MICROPROCESSOR REPORT

UltraSparc Adds Multimedia Instructions
Other New Instructions Handle Unaligned and Little-Endian Data

by Linley Gwennap

Although a few others have dabbled in this area,
Sun’s UltraSparc processor (see 081301.PDF) offers the
most extensive set of features aimed at improving per-
formance on multimedia data types. With just a small
amount of special hardware, UltraSparc increases the
speed of some calculations by eight times or more. This
new hardware will give the forthcoming Sun chip an ad-
vantage when competing against other next-generation
processors, an advantage that is not apparent from basic
SPEC measurements. As multimedia applications be-
come more prevalent, other manufacturers are likely to
include similar features in future designs.

The idea of special instructions for graphics data go
as far back as the Intel 1860 (see MPR 3/89, p. 1), which
has instructions for Z-buffer checks. Motorola’s 88110
(see MPR 12/4/91, p. 1) can pack pixel data and perform

add, subtract, and multiply operations in parallel.
Hewlett-Packard has implemented generalized multi-
media functions in its processors (see 080103.PDF) with-
out adding special function units.

UltraSparc’s feature set is similar to that of the
88110 but adds some highly specialized instructions that
go beyond any previous chip. UltraSparc’s new instruc-
tions are not included as part of the SPARC V9 architec-
ture; they are implementation-dependent instructions
that, so far, are not part of any SPARC processor other
than UltraSparc. Sun plans to include these features in
future designs and has offered to make them available to
other SPARC processor designers.

Graphics Implemented in FPU

The UltraSparc FPU includes two special graphics
units. The designers chose to store graphics data in the
FP registers for three reasons. First, graphics applica-
tions can use the integer registers for addresses, loop
counts, and similar data, leaving all 32 FP registers for
graphics data. Since many of these programs use a large
number of registers, this is an important advantage.

Similarly, this decision makes better use of Ultra-
Sparc’s instruction-issue rules, which permit only three
integer instructions per cycle but allow four if at least
one is an FP instruction. Graphics code can ideally issue
two graphics instructions per cycle to the FPU along
with one load or store and one integer arithmetic in-
struction, possibly for loop control or address generation.

Third, a few of the graphics instructions—multi-
plies, packs, and PDIST—take multiple cycles to execute,
although they are fully pipelined and can be issued one
per cycle. These instructions fit well within UltraSparc’s
FP pipeline, which handles three-cycle instructions such
as FP adds and multiplies.

Opcode Operands Description

FPADD16/32(S) |fsrcl,fsrc2,fdest | Four 16-bit or two 32-bit

FPSUB16/32(S) partitioned add or subtract

FPACK16 fsrc2,fdest Pack four 16-bit pixels into fdest

FPACK32 fsrcl,fsrc2,fdest | Add two 32-bit pixels into fdest

FPACKFIX fsrc2,fdest Pack two 32-bit pixels into fdest

FEXPAND fsrc2,fdest Expand four 8-bit pixels into fdest

FPMERGE fsrcl,fsrc2,fdest | Merge two sets of four 8-bit pixels

FMUL8x16(opt) |fsrcl,fsrc2,fdest | Multiply four 8-bit pixels by four
16-bit constants

ALIGNADDR(L) |srcl,src2,dest |Set up for unaligned access

FALIGNDATA |fsrcl,fsrc2,fdest | Align data from unaligned access

FZERO(S) fdest Fill fdest with zeroes

FONE(S) fdest Fill fdest with ones

FSRC(S) fsrc,fdest Copy fsrc to fdest

FNOT(S) fsrc,fdest Negate fsrc in fdest

Flogical(S) fsrcl,fsrc2,fdest | Perform one of 10 logical
operations (AND, OR, etc.)

FCMPcc16/32 |fsrcl,fsrc2,dest | Perform four 16-bit or two 32-bit
compares with results in dest

EDGE8/16/32(L) | srcl,src2,dest | Edge boundary processing

PDIST fsrcl,fsrc2,fdest | Pixel distance calculation

ARRAY8/16/32 |srcl,src2,dest |Convert 3D address to blocked
byte address

SHUTDOWN none Prepare CPU for shutdown

PST fsrc,[address] | Partial store

FLD,STF [address],fdest | 8- or 16-bit load/store to FP reg

QLDA [address],dest | 128-bit atomic load

BLD,BST [address],dest | 64-byte block load/store

Table 1. Summary of new UltraSparc instructions. (S) single-preci-
sion option; (L) little-endian option; “opt,” “logical,” and “cc” ex-
plained in text.

31 23 15 7 0
Pixel format ‘ ‘ ‘ ‘ |

31 15 0

Fixed16 (single and standard) | int | frac | int | frac |
63 47 31 15 0

\ int | frac \ int | frac \ int | frac \ int | frac \

31 0

Fixed32 (single and standard) ‘ int frac ‘
63 31 0

\ int frac \ int frac \

Figure 1. UltraSparc packs 8-, 16-, or 32-bit data into single-preci-

sion (32-bit) or standard (64-bit) floating-point registers.

UltraSparc Adds Multimedia Instructions

Vol. 8, No. 16, December 5, 1994

© 1994 MicroDesign Resources

MICROPROCESSOR REPORT

The new graphics instructions, listed in Table 1, are
optimized for short integer arithmetic. Graphics and
video data are typically represented using 8-bit values
(24-bit “true color” uses three 8-bit values for red, green,
and blue). Audio data can be encoded as 8-, 12-, or 16-bit
values, depending on the desired sound quality. High-
end “CD-quality” audio uses 16-bit data. As with most
processors, UltraSparc’s 64-bit integer data path is
wasted on these short values.

Figure 1 shows the new data formats implemented
in the graphics units. The Fixed16 format can be used for
8-bit data, providing adequate precision and dynamic
range for intermediate values. The Fixed32 format is
available for operations on 12- or 16-bit data, or for 8-bit
calculations, such as interpolation, that require higher
resolution. A 32-bit pixel format, consisting of four 8-bit
values, is used for graphics input and output data.

The EXPAND instruction converts 8-bit data to the
Fixed16 format, which allows four bits at the high end
for overflow and four bits at the low end for added reso-
lution. This format avoids the need for all intermediate
results to be rounded and clipped. The FPACK instruc-
tions converts Fixed16 or Fixed32 back to 8- or 16-bit
data, scaling, rounding, and clipping as needed.

The new partial store (PST) instruction stores any
number of bytes from a register without disturbing adja-
cent data, avoiding the need for an explicit read-modify-
write operation. A single 8- or 16-bit datum can be
loaded or stored using FLD and STF; these are useful if the
pixel data being accessed is not contiguous.

One ALU Does Four Operations

Using 64-bit data paths, the graphics units can per-
form two calculations per cycle on Fixed32 data or four
calculations per cycle on Fixed16 data, greatly increas-
ing throughput over a standard processor. For example,
the FPADD and FPSUB instructions perform partitioned
addition or subtraction on these two data types. “Parti-
tioned” means that each pair of components is added (or
subtracted) separately; the carry from one add does not
flow into the next, as Figure 2(a) shows.

Similarly, a set of compare instructions (FCMPcc)
compares two or four sets of values in a single cycle. A
full set of signed comparisons is available. These in-
structions place a 2- or 4-bit result into an integer regis-
ter, with each bit corresponding to one comparison.

Because graphics data is kept in the FP registers,
the standard logical instructions (AND, OR, etc.) cannot be
used, as these operate on the integer registers. Thus,
UltraSparc implements a full set of logical operations in
the graphics unit as well. All 16 possible Boolean opera-
tions can be performed to combine two source registers.
No partitioning is required, as these operations are per-
formed on a bit-by-bit basis. As with FPADD and FPSUB,
single-precision and standard versions are available.

Support for Windows NT

UltraSparc is designed to operate natively in either
big- or little-endian modes, making it the first SPARC
processor able to support the little-endian Windows
NT. The designers added a few new instructions to as-
sist with accessing data structures that may have been
generated by x86 processors.

These data structures frequently contain unaligned
data, which are not a problem for x86 processors. Like
most RISCs, UltraSparc does not have hardware sup-
port for unaligned loads and stores. The following code
sequence, however, performs an unaligned load:

ALIGNADDR Addr, Offset, Addr ;Calculate mask data
LDD [Addr], %D0 ;Load lower bytes

LDD [Addr+8], %D2 ;Load upper bytes
FALIGNDATA %D0, %D2, %D4 ;Combine needed bytes

Note that these instructions operate on integer regis-
ters. The ALIGNADDRL instruction performs a similar
function for data in little-endian format.

The add, subtract, and logical operations can be
used to combine pixel data from different images, mak-
ing objects appear transparent or opaque. In combina-
tion with the multiply instructions, FPADD is used for
audio and image filtering.

Pixels Can Be Multiplied and Scaled

The FMUL instructions perform four partitioned
multiply operations in parallel. Figure 2(b) shows the
basic FMUL8x16 operation. The four 8-bit values in a single
32-bit pixel are each multiplied by a 16-bit multiplier;
the four products are rounded and stored in Fixed16 for-
mat. Only the upper 16 bits of the product are stored.
This operation is typically used to combine pixel data
with constant filter coefficients. These constants can be

(a) FPADD16 %D0, %D1, %D2

Do | A \ B \ c \ D |
+ + + +

D1 | w \ X \ Y \ z |
p2 | A+w | B+x | c+Y | D+z |
(b) FMUL8x16 %DO0, %D1, %D2

DO | Al B] c] bp]
D1 | W//{/ Y/ /1 z/ |
p2 [Axw | BxX | cxy | bxz |

Figure 2. The partitioned addition (a) and multiplication (b) functions
perform four parallel operations in a single cycle and generate four
separate results in Fixed16 format.

2 UltraSparc Adds Multimedia Instructions

Vol. 8, No. 16, December 5, 1994

© 1994 MicroDesign Resources

MICROPROCESSOR REPORT

For More Information

Sun has not announced pricing for the UltraSparc
processor, which is expected to begin shipping in 3Q95.
For more information on UltraSparc or its multimedia
extensions, call SPARC Technology Business (Sunny-
vale, Calif.) at 408.774.8119; fax 408.774.8537.

scaled ahead of time to allow scaling of the pixel data
during the multiplication.

This operation has several variations. Instead of
using a different coefficient for each multiply, the same
multiplier can be used for all four calculations. The mul-
tiplier is typically an a (intensity) value used to scale the
pixel data; it can be held in either the upper or lower 16
bits of a single-precision register. This instruction is also
used for filter functions with fixed multipliers.

To avoid the cost of a 16-bit multiplier, the graphics
unit includes only an 8-bit multiplier. UltraSparc in-
cludes instructions to synthesize a 16 x 16 - 16-bit mul-

tiply on Fixed16 data:
FMUL8SUx16 %D0, %D1, %D2 ;Calculate upper bytes
FMUL8ULx16 %D0, %D1, %D3 ;Calculate lower bytes
FPADD16 %D2, %D3, %D4 ;Combine upper and lower

Because of the interlocks in this sequence, a 16-bit mul-
tiply has a five-cycle latency, although a new multiply
can be issued every two cycles. Two “double” instructions
(FMULD8SUx16 and FMULD8ULx16) can synthesize a 16 x 16
- 32-bit multiply, with the output in Fixed32 format.

Highly Specialized Instructions

In addition to instructions for general filter func-
tions and pixel operations, UltraSparc has some unique
instructions aimed at very specific situations. One of the
most complex is PDIST, which is used for motion estima-
tion in video-compression schemes like MPEG (see
080204.PDF). The inner loop for motion estimation must
compare 16 x 16 blocks of pixels to find the best match, a
laborious process using a standard instruction set.

A single PDIST instruction compares two sets of eight
8-bit values in parallel, performing a partitioned sub-
traction of two 64-bit registers. The processor then takes
the absolute value of each of the eight results, and finally
computes the sum of the differences, adding it to the ac-
cumulated difference value. This instruction is similar to
TriMedia’s me8 operation (see 081603.PDF) but handles
twice as much data. Assuming all data is in registers,
the inner loop for motion estimation can consist of a sin-
gle PDIST instruction, compared with dozens of instruc-
tions in a standard processor.

Another useful instruction is PMERGE, which takes
two sets of four bytes and interleaves them into a 64-bit
value. This instruction can convert pixels from standard
(aRGB,aRGB) format to packed («d RRGGBB) format. It

can also be used in discrete cosine transform (DCT) func-
tions to transpose matrix values. DCT is a key part of
most popular video-compression algorithms.

Many graphics rendering loops handle two, four, or
even eight pixels at a time, speeding situations where a
block of pixels has the same data. These loops, however,
typically have complex, slower code to handle the edge of
an object, which may occur in the middle of a block of pix-
els. UltraSparc’s EDGE instructions compare the address
of the edge with that of the current pixel block, calculat-
ing the appropriate byte mask. This mask can then be
used by the PST instruction to store the proper bytes to
memory. This instruction sequence eliminates the need
for special-case code.

The ARRAY instructions address another problem.
Visualization of a 3D data set requires displaying a 2D
slice of arbitrary orientation. If the data set is stored lin-
early, many slices will have poor locality, reducing the
performance of UltraSparc’s cache. The ARRAY instruc-
tions convert a linear array address to a special blocked
address. The conversion function hashes the address bits
so each 64-byte block contains a contiguous group of pix-
els; this hashing ensures that, no matter how the slice is
oriented, each cache line will contain an average of at
least eight useful pixels. A second level of hashing im-
proves the TLB hit rate for large arrays.

UltraSparc in a Class by Itself

UltraSparc’s multimedia feature set requires some
complex hardware to implement but, given the overall
complexity of next-generation processors, even a large
number of new instructions makes only a small incre-
ment to the design. Sun says that the extra multimedia
hardware uses about 3% of the UltraSparc’s 315-mm?
die area, a modest increase.

Adding so many specialized instructions violates
the strict RISC philosophy of leaving complex functions
for the compiler to synthesize, making UltraSparc some-
what CISC-like. Sun’s designers took care to avoid the
common pitfalls of CISC designs. For example, they
pipelined the new operations (including their instruction
decoding) when necessary to avoid creating critical tim-
ing paths, and they kept the die-area impact to a mini-
mum. If compression algorithms change, however, in-
structions such as PDIST may be less useful in the future.

Sun expects that the new instruction set will allow
UltraSparc to decode MPEG-2 video at 30 frames per sec-
ond and even perform video compression adequate for
video conferencing. These tasks are well beyond the capa-
bilities of current microprocessors, requiring special-pur-
pose chips. In fact, it is doubtful that any other next-gen-
eration microprocessor will achieve these feats, putting
UltraSparc in a class by itself. As multimedia becomes an
integral part of general-purpose computing (see
0816ED.PDF), this will give Sun a badly needed edge. ¢

3 UltraSparc Adds Multimedia Instructions

Vol. 8, No. 16, December 5, 1994

© 1994 MicroDesign Resources

	UltraSparc Adds Multimedia Instructions
	Table 1. Summary of new UltraSparc instructions...
	Graphics Implemented in FPU
	Figure 1. UltraSparc packs 8-, 16-, or 32-bit data into …
	One ALU Does Four Operations
	Pixels Can Be Multiplied and Scaled
	Figure 2. The partitioned addition …
	Highly Specialized Instructions
	UltraSparc in a Class by Itself

	Support for Windows NT
	For More Information

