
Understanding the IEEE
By Allen Samuels, Weitek Corp.

This article is the first in an occasional series on
floating-point arithmetic. As chip densities have in-
creased, floating-point units have become a standard
part of high-performance microprocessors, yet many of
the issues regarding floating-point are poorly under-
stood by microprocessor users. This article explores the
IEEE standard for binary floating-point arithmetic.
Subsequent articles will cover hardware implementa-
tion, instruction set, and application issues. The author
is an architect at Weitek Corp., where he has been
responsible for the design of several high-performance
floating-point units.

In the early days of computing, trying to write port-
able numerical programs was a lot like traveling
through a swamp—it was easy to forget where you were
going when you spent all of your time looking out for
alligators. This situation was caused by every CPU
manufacturer having their own proprietary floating-
point arithmetic. A numerical program run on two dif-
ferent makes of computers would seldom deliver the
same answer. All too often, different models from the
same manufacturer would disagree on the correct an-
swer.

So you ask, “Why even use the blasted things at
all?” Yes, it is true, many programmers successfully
avoid using floating-point numbers for their entire ca-
reers. However, for some things, nothing else solves the
problem.

Most computer software is able to avoid the use of
floating-point numbers by scaling to integers. For ex-
ample, pennies are used in place of dollars internally.
This can be surprisingly effective; a 64-bit integer is
large enough to hold the entire U.S. gross national pro-
duct, even when expressed in Argentinean Australs
(currently ~10K to the dollar). Scaling is effective when-
ever the scale factor is fixed or when a single scaling
factor can apply to several variables.

Many problems are stubbornly resistant to this
type of attack. A good example is solving a system of
linear equations. We all learned in linear algebra class
the straightforward arithmetic of Gaussian elimina-
tion. What you learn when you try to implement this in
a computer program is that each variable and coeffi-
cient may come from a completely different part of the
number line. This requires that each variable, coeffi-
cient and intermediate computation have its own, pri-
vate, scaling factor. Floating-point numbers solve ex-
actly this problem.

M I C R O P R O C E S S O R R E P O R T

	

	

1 6 	 	
Floating-Point Standard
The IEEE Floating-Point Standard

In the late ’70s, a committee, under the auspices of
the IEEE, created the IEEE standard for binary float-
ing-point arithmetic (ANSI/IEEE Std 754-1985), which
was formally adopted in 1985. The committee recog-
nized the futility of trying to standardize any of the ex-
isting solutions (unlike the ANSI C committee whose
purpose was to standardize the existing solution) or of
trying to change any existing implementation. Instead,
a standard for new architectures was created.

This strategy has been effective; virtually all new
architectures since the start of the standardization ef-
fort have adopted it. Indeed, all desktop computers in
common use today (except for DEC’s micro-VAX series)
are based on the IEEE standard. Non-adoptees seem to
fall into two major categories. One category is compa-
nies that capitalize on the software of existing architec-
tures and therefore need to copy their floating-point for-
mats, (e.g., Convex and Cray). The other category is
architectures that target special-purpose applications,
such as digital signal processing (TI, NEC, etc.).

The IEEE standard covers the binary repre-
sentation of floating-point numbers, operations involv-
ing a floating-point number, and the exceptional condi-
tions that these operations can encounter. Specifically
not covered by the standard is the relationship between
programming languages and the specific features of the
standard. This omission, necessary no doubt to allow its
acceptance as a standard, has prevented the wide-
spread use of many of the more exotic features.

Numerical Formats
The standard specifies four floating-point formats:

two basic formats (single and double) and two extended
formats (single-extended and double-extended). The
two basic formats correspond to what we normally
think of as single and double precision, i.e., 32- and 64-
bit numbers, respectively. The extended format num-
bers are primarily used to hold intermediate results of
computations and are not accessible in most standard
programming languages. For this reason, many of the
newer architectures have chosen not to support either
of the extended formats while the remainder support
only double-extended.

Single-extended is intended for machines that do
not support double or double-extended. Supporting
both is redundant. The extra precision of double-ex-
tended is very rarely needed. The 53 bits of fraction in
the double format is enough to express the distance be-
tween the earth and the sun with an accuracy of ±16
A P R I L 1 5 , 1 9 9 2

 bits)

0

Fraction (52 bits)

0

L
S
B

L
S
B

)

IEEE HEX Actual Decimal

0000000000000000000000 BF800000 -(1.0 x 20) -1.0

0000000000000000000000 7F800000 (1.0 x 20) 1.0

0000000000000000000000 40000000 (1.0 x 21) 2.0

0000000000000000000000 40400000 (1.12 x 21) 3.0

0000000000000000000000 7F000000 (1.0 x 2127) ~1.7x1038

les of normalized, single-precision numbers.

	

M I C R O P R O C E S S O R R E P O R T
microns (millionths of a
meter)! All these variants
are permitted by the
standard, which requires
only the single format.

The standard leaves
many aspects of extended-
format numbers up to the
implementor. For exam-
ple, the number of bits in
an extended-format num-
ber is not specified; only a lower bound is given. For this
reason, we will concentrate on the more rigorously de-
fined single and double formats.

A floating-point number consists of three fields:
sign, exponent, and fraction (commonly, though incor-
rectly, called the mantissa). Figure 1 shows the format
and width of single and double precision numbers. The
sign field is a single bit (also called the sign bit). The
exponent field of 8 bits for single-precision (SP) and 11
bits for double-precision (DP) is considered to be an un-
signed number running from 0 to 255 (SP) or 2047 (DP).
The fraction is interpreted differently depending on the
exponent field.

As determined by the exponent and fraction field
there are five classes of values: normalized, zero, infin-
ity, denormalized and not-a-number (NaN).

Normalized Numbers
An exponent value that is not all zeros or ones (i.e.,

not 0, or 255 for SP or 2047 for DP), regardless of the
fraction field, indicates a normalized number. A normal-
ized number consists of a significand (which is the frac-
tion with a leading “1.” before it) between 1.0 and 2.0,
multiplied by two raised to an integral power (derived
from the exponent field). Negative numbers are indi-
cated by setting the sign bit to one and leaving the other
fields undisturbed. (This implies that numbers are
stored in “sign magnitude” format, not the two’s comple-
ment format common for binary integers.)

The exponent field is derived from the true expo-
nent by adding a bias value of 127 (1023 for DP). Thus 21

is represented by an exponent field value of 128 (1024
for DP). By eliminating all-zero and all-one exponent
fields, the true exponent range is restricted to –126 to
+127 (–1022 to +1023 for DP), inclusive.

The significand range of 1.0 to 2.0 was carefully cho-
sen. All numbers in this range are repre-
sented as 1.xxxxx in binary. The fraction
field is created by discarding the leading
“1.” (also known as the hidden bit). Omit-
ting the hidden bit provides an extra bit of
precision than would otherwise be ex-
pected. Thus single format is considered
to have 24 bits of precision even though

S Exponent (8 bits) Fraction (23

31 30 23 22

S Exponent (11 bits)

63 62 52 51

M
S
B

L
S
B

M
S
B

M
S
B

L
S
B

M
S
B

Figure 1. Single-precision (above

1 01111111 0

0 01111111 0

0 10000000 0

0 10000000 1

0 11111110 0

Table 1. Examp

	

A P R I L 1 5 , 1 9 9 2 	 	
only 23 bits are actually present!
Table 1 show some examples in single format. Nor-

malized numbers are in the range 1.175 × 10-38 to 3.40 ×
1038 (2.225 × 10-308 to 1.797 × 10308 for DP).

Zero and Infinity
A zero value for both the exponent and fraction

fields indicates a zero. The standard supports both posi-
tive and negative zero. Negative zero can be produced
by a large number of common operations and, except in
a few obscure cases, behaves like positive zero.

An all-ones value for the exponent and a zero value
for the fraction field indicates infinity. Again, the sign
bit distinguishes positive from negative infinity. IEEE
infinity behaves just as you learned in school: as the
limiting case of arithmetic on operands of arbitrarily
large magnitude. Infinity is produced by an overflowed
computation.

Denormalized Numbers
A zero exponent field and a non-zero fraction field

indicate a denormalized number. A denormalized num-
ber is similar to a normalized number except that the
hidden bit is a zero and the true exponent is fixed at
–126 (–1022 for DP). Denormalized numbers represent
numbers smaller than the smallest normalized num-
ber, but the extended range comes with a steep price:
reduced precision. The smallest denormalized numbers
have only a few significant bits of precision—good
enough to indicate the presence of a tiny non-zero num-
ber. The range of denormalized numbers is 1.75 × 10-38

to 10-45 (2.225 × 10-308 to 10-324 for DP).
Denormalized numbers are a controversial feature

of the standard. Proponents applaud the “gradual un-
derflow” close to zero rather than the abrupt transition
to zero that is required in their absence. Opponents feel

 and double-precison IEEE formats.
1 7

	

that reduced precision generates misleading results.
Implementors of high-performance floating-point

hardware find it expensive to handle denormalized
numbers. Even the best implementations are unable to
overcome inherent performance limitations. Many
have chosen to emulate operations on these infre-
quently occurring numbers in software with corre-
sponding savings in hardware. Some of these systems
provide a method of treating denormalized numbers as
zero so that even the expense of software emulation is
avoided.

Not a Number (NaN)
An all-ones value for the exponent and a non-zero

value of the fraction field indicate a Not-a-Number
(NaN). As the name indicates, NaNs do not have an
arithmetic value; they are intended to serve as imple-
mentation vehicles for a variety of features, including
uninitialized variable detection, extended-range nu-
merical values, diagnostic error values, error propaga-
tion, lazy evaluation, etc. Any operation with a NaN
produces a NaN as a result. Any invalid computation
(divide by zero, square root of a negative number, etc.)
yields a NaN as its result.

There are two types of NaNs: signaling and quiet.
Sadly, the standard is silent on their actual encodings
other than requiring at least one of each type. A signal-
ing NaN causes an exception whenever it is used. A
quiet NaN propagates through computations silently.
No computation generates a signaling NaN as its re-
sult; signaling NaNs must be introduced explicitly by
the user.

Rounding
All floating-point computations can generate a re-

sult that requires infinite precision (e.g., an infinitely
repeating binary fraction representing a value such as
1/5). The process of deriving the finite precision result
from the infinitely precise result is called rounding. In
IEEE rounding the result is selected from the two num-
bers that bracket the infinitely precise result (i.e., the
nearest that is smaller and the nearest that is larger).
Four different rounding modes are specified: round to
nearest, round to zero, round to negative infinity, and
round to positive infinity.

Round-to-nearest specifies that the nearer of the
two possible results be used. If the two results are equi-
distant (i.e., the case of .5 in decimal) then the one with
the least-significant bit of zero is used (well, you gotta
choose something!). Round-to-nearest mode is the most
intuitively appealing and is specified as the default.

The other three modes, collectively known as di-
rected rounding modes, choose the result that is nearer
zero, +∞ or –∞, respectively.

Round-to-zero mode is used by C and FORTRAN for

M I C R O P R O C E S S O R R E P O R T 	
1 8 	 	
converting floating-point numbers to integers.
The round-to-infinity modes are useful for rounding

error analysis. If you perform a sequence of computa-
tions twice, once in each of the modes, then you put a
bound on the rounding error in the result.

Operations
The IEEE standard requires the following opera-

tions: add, subtract, multiply, divide, remainder, square
root, compare, format conversion, and conversion of a
floating-point number to an integral value in the same
floating-point format. Surprisingly to many people,
transcendental, logarithmic, and other mathematical
functions are not part of the standard.

All the operations perform pretty much as expected
except for the compare operation, which deserves fur-
ther discussion. When I was in school, I learned that the
compare operation generated only three possible re-
sults: less than, greater than, or equal to. Thanks to
IEEE and the existence of NaNs, the possibilities now
number four: less than, greater than, equal to, and un-
ordered. Any compare operation involving a NaN (or
two NaNs) yields unordered as the result. Further com-
plicating matters, a compare operation can optionally
request an exception if a NaN is involved.

Exceptions and Traps
Each exception has a status flag and a trap which

can be enabled or disabled by the user. If an exception
occurs and the trap is disabled, then the status flag is
set, a result is delivered for the operation (the result is
clearly specified by the standard), and execution contin-
ues. If the trap is enabled, then the executing program
is suspended and the specified trap handler is invoked.
The trap handler executes like a subroutine: when it
completes, the executing program is resumed. The trap
handler can substitute a result of its own for the result
of the operation. There are five possible exceptions: in-
valid operation, division by zero, overflow, underflow,
and inexact.

The invalid operation exception is signaled for any
operation on a signaling NaN, any operation that is
mathematically ill-defined (0/0 or ∞ – ∞) or conversions
of NaNs and infinities to formats that do not support
them.

The inexact exception is signaled when the result
differs from the infinitely precise result; i.e., rounding
was performed. The overflow, underflow, and divide-by-
zero exceptions are self-explanatory.

Programming Language Rules
The standard ignores its impact on high-level pro-

gramming languages. For example, the extension of the
compare operation does not fit into any of the modern
programming languages.
A P R I L 1 5 , 1 9 9 2

OOP holds great promise for accelerating the appli-
cation development process. While it is unlikely that
OOP will allow non-programmers to suddenly be able to
develop sophisticated applications, it will make it possi-
ble for more people to become programmers. If applica-
tion developers wish it, OOP should allow the creation
of applications that are end-user customizable, at least
to a certain extent. An example is the NeXT IB’s ability
to accept third-party user-interface objects.

Will object-oriented systems cause a mass migra-
tion to a new operating system? The answer to this
question is “perhaps,” but it is likely to have a familiar
name like “ObjectDOS,” “WinObj,” or “Macintobject”
because it is possible to layer many of the important
features of object-orientation on top of existing systems.
Operating systems designed from the ground up to in-
corporate and support object-orientation—such as the
one Taligent is building—will no doubt have compelling
advantages, but the success of the PC clone over the
Macintosh proves that technical advantages are not al-
ways enough to sway market demand.

Will the move to object-orientation unseat the x86
family as the dominant force in desktop microproces-
sors? The answer to this is “almost definitely no.” Cer-
tainly Microsoft will continue to support the x86, NeXT
has already ported NeXTstep to the 486, Sun is porting
its software to the 486 and will no doubt continue to do
so as more and more object-orientation is incorporated,
and Taligent will make its product available on a vari-
ety of platforms including x86-based computers.

There is one other way object-orientation could af-
fect microprocessors. As some university and industry
experiments have proven, it is possible to use special
hardware to accelerate some of the dynamic aspects of
object-oriented systems, but since traditional architec-
tures are fully capable of supporting OOP systems, it
seems unlikely that microprocessors will shift away
from conventional organizations anytime soon. ♦

	

M I C R O P R O C E S S O R R E P O R T
The three possible results of the normal compare
operation give rise to the six common programming lan-
guage compare predicates: >, >=, <, <=, ==, and != (In C
notation). The four possible results of the IEEE com-
pare operation combined with the optional trapping on
NaNs requires 26 different predicates to cover all of the
useful combinations!

Exceptions are a problem area. The standard is
very explicit about exception handling; a great deal of
useful functionality must be supported by every imple-
mentation. However, since there are no required or re-
commended language bindings, each compiler and op-
erating system vendor has a separate incompatible
interface. This lack of compatibility causes program-
mers to avoid using the exception mechanism.

Summary
The IEEE standard has done an admirable job of

draining the floating-point swamp. Scientific program-
mers can now write code and expect that the results will
be essentially the same on a wide range of machines.

However, the working programmer tends to use
only those features in the standard that are directly
accessible in his or her favorite programming language.
This has created an unfortunate situation. Microproc-
essor designers spend a great deal of time, energy,
nanoseconds, and transistors to conform to the stand-
ard. (Trust me, some of the features are very difficult to
implement efficiently.) Working programmers avoid
these features, however, because every system they use
accesses them differently.

Despite its omissions, the standard provides binary
encodings, predictable answers, mathematically useful
rounding, consistent error handling, and a sufficiently
rich set of primitives to allow numerical programmers
to concentrate on the problem being solved and not on
tracking down errors introduced by some quirk in the
latest version of some box. ♦

	

through a standardized object “Esperanto.” There is, in
fact, an effort underway to standardize the way objects
communicate. With object communication occurring at
a high level, programs can be broken up into user-inter-
face objects that run on desktop computers and scien-
tific, vectorizable objects that run on multiprocessor su-
percomputers. Heterogeneous computer networks
could become advantageous instead of bothersome.
And, of course, the network could be inside the com-
puter, enabling desktop multiprocessors with x86,
RISC, and vector processors to “transparently” exploit
the benefits of each processor.

OOP
Continued from page 15

To Learn More

A wealth of information and tools is available to those inter-
ested in learning more about object-orientation. A good book
is Object Orientation: Concepts, Languages, Databases, User
Interfaces by Khoshafian & Abnous, published by J. Wiley.
Rambaugh, et. al have a book on the general topic of object-
oriented design called Object-oriented Modeling and Design
(Prentice Hall). Pinson & Wiener’s book Objective-C, publish-
ed by Addison-Wesley, describes the original NeXT program-
ming language. Borland and Microsoft have OOP systems for
PCs, ThinkC and Prograph are OOP systems available for the
Macintosh, and Smalltalk V is available for both. The glossy
document The NeXTstep Advantage from NeXT serves as a
general introduction to the NeXT OOP system. Finally, there
is Object Magazine (SIGS Publications) for those who need an
up-to-date, monthly dose of object-orientation. Actually, there
is a wide variety of magazines, including technical journals,
that deal with OOP. Even RISC cannot make such a bold
claim.

A P R I L 1 5 , 1 9 9 2 	 	 1 9

	Understanding the IEEE Floating-Point Standard
	The IEEE Floating-Point Standard
	Numerical Formats
	Figure 1. Single-precision (above) and double-precison IEEE formats.
	Normalized Numbers
	Table 1. Examples of normalized, single-precision numbers.
	 Zero and Infinity
	Denormalized Numbers
	Not a Number (NaN)
	Rounding
	Operations
	Exceptions and Traps
	Programming Language Rules
	Summary

