FPU is x87 instruction set compatible and adheres to the IEEE-
754 standard.  Because most applications contain FPU instructions inter-mixed with integer instructions,
the IBM 6x86 and 6x86L processor FPU architecture achieves high performance by completing integer
and FPU operations in parallel.

FPU Parallel Execution
The IBM 6x86 and 6x86L processor executes integer instructions in parallel with FPU instructions.
Additionally, integer instructions may complete out-of-order with respect to the FPU instructions.  The
processor maintains x86 compatibility by signaling exceptions and issuing write cycles in program order.

As previously discussed, FPU instructions are always dispatched to the integer unit's X pipeline .  The
address calculation stage of the X pipeline checks for memory management exceptions and accesses
memory operands for use by the FPU.  If no exceptions are detected, the IBM 6x86 and 6x86L processor
checkpoints the state of the CPU and, during AC2, dispatches the floating point instruction to the FPU
instruction queue.  The processor can then complete any subsequent integer instructions speculatively and
out-of-order relative to the FPU instruction and relative to any potential FPU exceptions that may occur.

As additional FPU instructions enter the pipeline, the IBM 6x86 and 6x86L processor dispatches up to
four FPU instructions to the FPU instruction queue.  The IBM 6x86 and 6x86L processor continues
executing speculatively and out-of-order, relative to the FPU queue, unless the microprocessor encoun-
ters one of the conditions that causes speculative execution to halt.  As the FPU completes instructions,
the speculation level decreases and the checkpointed resources are available for reuse in subsequent
operations.  The IBM 6x86 and 6x86L processor FPU also uses a set of 4 write buffers to prevent stalls
due to speculative writes.
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Cache
The IBM 6x86 and 6x86L microprocessor contains an on-chip dual-ported unified instruction/data cache
and a fully associative 256-byte instruction line (I-Line) cache that store the contents of the most
commonly used memory locations.  The unified cache functions as the primary data cache and the secon-
dary instruction cache.  The I-Line cache functions as the primary instruction cache.

The instruction line cache is filled from the unified cache by the prefetching unit.  Prefetches that hit in the
I-Line cache do not access the unified cache.  However, if an I-Line cache miss occurs, the prefetching
unit reads from the unified cache and fills the I-Line cache simultaneously.  The I-Line cache uses a
pseudo-LRU algorithm for cache line replacements.  To ensure proper operation in the case of self-
modifying code, any writes to the unified cache are checked against the contents of the I-Line cache.  If a
hit occurs in the I-Line cache, the appropriate line is invalidated.

The unified cache is dual-ported to allow any two of the following operations to occur in parallel:
Y Code fetch
Y Data read (X pipe, Y pipe or FPU)
Y Data write (X pipe, Y pipe or FPU)

Cache Architectural Benefits
The IBM 6x86 and 6x86L processor two-level cache architecture has two important advantages: (1) high
hit rate, and (2) high bandwidth.  The high hit rate is achieved because the unified architecture of the
cache allows large portions of the cache to be allocated for code or data storage if required.  The same
situation could easily overflow a cache architecture of comparable size with separate instruction and data
caches.  Additionally, the unified cache is 4-way set associative resulting in an even better hit rate.

The second advantage of the IBM 6x86 and 6x86L processor cache architecture is high bandwidth.  High
bandwidth is typically only achieved by implementing separate instruction and data caches.  The IBM
6x86 and 6x86L processor cache achieves bandwidth to the unified cache by implementing the instruction
line cache as the primary instruction cache.  Using the I-Line cache, data references and only instruction
fetches that miss in the I-Line cache access the unified cache directly.  Additionally, the unified cache is
dual-ported allowing two accesses to occur in parallel.
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Summary
The IBM 6x86 and 6x86L processor architecture is a high performance x86-compatible processor archi-
tecture that provides next generation performance to both existing non-optimized PC-compatible
software as well as future 32-bit applications.  By combining a sophisticated architecture with unique
advanced features, the IBM 6x86 and 6x86L processor achieves high performance without the need for
software recompilation.
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