SH7000 Architecture Bends RISC Rules

16-Bit Instructions Give High Code Density but Force Compromises

By Brian Case

As previously reported, Hitachi has introduced a
new microprocessor architecture in its SH7000 family of
chips for handheld computers (a.k.a., personal digital as-
sistants or PDAs) and other consumer applications (see
070802.PDF). There are now several architectures com-
peting for PDA-type applications, including ARM, Hob-
bit, SH7000, NEC’s V800 (which will be covered next
issue), and, of course, the x86 and 680x0. The range of
PDA devices is expected to be broad, and even though
many applications will not develop for years, IC vendors
who have been locked out of the x86 market are hoping
to gain access to high-volume consumer applications by
establishing an early presence.

Hitachi has chosen to enter this market with a new
architecture that, in its view, is tailored to the needs of
PDAs. The major considerations for these devices are
cost, power consumption, and performance, and Hitachi
has addressed each issue in the architecture.

The cost of a final product is a system issue and

DIVOU, RTS, CLRT, CLRMAC, NOP, RTE, SETT, SLEEP
15

| opcode |

CMP/EQ, AND, AND.B, OR, OR.B, TST, TST.B, XOR, XOR.B, TRAPA
15 8 7 0

| opcode | 8-bit immediate |

MOV @(disp,GBR), MOVA @(disp,PC), BF, BT
15 8 7

| opcode | 8-bit displacement |

BRA, BSR
15 12 11 0

12-bit displacement |

| opcode |

MOVT, CMP/PZ, CMP/PL, TAS.B, shifts, JMP, JSR, LDC, LDS, STC, STS
15 12 11 8 7 0

| opcode | reg # | opcode |

MOV #imm, MOV @(disp,PC), ADD immediate
15 12 11 8 7 0

| opcode | reg # | 8-bit displacement/immediate |

MOV, SWAP, TST, most arithmetic, most logical, most compare
15 12 11 8 7 4 3

| opcode | dest reg # | source reg # | opcode |
MOV.[BW] @(disp,Rn)
15 8 7 4 3 0
| opcode | reg # | 4-bit disp. |
MOV.L @(disp, Rn)
15 12" 11 8 7 4 3 0
| opcode dest reg # | source reg # | 4-bit disp. |

Figure 1. SH7000 instruction formats.

therefore is a multifaceted metric, but the SH7000 archi-
tecture facilitates low cost in at least two ways: the rela-
tively simple architecture keeps the CPU core implemen-
tation small, and the instruction length is 16 bits instead
of the RISC-standard 32 bits. Short instructions increase
code density, which potentially reduces memory cost.

Performance is addressed in the architecture by
adopting some RISC attributes, such as fixed-length in-
structions, that facilitate a simple, fast pipeline. Even so,
the SH7000 has some decidedly non-RISC features.

Power consumption during normal operation is
largely determined by implementation technology and
logic and circuit design, but to help software take advan-
tage of periods of inactivity, the SH7000 architecture de-
fines two low-power standby modes. These modes, in-
voked via the SLEEP instruction, allow software to take
an active role in reducing the power consumed by
SH7000 chips.

SH7000 Architecture Overview

The SH7000 is RISC-like, but it makes several sig-
nificant deviations from the commonly acknowledged
RISC tenets. The deviations stem primarily from the 16-
bit instruction length, which is its most distinguishing
feature, at least compared to other commercial RISCs.
For example, two important RISC tenets—a large regis-
ter file and three-address register-to-register opera-
tions—are compromised because of the constraints im-
posed by short instructions. Other non-RISC attributes
include saving a stack frame in memory on exceptions,
special uses for general registers, and a few instructions
that perform read-modify-write memory operations.

The SH7000 lacks a supervisor mode, which is
needed to implement modern, protected operating sys-
tem environments. While it can be argued that small, in-
expensive consumer devices have less need for sophisti-
cated operating systems than desktop computers, all of
the established competitors of the SH7000 provide a su-
pervisor mode.

SH7000 Instruction Set

As shown in Figure 1, the instruction formats are
consistent and easy to decode. Unfortunately, to allow a
sufficient number of instructions to be encoded in 16 bits,
the formats allow a maximum of only two 4-bit register
fields. This has several implications, which are discussed
separately below.

The 16-bit instruction length also reduces the
length of offsets for branches, displacements for loads

SH7000 Architecture Bends RISC Rules

Vol. 7, No. 11, August 23, 1993

© 1993 MicroDesign Resources

MICROPROCESSOR REPORT

and stores, and immediate fields for arithmetic and logi-
cal operations. As shown in Figure 1, the maximum un-
conditional jump offset is 12 bits, while the maximum
offset for conditional branches is 8 bits. The largest dis-
placement or immediate field is also 8 bits.

Table 1 shows the SH7000 instruction set. The Mov
mnemonic is used for both loads and stores, which are
available in byte, word (16-bit), and longword (32-bit)
sizes.

The set of memory addressing modes is larger than
for a traditional RISC. In addition to the common regis-
ter-indirect, register+register, and register+displace-
ment, the SH7000 offers both pre-decrement and post-in-
crement addressing. In most cases, all addressing modes
are available for byte, word, and longword operand sizes
and for both load and store. The notable exception is the
PC+8-bit-displacement mode: it is available only for
loads of words or longwords.

For addressing modes that use a displacement (in-
cluding pre-decrement and post-increment, which im-
plicitly use a displacement), the displacement amount is
scaled by the operand size (one, two, or four bytes). Thus,
even though the register+displacement mode allows only
a small 4-bit displacement, it is effectively larger for
words and longwords. The displacements for MOvs are
zero-extended.

One characteristic common to all RISCs is a load-
store architecture: only load and store instructions refer-
ence memory, and only one memory reference is allowed
per load or store. The SH7000 is a load-store architecture
with a couple of curious exceptions. First, there are byte-
length versions of the AND, OR, and XOR logical operations
that read a byte from memory, perform the logical oper-
ation with an 8-bit immediate value, and then store the
result to memory. Second, the multiply-accumulate in-
struction reads two of its three operands from memory
(the third, as well as the result, is stored in the special
MAC register).

One of the goals of a load-store architecture is to
simplify the pipeline by matching instruction semantics
to hardware resources: in a pipeline, a single memory in-
terface implies that an instruction can do at most one
memory reference. Instructions like the SH7000’s byte-
length logicals and the MAC are special cases that require
dedicated sequencing logic (or even microcode) and re-
duce instruction throughput. The byte-length logicals vi-
olate the load-store model to provide atomic operations
for memory-based semaphores. They allow software to
set, clear, or invert a single bit in memory that could be
used to lock or unlock a data structure. These accesses
must be atomic to avoid having one software process be
interrupted between the load and the store; if the inter-
rupting process modifies the same semaphore, data cor-
ruption could occur. It is less clear why the designers
chose to load MAC operands from memory, but it may

DATA TRANSFER

MOV.[BWL] Register-register move

MOVA Move address; RO gets PC+displacement
MOVT Get branch condition code bit
SWAP.[BW] Swap 16-bit words or lower two bytes
XTRCT Concatenate two registers, extract middle 32 bits
ARITHMETIC

ADD Add

ADDC Add with carry

ADDV Add, trap on overflow

CMP/EQ Compare for equal

CMP/HS Compare for greater or equal, unsigned
CMP/GE Compare for greater or equal
CMP/HI Compare for greater than , unsigned
CMP/GT Compare for greater than

CMP/PZ Compare for greater or equal zero
CMP/PL Compare for greater than zero
CMP/STR Compare bytes

DIV1 Divide step

DIVOS Initialization step for signed divide
DIVOU Initialization step for unsigned divide
EXTS.[BW] Sign extend

EXTU.[BW] Zero extend

MAC.W Multiply-accumulate

MULS Signed multiply

MULU Unsigned multiply

NEG Negate

NEGC Negate with carry

SuB Subtract

SUBC Subtract with carry

SUBV Subtract, trap on underflow
LOGICAL

AND AND

NOT Complement

OR OR

TAS.B Test and set memory

TST AND and set condition code

XOR Exclusive OR

SHIFT

ROTL Rotate left one bit

ROTR Rotate right one bit

ROTCL Rotate left one bit through T
ROTCR Rotate right one bit through T

SHAL Shift left arithmetic one bit

SHAR Shift right arithmetic one bit

SHLL Shift left logical one bit

SHLL2 Shift left logical two bits

SHLLS Shift left logical eight bits

SHLL16 Shift left logical sixteen bits

SHLR Shift right logical one bit

SHLR2 Shift right logical two bits

SHLR8 Shift right logical eight bits

SHLR116 Shift right logical sixteen bits

BRANCH

BF Relative branch false (T==0), non-delayed
BT Relative branch true (T==1), non-delayed
BRA Relative branch, delayed

BSR Relative branch to subroutine, delayed
JMP Register indirect jump, delayed

JSR Register indirect jump to subroutine, delayed
RTS Return from subroutine, delayed
SYSTEM CONTROL

CLRT Clear T

CLRMAC Clear multiply-accumulate register

LDC Load to control register

LDS Load to system register

NOP No operation

RTE Return from exception, delayed

SETT SetT

SLEEP Enter power-down mode

STC Store control register

STS Store system register

TRAPA Trap always

Table 1. SH7000 instruction set.

2 SH7000 Architecture Bends RISC Rules

Vol. 7, No. 11, August 23, 1993

© 1993 MicroDesign Resources

MICROPROCESSOR REPORT

Status Register
31 10 9 8 7 6 5 4 3 2 1 0

[reserved [M[Q[IS 12 11 IO[r[r[S[T]
Global Base Register

31 [0)

l GBR |
Vector Base Register

31 0

l VBR |
Procedure Register

31 [0)

l PR]
Program Counter

31 [0)

l PC]
Multiply-Accumulate (MAC) Registers

31 10 9 [0)

replicated sign bit (bit 9) { MACH

MACL

Figure 2. SH7000 special registers.

make little difference since MAC is a multi-cycle operation
in any case.

The delayed branch is a feature that was part of all
early RISCs but has been left out of some newer archi-
tectures, such as Alpha. It was introduced to increase
pipeline efficiency, but delayed conditional branches pre-
sent slight difficulties for superscalar implementations
because they are a special case for instruction fetching,
grouping, and issue. Instead of leaving delayed branches
out of the architecture completely, the SH7000 architects
decided to make conditional branches non-delayed and
unconditional branches delayed (including return from
subroutine and exception). If this architecture succeeds
in the marketplace, this foresight may slightly ease the
design of future superscalar implementations.

The SH7000 delayed-branch architecture is unique
in some additional ways. First, it specifies “illegal slot
checking” to prevent a program from having a branch in
the delay slot of another branch. Because of the way de-
layed branches work, the behavior of two consecutive de-
layed branches can be unexpected. Checking for and pre-
venting this case is a minor simplification of the
architecture that frees Hitachi from the bother of speci-
fying the exact behavior and gives some freedom for fu-
ture implementations.

Second, no interrupts or traps are allowed between
a delayed branch and its delay-slot instruction. This sim-
plifies the architecture by eliminating the need to save
two return PC values when an interrupt or trap occurs.
In other architectures with delayed branches, two return
PC values must be saved to properly handle the some-
what-rare case of an interrupt that occurs exactly be-
tween a delayed branch and its delay instruction
(roughly a one-in-six chance since 16% of all instructions
in a typical program are branches).

Beyond delayed branches, another way to increase
pipeline utilization is to allow load scheduling so inde-

pendent instruction(s) can be placed after a load to give
the processor useful work to do during memory (or even
cache) latency. Like most RISC manuals, the SH7000 ar-
chitecture manual specifies that load scheduling of one
instruction will improve performance. To ease the pro-
gramming burden, loads are fully interlocked so sched-
uling is not mandatory.

The SH7000 architecture has atomic multiply in-
structions and supports divide through one-bit divide
step instructions. MULS and MULU provide signed and un-
signed multiplication; both instructions multiply two 16-
bit register operands to form a 32-bit product. The prod-
uct is stored in the MACL special register.

Signed and unsigned division are supported with
three instructions: bIvos and DIvou for division initializa-
tion, and DIv1 for forming successive bits of the quotient.
A complete division routine requires from 24 to 72 in-
structions, depending on operand and quotient size. The
generation of a remainder is not supported.

The MAC instruction reads two 16-bit integer
operands from memory indirectly through the two regis-
ter pointers specified in the instruction. It then multi-
plies these two operands, forms a 32-bit product, adds
the product to the contents of the MAC registers, and
stores the result in the MAC registers. (See Figure 2 for
the layout of the MAC registers.) If the S bit in the status
register is set to one for a MAC instruction, saturating ad-
dition is performed: MACL stores the 32-bit result value
and the LSB of MACH is set if MACL saturates. When S is
set to zero, a full 42-bit result is saved. The upper 22 bits
of MACH are the sign-extension of the lower ten bits.

Multiply-accumulate instructions are also found in
the PowerPC, PA-RISC, MIPS-IV, and ARM architec-
tures. Of these, only the ARM has an integer multiply-
accumulate; the others are floating-point. The SH7000
MAC is unique because two of its operands are memory-
based; all the other architectures have multiply-accumu-
late instructions that get all operands from registers.

The SH7000 architecture has ten shift and four ro-
tate instructions but lacks the “shift-by-n” variable shift
instructions—common in other RISCs—that exploit a
barrel shifter. Instead, it has eight shift-logical instruc-
tions: left and right by one, two, four, and eight bit posi-
tions. For arithmetic shifts, only one-bit left and right
shifts are provided. The rotate instructions move one bit
position, left or right, with or without carry (which is the
T bit). All four rotates and the four one-bit shifts affect
the T bit.

The lack of a barrel shifter is presumably due to the
desire for a small CPU core implementation. A barrel
shifter has become standard equipment in nearly every
modern architecture and implementation, but relative to
an ALU, it is still an expensive execution unit. Given the
16 x 16 parallel multiplier for the multiply and MAC in-
structions and the lack of a barrel shifter, it seems the

3 SH7000 Architecture Bends RISC Rules

Vol. 7, No. 11, August 23, 1993

© 1993 MicroDesign Resources

MICROPROCESSOR REPORT

designers expected SH7000 applications to have a
greater need for multiplication than shifts. While leaving
out a barrel shifter does save die size, the lack of vari-
able-shift instructions is a weakness of the SH7000 ar-
chitecture compared to its competition.

The LDC, LDS, STC, and STS instructions are used to
load and store the contents of the special registers shown
in Figure 2. In most other architectures, data movement
for special registers is between general registers only,
but the SH7000 also allows special-register data move-
ment directly to memory. When a special register is
loaded from or stored to memory, the general register
that serves as the memory pointer is automatically in-
cremented or decremented, respectively, by four. This
feature speeds saving special registers on the stack.
Loading and storing the special registers is likely to be
infrequent, however, so it seems like a waste of opcode
space to include a set of special-register load and store in-
structions when the other loads and stores are sufficient.

Conditional-Branch Architecture

The SH7000 has a unique conditional-branch archi-
tecture. Most other machines fall clearly into the condi-
tion-code (dedicated condition-code register or bits in sta-
tus register) or relationship-as-data (result of
comparison written to general register) categories, but
the SH7000 has a combination of the two types. It uses
explicit compare instructions to test for a specific rela-
tionship, as does the relationship-as-data model, but
these compare instructions set the T bit, which resem-
bles a condition code, in the processor status register.
The T bit determines the behavior of the BT (branch if T
set) and BF (branch if T clear) instructions.

The big benefit of the condition-code model is that
condition codes are set as a result of regular arithmetic
instructions, thus occasionally eliminating the need for a
separate compare instruction. The relationship-as-data
model makes compiler code generation and optimization
easier since the bottleneck of the single set of condition
codes is eliminated (allocating space for branch condi-
tions is handled as register allocation, which is already
present in the compiler). The SH7000 model is cleaner
than condition codes, since regular arithmetic instruc-
tions do not affect the T bit, but not as clean as the rela-
tionship-as data model. The T bit is probably a good com-
promise given the small, 16-register file.

Compare instructions use two register operands ex-
cept for CMP/EQ, which also has a version that compares
a register to an 8-bit constant.

Register Addressing Limitations

As mentioned above, the 16-bit instruction format is
limited to at most two 4-bit register fields. There are
three main implications of this limitation.

First, 4-bit register fields can address only 16 gen-

eral registers. Sixteen is probably a sufficient number for
many routines, but, compared to the 32-register files of
most RISCs, the smaller register file significantly in-
creases the likelihood that extra loads and stores will be
required to manage register usage. Also, with the 32 reg-
isters found on other RISCs, it is possible to statically al-
locate some registers for leaf procedures, which can
greatly speed a call to a leaf procedure. Realistically, this
technique cannot be used on the SH7000.

Second, two-address register-to-register operations,
such as additions, must always overwrite one source
operand. In code sequences where preserving both
operands is required, an extra register-to-register move
instruction is needed to copy the source operand that will
be overwritten. Similarly, the SH7000’s one-address
shift operations cannot preserve their source operand,
and will sometimes require an extra move.

Third, as mentioned above, many instructions must
use RO as an implicit operand register. Making RO a
special, implied register has two main side effects. First,
compiler code-generation and optimization algorithms
must be more complex to effectively deal with Ro as a
special-case register, although the increase in complex-
ity is probably not too profound. Second, extra register-
to-register move instructions will be required in some
code sequences to move data into or out of Ro.

Simple Register Model

The SH7000 register model is very simple. There
are 16 general registers and seven special CPU registers.
The SH7000 has only half as many general registers as
most other RISCs, but it compensates somewhat in two
ways. First, R0 is a true register—not fixed at a value of
zero as on some other architectures, such as MIPS and
SPARC. Fixing RO at zero can lead to architectural sim-
plification—comparing to zero and some addressing
modes fall out naturally—but it is more important to
have an extra real register given the constraints of 4-bit
register specifiers. Second, a special, rather than a gen-
eral, register is used to point to a global data area.

Registers R0 and R15 have special uses. R15 is the
stack pointer. In a traditional RISC, any register can be
used as the stack pointer because the stack mechanism
is defined by software. On the SH7000, interrupts and
traps cause an exception frame to be saved on the mem-
ory stack, so a stack pointer must be defined by the
architecture.

The special use for RO is as an implicit operand for
some instructions that need more register fields than the
16-bit instruction length will allow. Most of the special
uses of R0 are for MOV instructions that specify regis-
ter+offset or register+register addressing. The notable
exceptions, undoubtedly made because of frequent use in
real programs, are loading and storing a longword with
the register+offset mode. These two instructions alone,

4 SH7000 Architecture Bends RISC Rules

Vol. 7, No. 11, August 23, 1993

© 1993 MicroDesign Resources

MICROPROCESSOR REPORT

which allow any register as the source or target, take up
one-eighth of the architecture’s opcode space.

Figure 2 shows the SH7000 special register set. The
status register contains: the branch condition code (T),
which is set by compares and tested by BT/BF; the satu-
rate bit (S) for multiply-accumulate operations; the in-
terrupt mask level (I3-10); and bits to hold intermediate
state for divide-step instructions (M, Q). The T bit has
three other main purposes: it is used by some shift and
rotate instructions, it serves as the carry bit for add and
subtract with carry, and it indicates the overflow condi-
tion for ADDV and SuUBV.

The global base register (GBR) points to a global data
area. In other RISCs, a general register might be set
aside by software for this purpose, but with only 16 reg-
isters, using a special register provides a significant sav-
ings. The architecture provides MOV instructions that
allow operands of all three sizes to be loaded or stored
with the GBR+8-bit-offset addressing mode; the source or
destination register, however, must be Ro.

The vector base register (VBR) points to an area
where the addresses of exception handling routines are
stored. For power-on and manual reset, the vector con-
tains both a routine pointer (PC value) and an sp value.

The PR register serves as a one-element stack for
subroutine calls. The BSR and JSR instructions save the
return PC in PR, and the RTS instruction restores PC from
PR. If the called routine itself needs to do a BSR or JSR,
then it must explicitly save and restore the contents of PR.
For the common case of calling a leaf routine (a routine
that itself calls no routines), however, this one-element
stack approach is of benefit because a general register is
not tied up. Another benefit is the fact that the BsSR and
JSR instructions do not have to specify a register for the
return address either implicitly or explicitly (which
would use four precious branch-displacement bits).

The MACL and MACH registers, which are the desti-
nation of the MULS, MULU, and MAC instructions, were de-
scribed in the previous section.

Power Saving Modes

The SLEEP instruction is used to invoke one of two
possible power-down modes: sleep mode and software-
standby mode. The mode entered is determined by the
state of the SSBY (software standby bit) in the SBYCR spe-
cial register (SBYCR is a memory-mapped peripheral reg-
ister, not a CPU special register like those in Figure 2).
The major difference is that sleep mode leaves the on-
chip clock running to drive peripheral functions, while
software-standby mode stops all clocks. Software-
standby mode saves the most power, but most peripher-
als are reset to initial states. Both modes preserve CPU
registers and on-chip RAM.

Evaluation and Conclusions

The SH7000 is a simple, small architecture with
some important RISC characteristics. The architecture
facilitates a small implementation, and the instruction-
set semantics (load-store architecture, few complex in-
structions, etc.) are a good match to a basic pipeline,
which should ensure high performance at reasonable
cost. The 16-bit instruction length probably results in
small code size for most applications, but it also results
in a performance loss relative to other architectures.
Compared to the purer RISCs like ARM and V800, extra
instructions will be required because of the shortcomings
of the two-address, register-to-register architecture,
fewer registers (although ARM also has only 16), and
special uses of R0. The lack of variable-shift instructions
means that in-line code or a subroutine call will be re-
quired when an algorithm requires shifting by a dynam-
ically determined amount.

Based on the characteristics of the architecture and
the features of the first implementations, it is clear that
Hitachi intends the SH7000 to be a high-end version of
the traditional integrated microcontroller. This makes it
unique among its competitors, which are emphasizing
more “big-system” features. Hobbit and x86 implemen-
tations have a user/supervisor mode bit, floating-point
instruction set, cache, and an MMU. ARM has a user/su-
pervisor mode bit, cache, and an MMU. The V800 has
cache and floating-point.

The SH7000 has some strange architectural arti-
facts. It has two distinct instructions and opcodes—SHAL
and sHLL—that perform exactly the same function. This
does not present any problems, but at the same time
there is no need for a duplicate instruction. Perhaps the
SHAL instruction fell out of the instruction encodings, and
it was easier to leave the instruction in than take it out.
The load and store instructions for the system and con-
trol registers are another feature that seems difficult to
justify.

Despite any complaints about the architecture, the
SH7000 is undoubtedly adequate for use in PDAs and
similar devices. While it’s true that the SH7000’s com-
petitors are superior in some ways, none of the proces-
sors aimed at the PDA market are perfect; also, some of
the differences between the processors are unimportant
to the success of the final product. The important deter-
minants of success will be the cost of the processor and
the system and whether the SH7000 can garner the soft-
ware support and design wins that will create high vol-
ume markets. On the other hand, Hitachi may have in-
ternal markets that are large enough to justify its
investment in the SH7000 and guarantee high volume
production. ¢

5 SH7000 Architecture Bends RISC Rules

Vol. 7, No. 11, August 23, 1993

© 1993 MicroDesign Resources

	SH7000 Architecture Bends RISC Rules
	Figure 1. SH7000 instruction formats.
	SH7000 Architecture Overview
	SH7000 Instruction Set
	Table 1. SH7000 instruction set.
	Figure 2. SH7000 special registers.
	Conditional-Branch Architecture
	Register Addressing Limitations
	Simple Register Model
	Power Saving Modes
	Evaluation and Conclusions

