
M I C R O P R O C E S S O R R E P O R T
x86 Has Plenty of Per
Aggressive Superscalar Techniq

by Brian Case

Ever since Intel introduced the 386 in 1985, pundits
have predicted that the x86 architecture had reached the
end of the line in delivering competitive performance. So
far, these predictions have been premature.

Over the past nine years, Intel has vehemently de-
nied that x86 performance would fall behind that of any
other architecture—especially any RISC architecture.
While no x86 has ever been an absolute performance
leader—it has always been behind implementations of
other architectures—Intel has adequately backed up its
bravado with excellent, competitive implementations in
the 486 and Pentium.

Now, with the recent Intel/HP agreement (see
080801.PDF), Intel has had a change of heart and appar-
ently believes that the x86 architecture will be too limit-
ing for implementations beyond another generation or
two. It is strange that now, just as implementation tech-
nology is leveling the playing field between RISCs and
the x86, Intel is pulling away from its flagship architec-
ture. It is true that keeping the x86 competitive requires
complex implementations, but why would Intel suddenly
be afraid of complexity?

The key to high performance is parallelism, and
given enough hardware, available parallelism is con-
trolled fundamentally by the program, not the processor
architecture. Techniques like out-of-order execution and
register renaming will allow superscalar x86 implemen-
tations to exploit available program parallelism as effec-
tively as advanced implementations of other architec-
tures (but the x86 will require more logic).

A VLIW (Very Long Instruction Word) architec-
ture—which Intel and HP are rumored to be develop-
ing—does allow program parallelism to be exploited
with less hardware complexity and, therefore, possibly a
faster processor cycle time (see 080205.PDF). A faster
cycle time could give the VLIW machine higher perfor-
mance if all other implementation aspects remain equal,
but the performance advantage may not be worth the
costs of changing architectures. As evidence, note that
the performance advantage of RISCs has not been
enough to cause a significant shift in the market.

Unless there is a truly fundamental change in soft-
ware technology—e.g., the way programs are written—
x86 implementations can remain competitive well past
the end of the decade. Even if Intel moves away from the
x86, there will still be several microprocessor vendors
willing to supply market demand.
x86 Has Plenty of Performance Headroom Vol. 8, No. 11, August 2
formance Headroom
ues Just Beginning to Appear

This article is a tutorial introduction to some of the
techniques that will be used in forthcoming superscalar
x86 microprocessors. The Cyrix M1 (see 071401.PDF) and
NexGen’s 586 (see 080403.PDF) are harbingers of what is
to come. We expect AMD’s K5 and Intel’s P6 to further
exploit advanced superscalar techniques.

Aggressive Superscalar Design
Although the M1 pipeline improves on Pentium’s—

it allows ALU operations with a memory operand to be
pipelined and executed in a single cycle and provides a
modest performance benefit—the key to higher perfor-
mance is not in pipeline tweaks. The future for high-
performance processor designs is a better superscalar
processor organization that can exploit out-of-order in-
struction issue and execution.

Out-of-order techniques are important because in-
structions tend to depend on previous instructions for re-
sults. Some instructions must be executed in a serial
order because of the way they depend on—or conflict
with—each other. Without out-of-order issue and execu-
tion, instruction dependencies force the resources of an
aggressive superscalar implementation to sit idle more
often than necessary.

Pentium does not permit general out-of-order issue
or execution. The M1 design goes much farther, allowing
out-of-order issue and completion when one pipe is
stalled due to a cache miss, but it too is limited by its
“pipeline-centric” organization. That is, the instruction
fetching, decoding, and execution resources are all con-
nected together in a more-or-less synchronous pipeline.

What is needed for more advanced implementations
is an asynchronous, decoupled organization that sepa-
rates execution resources from each other and from in-
struction fetching. The instruction-fetching hardware
takes care of following the flow of control and feeding op-
erations to the execution units. The execution units
maintain queues of waiting operations and execute them
when all operands are available. Thus, the execution side
of an advanced superscalar processor acts like a dataflow
machine—monitoring operand availability and “firing”
operations when all needed operands become valid.

Some of the latest superscalar microprocessors im-
plement this decoupled organization, most notably the
Power2, PowerPC 604, and NexGen 586. Before dis-
cussing advanced superscalar organizations, we will ex-
amine a couple of techniques—register renaming and
branch prediction—that are key to realizing maximum
benefit from a decoupled superscalar organization.
2, 1994 © 1994 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

sub

add

add

add

R6 ← R5, R2

R7 ← R6, R1

R6 ← R3, R1

R4 ← R6, R4

(1)

(2)

(3)

(4)

TRUE

ANTIO
U

T
P

U
T

TRUE

sub

add

add

add

R6a ← R5a, R2a

R7a ← R6a, R1a

R6b ← R3a, R1a

R4b ← R6b, R4a

(1)

(2)

(3)

(4)

TRUE

TRUE
Dependencies Reduce Overlap
There are three kinds of operand data dependencies

to consider: true dependencies, antidependencies, and
output dependencies.

True dependencies (also called read-after-write or
r-a-w dependencies) reflect the necessary data flow of the
program. In Figure 1, instruction (2) has a true depen-
dence on instruction (1) because (2) uses the result of (1).
Clearly, (2) cannot be executed until the result of (1) is
available.

There is nothing a processor design can do to elimi-
nate true dependencies. The performance-limiting ef-
fects of true dependencies can be mitigated with short
operation latencies (e.g., single-cycle ALUs) and data-
forwarding logic (to deliver the result of an ALU compu-
tation directly to the ALU inputs instead of waiting for
the result to propagate through the register file).

Antidependencies (also called write-after-read, or
w-a-r dependencies) result from reusing registers. In
Figure 1, instruction (3) has an antidependency on in-
struction (2) because (3) comes after (2) and (3) computes
a result into one of the source registers of (2). Clearly, (3)
cannot be executed before the operands for (2) are avail-
able. Once the operands for (2) are fetched, however, (3)
can be executed even if (2) has not yet been.

Output dependencies (also called write-after-write,
or w-a-w dependencies) occur when instructions com-
pute results into the same register. In Figure 1, instruc-
tion (3) has an output dependency on instruction (1). If
(1) were executed after (3), later uses of R6 would fetch
an old, stale value computed by (1) instead of the value
computed by (3).

Data dependencies have the effect of enforcing a
strict ordering on instruction execution, which is counter
to the goal of out-of-order superscalar execution. In Fig-
ure 1, the three kinds of dependencies just discussed re-
quire that the four instructions be executed serially; as it
stands, no simultaneous, superscalar execution is possi-
ble for this sequence.

Register Renaming Breaks Dependencies
Register renaming can be used to eliminate false

(anti- and output) dependencies, thereby creating more

Figure 1. This short instruction sequence illustrates the three types
of register data dependencies.
2 x86 Has Plenty of Performance Headroom Vol. 8, No. 11, Aug
opportunities for out-of-order execution. With register
renaming (and sufficient instruction lookahead), it is
possible to execute the four instructions in Figure 1 at a
rate of two instructions per cycle. (This is a contrived ex-
ample: note that it is also possible to execute these four
instructions in two cycles—the two pairs (1),(2) and
(3),(4)—with a single three-input ALU.)

Conceptually, register renaming assigns a unique
register to the result of every instruction that writes to a
register and causes subsequent instructions that use a
result to reference the renamed register instead of the
original register. This technique eliminates output de-
pendencies, since no two instructions write to the same
register. Register renaming also eliminates antidepen-
dencies because a given instruction cannot overwrite the
input operands of an earlier instruction.

In effect, register renaming would change the in-
struction sequence of Figure 1 to that shown in Figure 2.
The renamed sequence exposes the fact that instruction
(3) can be issued and executed in parallel with either in-
struction (1) or (2). Thus, since these are single-cycle in-
teger operations, a superscalar processor with register
renaming and at least two integer execution units would
be able to execute the four-instruction sequence in as few
as two cycles.

In practice, the hardware that implements renam-
ing reuses register names as appropriate. When no more
references to a renamed register are possible (because
the program overwrites the original register with a new
value and the value in the renamed register is not re-
quired for misprediction recovery, see below), that re-
named register can be used again. Thus, in Figure 2,
after instruction (2) executes (actually, after it has
fetched its operands), R6a could be used again.

It is interesting to note that traditional register-
allocation algorithms used in high-level language com-
pilers tend to create instruction sequences rich in anti-
and output dependencies, because traditional algo-
rithms attempt to use as few registers as possible to hold
all the program’s register values. From the compiler’s
point of view, it makes sense to cram as many values into
registers as possible to reduce the chance of running out
of registers. The x86 architecture—with only eight gen-
eral-purpose registers—demands stingy allocation.

Figure 2. In concept, register renaming transforms the instruction
sequence of Figure 1 into this sequence with renamed registers.
ust 22, 1994 © 1994 MicroDesign Resources

16-Register File

Renaming
Array

Renaming
Array

Write
Port

Read
Port A

Read
Port BAddr. A Addr. B

Write
Addr.

Renaming

3-bit Register File
Read Address A

3-bit Register File
Write Address

3-bit Register File

0
1
3
4
11
6
5
9

3-bit Logical
Register Number

4-bit Physical
Register Number
Newer compilers for superscalar RISC implementa-
tions use different register-allocation strategies that
avoid as many dependencies as possible. Unfortunately,
the x86 has so few registers that better algorithms are
ineffective, and legacy binaries (compiled with older reg-
ister-allocation algorithms) will always be a concern for
any successful architecture.

Thus, a superscalar processor with out-of-order
issue and execution needs register renaming to expose
the instruction parallelism hidden behind false depen-
dencies. This is especially true for implementations of
register-poor architectures like the x86.

Existing implementations with register renaming
include the PowerPC 603 (see 071402.PDF) and 604 (see
080501.PDF), the Power1 (MPR 8/21/91, p. 10) and
Power2 (see 071301.PDF), and NexGen’s 586. The Power1
and Power2 implementations rename registers only on
floating-point loads; the other chips implement renam-
ing more fully. The forthcoming M1 will also use renam-
ing, and AMD’s K5 and Intel’s P6 superscalar x86 imple-
mentations should add to the list.

Implementing Register Renaming
Register renaming can be implemented in a num-

ber of ways, but conceptually it is simply a mapping from
a small logical (architectural) register space onto a
larger physical (implementation-dependent) register set.
The size of the logical register set is fixed by the archi-
tecture, but the physical register set is sized to match the
out-of-order capabilities of the implementation.

The concept of register renaming adds a level of in-
direction between the register numbers specified in an
instruction and the register file address inputs. This
level of indirection can be implemented with a small
memory that produces a physical register number when
it is presented with an architectural register number.
Figure 3 shows the idea.

In practice, register renaming hardware may be
more complex than this. Depending on the implementa-
tion, the renaming mechanism may have to provide tags
in lieu of register values when a renamed register value
has not yet been computed. One of many possible imple-
mentations, the reorder buffer, is discussed below.

Register renaming serves two purposes in an out-of-
order superscalar machine: to eliminate false dependen-
cies and to support speculative execution. Speculative
execution—the result of branch prediction—requires a
mechanism to recover quickly from incorrect specula-
tion. Register renaming allows speculatively computed
values to be discarded simply by changing the architec-
tural-to-physical register mapping.

Branch Prediction Finds Parallelism
With the ability to fetch several instructions per

cycle and with register renaming to expose the hidden

M I C R O P R O C E S S O R R E P O R T
3 x86 Has Plenty of Performance Headroom Vol. 8, No. 11, Aug
parallelism in the instruction stream, an aggressive su-
perscalar implementation needs a large supply of avail-
able instructions for issue and execution. If true depen-
dencies stall one or two instructions, the potential of the
superscalar implementation will be wasted unless the
instruction-fetch logic can look far ahead in the instruc-
tion stream.

Unfortunately, on average, branches occur every
four or five instructions, and many branches are condi-
tional. To keep looking ahead for independent instruc-
tions, the instruction-fetch logic must predict the out-
come of conditional branches (because the instruction
that determines the outcome of the branch has probably
not been executed when the branch is encountered).

The problem is not that branch prediction is diffi-
cult—Pentium and other microprocessors already imple-
ment sophisticated branch prediction—but that branch
prediction is not 100% accurate. Thus, when a branch is
mispredicted, aggressive look-ahead instruction-fetch
combined with the dependency elimination of register
renaming results in the execution of instructions that
should not have been executed. In fact, an aggressive im-
plementation may require that several conditional
branches be predicted to keep the execution units busy.

In an implementation that allows up to four pre-
dicted branches, the processor can actually execute in-
structions from up to five different instruction streams.
If the first branch was mispredicted, then many instruc-
tions that were executed should not have been.

Figure 3. Register renaming creates a level of indirection between
the register file and the register addresses provided by instruction
decode. In this example, an eight-register architectural space is
remapped to a sixteen-register physical space.

ArrayRead Address B
ust 22, 1994 © 1994 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

8
o
i
p

Branch
Unit

Register
File

Reo
Bu

Instruction
Cache

Prefetch Buffer(s)

Decoder &
x86-Sequence

Generator

Branch Predict
ALU

Unit(s)
Shift
Unit
Given out-of-order execution and branch prediction,
the processor must have a method to recover from mis-
predictions by undoing the effects of those instructions
that should not have been executed, and the recovery
method must be fast enough that the processor can begin
fetching and executing instructions from the correct pro-
gram path with minimum delay.

Register renaming can help implement the needed
recovery mechanism by providing storage for the results
of look-ahead (speculatively executed) instructions and,
as explained below, by providing a way to discard the re-
sults if the instructions should not have been executed.

Reorder Buffer for Renaming, Prediction
One of the many ways to implement register re-

naming and fast recovery from mispredicted branches is
with a reorder buffer [Johnson91]. A reorder buffer is a
true FIFO structure that implements a central reposi-
tory for information about completed and uncompleted
computations.

As an operation is dispatched to an execution unit,
it is allocated an entry at the top of the buffer. When the
result of the operation is computed, it is written into the
entry in the reorder buffer, not into the register file. Sub-
sequent references to this result register get the needed
value from the buffer, not from the register file.

The entry at the bottom of the reorder buffer FIFO
is a candidate for writing its result to the register file. If
the entry at the bottom has no possible pending excep-
tions, such as a page fault for a load or a possible mis-
speculation as a result of a mispredicted branch, and its

Figure 4. The high-level organization of a decoupled superscalar x
fetching and dispatching logic takes care of following branches and c
tions into sequences of simpler internal operations. The execution un
cute them as operands become available. The reorder buffer helps im
recovery from mispredicted branches.
4 x86 Has Plenty of Performance Headroom Vol. 8, No. 11, Augu
result is available, then the re-
sult is written to the register
file. Otherwise, the entry stays
at the bottom of the FIFO until
all possible exceptions are
cleared or one is signalled.

Thus, as instructions are
dispatched, some operands are
provided by the register file
and some are provided by the
reorder buffer. When a regis-
ter operand is needed but not
yet computed, a tag identify-
ing the reorder buffer entry is
given instead. The tag is then
used to identify a needed oper-
and as soon as it is computed.

A key feature of the re-
order buffer is that it can be
emptied in a single cycle when
a mispredicted branch is de-
tected. Since the register file
contains only computed re-
sults that are guaranteed to

be “safe,” the contents of the reorder buffer can simply be
invalidated—much like clearing the valid bits in cache
or TLB entries. Any results produced by speculative exe-
cution are thus dropped, and the processor can begin ex-
ecuting instructions immediately from the correct path.

The biggest drawback of the reorder buffer is that it
requires associative lookup to find the most recent entry
that matches a register number, which makes the re-
order buffer expensive in terms of die area. Although
only a modest number of entries are required (16 in the
example machine in [Johnson91]), the associative lookup
requires lots of comparators and wiring, but careful de-
sign should limit its impact on basic processor cycle time.

For an x86 implementation, the reorder buffer must
also mark x86 instruction boundaries, since multiple re-
order buffer entries are needed to store intermediate re-
sults for a single complex instruction.

Aggressive x86 Superscalar Organization
Figure 4 shows a high-level block diagram of an ag-

gressive, decoupled superscalar x86 processor organiza-
tion. The instruction fetching, decoding, and dispatching
hardware operates independently of the execution re-
sources. The fetching hardware takes care of program
flow, including branch prediction.

The execution resources are decoupled from the
fetching hardware by reservation stations. Each execu-
tion unit has a reservation station to buffer waiting op-
erations. The reservation stations monitor the result
buses to detect operands that are needed by waiting op-
erations. Since operations execute as soon as their

6 processor. The instruction
nverting complex x86 instruc-
ts queue operations and exe-
lement register renaming and

rder
ffer

Data
Cache

Load/Store
Unit
st 22, 1994 © 1994 MicroDesign Resources

With Really Free Hardware...
In the (not-too?) distant future, it may be feasible to

implement a processor that follows both paths of sev-
eral conditional branches instead of simply predicting
the branch outcomes and following the likely paths. By
following both branch paths, useful work is guaranteed
and no backtracking need be done to recover from a
mispredicted branch. This technique was used in the
IBM 370/168 and 3033.

To pursue both paths, it is possible to dedicate a copy
of the processor core for each path. Since an aggressive
superscalar processor can encounter several additional
conditional branches while waiting for the determina-
tion of one conditional branch, it would be necessary to
have perhaps eight or even sixteen copies of the proces-
sor core to follow all possible paths while waiting for
the resolution of the first conditional branch.

Copying the hardware of an aggressive superscalar
processor core eight or sixteen times is clearly very ex-
pensive. Better ways to get most of the same perfor-
mance benefit include improved branch prediction (bet-
ter hardware algorithms and more compiler support)
and simply issuing instructions from both paths to the
same execution units. As with the hardware described
in this article, register renaming and a reorder buffer
take care of marking instructions appropriately so each
gets the right operands and so mispredicted instruc-
tions can be cancelled.

Although duplicating the processor core to follow
multiple branch paths is not the most efficient use of
hardware, chip technology a decade from now may per-
mit such a brute-force implementation. If this type of
design improves performance for important applica-
tions, it may someday make sense from a business per-
spective.
operands are ready, operations waiting in reservation
stations can be executed out of order.

The reorder buffer supplies the most recent operands
to speculatively issued instructions, writing them to the
register file when they are guaranteed correct.

Executing x86 Instructions
The execution units of the decoupled organization

shown in Figure 4 naturally accommodate the instruc-
tion semantics of RISC instructions, which do essentially
one thing: e.g., they add, shift, load, store, or branch, so
each RISC instruction encodes one operation that gets
dispatched to one execution unit.

Most x86 instructions are not as simple, but the su-
perscalar core in Figure 4 can be just as effective for x86
instructions. In fact, an organization similar to that of
Figure 4 is implemented by the NexGen 586.

To make use of the independent execution units for
x86 instructions, the instruction-decoding logic simply
dispatches multiple operations that implement the se-
mantics of the x86 instruction. For example, an x86 reg-
ister-to-register ALU operation would cause only one in-
ternal operation to be dispatched to an integer execution
unit. An x86 memory-to-register ALU instruction would
cause two internal operations to be dispatched: a load
and an integer ALU operation. The integer ALU opera-
tion would have a true dependency on the load, so it
would wait until the load completes. Because of the de-
coupled organization, however, operations from other
x86 instructions could proceed while the ALU operation
waits for the load.

An x86 register-to-memory ALU instruction might
dispatch three internal operations: a load, an ALU, and a
store (it is also possible to simply have a “load-operate-
store” execution unit). The store would have a true depen-
dency on the ALU operation, and the ALU operation would
depend on the load. As before, these steps would not exe-
cute concurrently with each other, but they could execute
along with independent steps from other x86 instructions.

Thus, the decoupled organization allows “microcode”
steps from two or more x86 instructions to execute con-
currently. This strategy provides a sort of CISC-to-super-
scalar-RISC translation on the fly. The microcode steps of
several x86 instructions can execute with maximum con-
currency as allowed by available execution units and true
dependencies (register renaming eliminating the false de-
pendencies). This is very different from the operation of
Pentium, which overlaps only simple x86 instructions
that can be handled directly by its pipelines.

The logic to perform this on-the-fly translation does
not affect the execution side of the machine. It may re-
quire an extra stage of logic in the pipelined fetching, de-
coding, and dispatching hardware, which will reduce
performance on mispredicted branches but will other-
wise go unnoticed.

M I C R O P R O C E S S O R R E P O R T
5 x86 Has Plenty of Performance Headroom Vol. 8, No. 11, Aug
Superscalar Dispatch at the x86 Level
NexGen’s 586 operates essentially as described

above, using superscalar techniques to issue and execute
internal operations, which NexGen calls “RISC86” in-
structions. What it does not do, however, is decode more
than one x86 instruction per cycle.

The same parallel decoding hardware that allows
Pentium to recognize two simple x86 instructions in a
single cycle could be added to our decoupled superscalar
core and thus to the 586. AMD’s K5 will probably have
an organization similar to the 586 coupled with the abil-
ity to decode and dispatch more than one x86 instruction
per cycle. Intel’s P6 and the NexGen 686 will likely do
the same.

Pentium’s design restricts which x86 instructions
can be simultaneously issued by its decoding hardware.
As the degree of superscalar issue at the x86 level in-
creases—the K5 is a four-issue machine—it is conceiv-
able that the restrictions could get more severe, which
ust 22, 1994 © 1994 MicroDesign Resources

would limit superscalar issue to a smaller subset of the
x86 instruction set. Any new restrictions would have to
be incorporated into compiler code-generation algo-
rithms to ensure that the superscalar capabilities of ad-
vanced x86 processors are fully exploited.

Market forces, however, may prevent new issue re-
strictions from being implemented. It would be a market
disadvantage to achieve less than maximum perfor-
mance on existing binaries compiled to exploit Pentium’s
superscalar dispatch. AMD says that the K5 will have
issue restrictions no more severe than Pentium’s.

The Future Looks Complex
Once a decoupled processor organization is adopted,

it is possible to expand it almost indefinitely. More exe-
cution units, more cache ports, bigger reservation sta-
tions, a larger reorder buffer, larger branch prediction
tables, more operand buses, more internal operation dis-
patch buses, greater degrees of x86 superscalar decod-
ing, and so on, can consume almost arbitrary amounts of
hardware, whether on one chip or many. In the end, it is
possible to have multiple copies of the processor core fol-
lowing each possible branch path (see sidebar), eliminat-
ing all backtracking.

There are two fundamental limits, however, that
may be reached before such drastic measures are taken.
First, the complexity of the overhead logic that orches-
trates the concurrency may limit cycle time so much that
a simpler design with a faster clock would deliver higher
performance. Second, and more likely, most programs
may not have sufficient parallelism available to keep
busy a superscalar core that has, say, 16 execution units.
To exploit machines with such capabilities may require a
change in software technology. Or perhaps we will dis-
cover that predicting and following 16 consecutive
branches provides enough parallelism.

Relative Implementation Costs Dropping
The decoupled, highly concurrent processor organi-

zations discussed here are complex. They require a
tremendous amount of logic to perform dependency
checking and associative lookup and a tremendous
amount of wiring to connect all the elements together
with sufficient bandwidth to keep the execution units
from waiting for operations and operands.

Much of the complexity, however, is in the execu-
tion side of the machine, which remains largely the same
whether the x86 or a RISC instruction set is being exe-
cuted. The x86 architecture complicates the execution
side of the machine somewhat by requiring, among other
things, four-input address adders, hardware to track
multiple copies of the condition-code register, and the
need to deal with the increased frequency of memory ref-
erences (compared to RISCs), but a large part of the im-

M I C R O P R O C E S S O R R E P O R T
6 x86 Has Plenty of Performance Headroom Vol. 8, No. 11, Augu
pact of the x86 is isolated in the instruction fetching, de-
coding, and dispatching hardware.

There is some empirical evidence to counter the ar-
gument that advanced x86 implementations are paying
a declining penalty for their instruction set. In its day,
the 486 was roughly—some observers would say only
very roughly—comparable to contemporary RISCs in
terms of die size and technology. Pentium uses more
transistors and more die area and achieves a lower clock
rate than its contemporaries. The rumor is that P6, to
achieve competitive performance, will resort to a multi-
chip module to accommodate off-chip caches (rumors dif-
fer over whether the off-chip caches are level-one or
level-two).

If this is a trend, then it seems clear why Intel is
taking steps to develop a new processor architecture:
high-performance x86 implementations, at least from
Intel, are getting too expensive and can never reach
leadership performance. Another possibility is that Intel
is trying to address a different market with P6. Perhaps
enhanced Pentiums will be Intel’s next-generation main-
stream x86; perhaps P6 is initially intended for servers
and is not meant to replace Pentium in the desktop mar-
ket right away.

The bottom line is this: although RISCs have imple-
mentation advantages over the x86 for an advanced, de-
coupled superscalar organization, the advantages are
not as compelling as they were for simple pipelined
implementations.

x86 Performance Increases Will Continue
Again, as was stated in the beginning of this article,

it seems strange that Intel would abandon the x86 just
when implementation technology seems to be mitigating
the overhead of the x86 instruction set. Perhaps, though,
Intel and HP have identified—or hope to identify—a
combination of software and hardware technologies that
will achieve price/performance levels unattainable by
implementations of traditional instruction sets.

Other possibilities abound. Perhaps Intel simply
wants to re-establish a proprietary position. Perhaps
Intel simply desires to instill fear, uncertainty, and
doubt in the market. Maybe Intel wants to prevent, once
and for all, the adoption of RISC alternatives—at least
one RISC competitor is eliminated by swallowing PA-
RISC—and ruin the prospects of its x86 competitors.

Regardless of Intel’s actions, the x86 will continue
to advance in performance through the efforts of other
x86 microprocessor vendors. Although its implementa-
tions will not overtake the price/performance of RISC or
VLIW (or whatever) implementations, the x86 architec-
ture will continue to spawn competitive implementa-
tions that will yield satisfying performance gains for
loyal customers. ♦
st 22, 1994 © 1994 MicroDesign Resources

	x86 Has Plenty of Performance Headroom
	Aggressive Superscalar Design
	Figure 1. This short instruction sequence illustrates the three types …
	Dependencies Reduce Overlap
	Register Renaming Breaks Dependencies
	Figure 2. In concept, register renaming transforms the instruction …
	Implementing Register Renaming
	Branch Prediction Finds Parallelism
	Figure 3. Register renaming creates a level of indirection …
	Figure 4. The high-level organization of a decoupled superscalar x86...
	Reorder Buffer for Renaming, Prediction
	Aggressive x86 Superscalar Organization
	Executing x86 Instructions
	Superscalar Dispatch at the x86 Level
	The Future Looks Complex
	Relative Implementation Costs Dropping
	x86 Performance Increases Will Continue

	With Really Free Hardware...

