
M I C R O P R O C E S S O R R E P O R T
The following letter comes from Tim Paterson, one of
the two engineers who created MS-DOS for Microsoft
back in 1981. Mr. Patterson is responding to comments
made by author John Wharton in his article on Gary Kil-
dall (see 081003.PDF). Although this letter is longer than
those that we usually print, we hope that you will find it
of historical interest.

Dear Editor:

John Wharton’s tribute to Gary Kildall is full of well-
deserved praise for Mr. Kildall’s contribution to the in-
dustry. Unfortunately, Mr. Wharton also got briefly side-
tracked onto other issues that he demonstrated he knows
nothing about. Through his occasional pot-shots in the
past, he has made clear his contempt for MS-DOS and its
author (me), and everyone is entitled to an opinion. But to
present such distortions—even completely made-up sto-
ries—about MS-DOS as facts is irresponsible.

Let’s start with the characterization of MS-DOS as
“an unauthorized ‘quick and dirty’ knockoff of CP/M
from Seattle Computer Products.” Back in 1980, what
we now call MS-DOS was sold by Seattle Computer
Products (SCP) as 86-DOS with their 8086-based com-
puter system, one of the first to use that microprocessor.
At that time, CP/M ran only on the 8080/Z80 micro-
processors, although a version for the 8086 was known to
be under way. Before starting development of 86-DOS,
SCP had been shipping its computers since 1979 and
was in desperate need of standard software. The uncer-
tain outlook for CP/M-86 led to the internal development
project in April 1980.

SCP was a small company with no clout in the in-
dustry. To get major software developers to port their
products from the 8080/Z80 to the 8086, I decided we
had to make it as easy as possible. I had already writ-
ten a Z80-to-8086 source code translator (hosted on the
8080 and CP/M). My plan was that running an 8080
CP/M program through the translator would be the
only work required by software developers to port the
program to the 8086. In other words, the interface used
by applications to request operating system services
would be exactly the same as CP/M’s after applying the
translation rules.

So 86-DOS generally had all the same application-
visible elements as CP/M—the function codes, the entry
point address, part of the File Control Block layout, etc.
I used the 1976 CP/M Interface Guide for my description
of the requirements. I also provided some similar com-

F R O M T H E

The Origin
DOS Creator Gives His View of Rel
From the Mailbox: The Origins of DOS Vol. 8, No. 13, October 3, 1
mands from the console—such as DIR, RENAME, ERASE—al-
though any system would have such functions, regard-
less of name chosen.

But that’s where the influence from CP/M ended.
(Isn’t that enough, you say?) Consider that 86-DOS used
a completely different file-storage mechanism than
CP/M (representing maybe 80% of the 86-DOS code).
Once the functions for translation compatibility were
done, I immediately added the “real” file interface—
allowing the application to read or write any number of
records of any size in a single request, rather than one
128-byte record at a time. I also added rudimentary
built-in editing (maybe 15% of the code).

The point is, 86-DOS is completely different from
CP/M inside. It is an entirely original work within the
confines of providing the translation-compatible inter-
face. Because of the completely different file storage for-
mat, none of the internal workings has any correspond-
ing relation to anything within CP/M. I never used CP/M
source or disassembly at any time while I was developing
86-DOS. It wouldn’t have made sense to; there was noth-
ing I could learn from it, since my tasks were different.
And finally, if there had been a CP/M for the 8086 micro-
processor, 86-DOS would never have been developed.

Contrast this scenario with some other cases of soft-
ware “cloning.” One example is the ROM BIOS that each
IBM-compatible PC must have. The ROM is required to
be fully compatible, yet IBM was unwilling to license it
to others. Compaq and Phoenix Technologies were two of
the first to clone the ROM with independently developed
code that performed exactly the same functions and even
had the same internal addresses (since some software
relied on this). Another example is Digital Research’s
DR-DOS (now Novell DOS), a perfect functional clone of
MS-DOS with improvements added. Unlike 86-DOS,
each of these clones performs exactly the same function
for the same microprocessor as the original program
being cloned. 86-DOS provided wholly new functionality
(a completely different, faster storage format) for a
microprocessor which had no alternative.

Referring again to Mr. Wharton’s article, he states
that “these protocols [for memory allocation, file sharing,
etc.] were removed [from 86/MS-DOS], since Microsoft
programmers didn’t understand why they were needed.”
This is utter nonsense. The fact is, neither 86-DOS nor
CP/M 2.2 (the 8080/Z80 version of that day) had any facil-
ities “for memory allocation, file sharing, process switch-
ing, and peripheral management.” As single-task sys-

 M A I L B O X

s of DOS
ationship Between CP/M, MS-DOS
994 © 1994 MicroDesign Resources

tems, they generally had no need for it. Both simply gave
all available memory to the single running task—there
was no other task to switch to or share files with.

For reasons unrelated to 86-DOS, I left SCP and
went to work for Microsoft just in time to put the finish-
ing touches on the adaptation of 86-DOS to the IBM PC
(May 1981). I joined Bob O’Rear, who had done all the
hard work of getting 86-DOS up and running on the IBM
machine. Bob and I must be the programmers that Mr.
Wharton refers to, since we were the only ones working
on it. I’m pretty sure I didn’t hack anything out of my
program because I didn’t understand it.

Finally, there’s the discussion of machine indepen-
dence. The original CP/M was a bit weak on this point,
because it assumed a specific disk format: 77 tracks, 26
sectors, one head, 128 bytes per sector. CP/M 2.2 gener-
alized this into a table-driven approach, although it still
assumed 128-byte sectors. The basic problem with CP/M
was that it had no internal buffering—the application
program was required to read/write files in physical 128-
byte sectors. 86-DOS did have internal buffering and
separated the logical record of the application from the
physical sector on the disk, allowing either to be any size.

To quote from an 86-DOS manual from late 1980:
“In order to provide the user with maximum flexibility,
the disk and simple device I/O handlers of 86-DOS are a
separate subsystem which may be configured for virtu-
ally any real hardware.” This was put to the test, be-
cause the 86-DOS that ran on SCP’s S-100 Bus 8086
computer using 8-inch floppy disks and a serial terminal
for I/O was exactly the same binary as used on IBM’s
8088 with 5-inch disks and memory-mapped video.
Other early users of MS-DOS included Zenith and Sirius
(later Victor), each of whose computers were unique.

BIOS (for Basic Input/Output System) was the
name given to CP/M’s hardware dependent layer so that
the BDOS (Basic Disk Operating System) and all appli-
cations could be hardware independent. But it is not true
that “Microsoft lifted the term ‘BIOS’ for MS-DOS but
wrote the software to be machine-dependent anyway.”
IBM used the term BIOS to refer to ROMs resident in
their machine. I used the term I/O System (never abbre-
viated) to describe the hardware-dependent layer of 86-
DOS, and Microsoft even keeps this layer in a separate
file on the disk (IO.SYS) from the machine-independent
code (MSDOS.SYS).

Responsible journalists check their facts. I don’t
know if Mr. Wharton is just so gullible that he believes
any anti-Microsoft story he hears or if he just makes up
the stories himself. To get some of the basics, he could
start by reading Gates by Manes and Andrews, or Hard
Drive by Wallace and Erickson. Then, as authors of both
books did, just ask me if there are any questions.

—Tim Paterson, Microsoft

M I C R O P R O C E S S O R R E P O R T
2 From the Mailbox: The Origins of DOS Vol. 8, No. 13, October
Mr. Wharton replies:
I couldn’t agree more with Mr. Paterson’s observa-

tion that responsible journalists check their facts. In the
42 hours available from when I began writing the Kildall
piece until I had to deliver a publishable draft to produc-
tion, I managed to run the column past several of Gary’s
closest friends and work associates dating back to his
consulting days for Intel. They found several errors and
omissions; all were corrected before publication. I stand
by the piece as printed.

Mr. Paterson is clearly disturbed by my characteri-
zation of 86-DOS as an “unauthorized ‘quick and dirty’
knock-off of CP/M.” Yet Mr. Paterson readily admits to
having “cloned” the software from a CP/M specification
document that was, incidentally, copyrighted and marked
“proprietary to Digital Research.” His conversion was cer-
tainly quick; Mr. Paterson’s stated goal was to finish his
code before DRI could finish theirs. And it was dirty:
86-DOS supported just 27 of the 37 OS calls implemented
by CP/M at the time. In fact, according to the books Gates
and Hard Drive, Mr. Paterson named the first version of
his software QDOS, for Quick and Dirty OS.

And Paterson’s work was most definitely not autho-
rized. In 1980, the jury was still out concerning the con-
ditions under which it was permissible for one program
to appropriate the calling conventions, look, and feel of
another. In the end, IBM spent more to head off a copy-
right-infringement lawsuit from DRI than it spent to ac-
quire the rights for MS-DOS in the first place. I doubt
IBM would have done so had it not felt legally exposed.
Just last year, Microsoft publicly denounced Sun for pro-
moting a “clone” of the Windows ABI that could run on
SPARC workstations.

I can empathize somewhat with the bind in which
SCP found itself: unable to sell its 8086 hardware for lack
of software and unable to buy the software it wanted. But
for Mr. Paterson to cite the unavailability of CP/M-86 as
justification for appropriating the “look and feel” of a com-
peting OS and its utilities seems to me to be analogous to
telling a judge, “I needed a car, Your Honor, and the plain-
tiff wouldn’t sell me his, so I was forced to take it.”

And whereas Mr. Paterson argues that 86-DOS had
to be functionally compatible with CP/M to allow CP/M-80
programs to be mechanically ported, in fact it was not. By
my count, 86-DOS failed to implement at least nine of the
required CP/M 2.2 function calls, altered the functions
performed by two others, and “enhanced” the capabilities
of several more. According to the book Undocumented
DOS (the first edition of which was co-authored by Mr.
Paterson himself), “Even in the beginning there were cru-
cial differences between the two systems. MS-DOS did
not, as widely claimed, mimic every last CP/M function
call. For example, MS-DOS did not implement CP/M
function 12 (0CH) to get the system version number.
3, 1994 © 1994 MicroDesign Resources

Somewhat unaccountably, MS-DOS instead used (and
still uses) function 0CH to read the keyboard.” This one
change would likely have caused most CP/M 2.2 programs
to malfunction, if translated according to the procedure
Mr. Paterson describes.

Mr. Paterson is absolutely correct that both 86-DOS
and (eight-bit) CP/M 2.2 were single-tasking systems,
and neither had facilities for memory allocation, file shar-
ing, etc. But CP/M was the basis for a family of compati-
ble OS products that already supported multitasking
(MP/M) and networking (CP/Net) functions. The proto-
cols needed to support these additional features had all
been defined by DRI long before 86-DOS was developed.
CP/M-86 itself supported memory allocation, 8086 mem-
ory segmentation, and multitasking capabilities suffi-
cient for printer spooling. 86-DOS and MS-DOS did not.

As to machine independence—although complete
86-DOS documentation is somewhat hard to come by
these days, it's my recollection that both 86-DOS and
MS-DOS imposed implicit constraints on memory lay-
outs as well as disk size and configuration, constraints
not imposed by CP/M-86.

Mr. Paterson points out that for me to know Micro-
soft’s thought processes, I would have had to talk to him
or Bob O’Rear at the time. Well, as it happens, I did. In
August of 1981, soon after Microsoft had acquired full
rights to 86-DOS, Bill Gates visited Santa Clara in an ef-

M I C R O P R O C E S S O R R E P O R T
3 From the Mailbox: The Origins of DOS Vol. 8, No. 13, October
fort to persuade Intel to abandon a joint development pro-
ject with DRI and endorse MS-DOS instead. It was I—the
Intel applications engineer then responsible for iRMX-86
and other 16-bit operating systems—who was assigned
the task of performing a technical evaluation of the 86-
DOS software. It was I who first informed Gates that the
software he just bought was not, in fact, fully compatible
with CP/M 2.2. At the time I had the distinct impression
that, until then, he’d thought the entire OS had been
cloned. (This visit was recounted briefly in the book Gates,
by the way, which also lists my name as a source.)

First impressions die hard: at the time, the only
documentation that existed for MS-DOS was an “86-
DOS Programmer’s Reference,” on the cover of which the
word “Programer” was printed in bold one-inch type—
with just one “m.” In the weeks that followed, I spoke re-
peatedly by phone with Tim, Bob, and their cohorts, try-
ing to understand their work. I even made a pilgrimage
to Bellevue and spent a day with them in their offices. It
was a Monday in September, I believe.

The strong impression I drew 13 years ago was that
Microsoft programmers were untrained, undisciplined,
and content merely to replicate other people’s ideas, and
that they did not seem to appreciate the importance of
defining operating systems and user interfaces with an
eye to the future. In the end it was this latter vision, I
feel, that set Gary Kildall so far apart from his peers. ♦
3, 1994 © 1994 MicroDesign Resources

	The Origins of DOS
	Mr. Wharton replies

