
M I C R O P R O C E S S O R R E P O R T

by Yong Yao

This article is part 1 of 2 on PC three-dimensional graphics. It dis-
cusses basic 3D architecture, techniques, and terminology. Part 2
(see 100304.PDF)will compare recently announced 3D chips.

Three-dimensional graphics is rapidly moving from
the workstation world into the mainstream PC. Several low-
cost 3D accelerators have recently appeared, and many PC
makers have plans to put 3D capabilities into their systems
this year. These chips and systems represent only the first
wave: there is great headroom for further technological
innovation as well as for rapid market growth.

Entering the 3D world brings exposure to a confusing
welter of new concepts and buzzwords. From a software
standpoint, 3D graphics involves APIs that allow applica-
tions to access hardware accelerators in a general way. The
most important such API is the emerging Direct3D from
Microsoft, but other software standards are being used
today. In a 3D application, the CPU typically handles tessel-
lation and geometry calculations, but rendering the image
on the display is left to a hardware accelerator. These accel-
erators use a variety of techniques to improve the quality and
speed of the displayed images.

3D Market Emerges for PCs
Various 3D-graphics products have been used for game con-
soles, set-top boxes, home video-game accessories, handheld
portable systems, add-in graphics cards, multimedia PC
motherboards, and coin-operated video-games. There is no
doubt that multimedia PCs will be the fastest-growing mar-
ket for 3D-related graphics products. For example, PC
games today account for slightly more than 10% of the entire
game market. Three-dimensional titles like Daytona, Virtua
Fighter, Doom, and Mortal Kombat have been or soon will
be ported to the PC platform. We expect PC game sales to
reach 30% of total game sales by the end of 1997.

Most new computers come with CD-ROM drives and
sound cards already installed. Most current titles are deliv-
ered on CD-ROM, as future titles will be. Microsoft has
added an autoplay feature to Windows 95 so users can pop in
a CD-ROM and immediately start playing a game, just as
they would on a dedicated system. PCs will become the all-
in-one game, information, and entertainment center for the
home, rivaling the performance of electronic games devel-
oped by companies like Sony, Nintendo, and Sega.

High-quality 3D entertainment for the PC platform
will help reshape the consumer multimedia PC market.
Three-dimensional graphics will be a compelling feature in
consumer PCs for Christmas 1996. The images you are used

PC Graphics Reach N
PCs Will Become a Compelling Platform
PC Graphics Reach New Level: 3D Vol. 10, No. 1, January 22, 1996
to seeing in Doom today will pale in comparison with the
games that will appear in one year or less. The end result is
that PCs will become the single most important platform for
our information and entertainment.

The Biggest Challenge for Multimedia PCs
A full-featured multimedia PC requires 2D graphics acceler-
ation, audio processing, video playback, and 3D graphics.
Two-dimensional graphics, handled by low-cost GUI accel-
erators, is a mature technology. Audio is typically based on
the original SoundBlaster (i.e., FM synthesis) from Creative
Labs, but newer techniques such as wavetable, waveguide,
3D sound, and Dolby surround sound can be used to im-
prove audio quality.

For video playback, full-screen MPEG-1 decoding at 30
frames per second has become popular. For example, compa-
nies like Compaq and Diamond are producing thousands of
machines or add-in cards using the S3 MPEG-1 decoder. On
the other hand, there is no urgent need for more advanced
features such as MPEG-2 decoding or MPEG encoding in
PCs today. Therefore, the biggest challenge for building high-
performance multimedia PCs is to design affordable prod-
ucts that offer professional-level 3D graphics with full-screen
resolution in real time.

Direct3D Encourages ISVs
One of the enabling technologies for pervasive 3D graphics
on PCs is Microsoft’s Direct3D programming model. It
establishes a basic 3D macroarchitecture that allows ISVs to
develop their 3D titles without being tied to a specific hard-
ware implementation. In addition, Direct3D allows hardware
vendors to create chips that accelerate 3D applications from
various title developers. Direct3D supports both Microsoft’s
own RealityLab API, acquired from Rendermorphics, as well
as third-party interfaces, making it a truly open 3D software
standard. One drawback is that Microsoft has only recently
released the specifications for Direct3D, and final code is not
planned for shipment until this spring.

Although Microsoft’s flight simulator was written for
PCs many years ago, until recently most 3D software titles
were written for game consoles such as Sega and Nintendo
boxes. Those titles that were ported to PCs perform better
under DOS than under Windows 3.1 due to the lack of high-
performance API support, interactivity, and real-time sup-
port in Windows 3.1. Before Windows 95, PC-based 3D
APIs—such as RealityLab, Criterion RenderWare, and Arg-
onaut BRender—were mainly DOS-based. On the worksta-
tion side, vendors have rallied around the OpenGL standard
for CAD and other 3D applications.

ew Level: 3D
 for 3D Applications in 1996
© 1996 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

Anticipating the coming boom in PC 3D applications,
Microsoft plans to introduce the Direct3D API as part of a
Windows 95 upgrade kit shipping in spring 1996. Direct3D,
one of the most critical building blocks for forthcoming 3D
PCs, is a 3D API under Windows 95. With the acquisition of
Rendermorphics, Microsoft essentially defines the macro-
architecture of PC 3D graphics using RealityLab as a high-
level API and Direct3D as a low-level API, as illustrated in
Figure 1.

In this five-layer model, the application layer allows
independent software developers (ISVs) to create 3D graph-
ics titles. The high-level API is for RealityLab or third-party
APIs. The low-level API is Direct3D, which defines a stan-
dard interface for developers who need hardware access but
still want hardware independence. The device-driver layer is
the Direct3D hardware abstraction layer (HAL). It is hard-
ware-specific, isolating a hardware device from the upper
layers. The physical layer is the actual 3D hardware device.
With Microsoft’s 3D architecture, hardware vendors can
develop their own innovative designs as long as they can
provide Direct3D-compatible device drivers.

Direct3D allows third-party APIs to interface with
mainstream hardware accelerators. The high-level API is the
layer where third-party APIs can play a role, which allows
existing applications and other third-party APIs to easily
take advantage of hardware acceleration. This approach
enables some differentiation in software rendering. Compa-
nies such as Criterion and Argonaut can continue to offer
3D title developers Windows 95–compatible APIs that
deliver different features than RealityLab. This flexibility
makes Direct3D a truly open standard.

The advantages to having an open standard are:
• New applications are immediately compatible with an

existing and future hardware base.
• New hardware products are instantly compatible with an

existing and future software base.
• Hardware and software solutions are both backward- and

forward-compatible with changing standards.
• Applications written for compatible third-party APIs can

be handled by either software or hardware rendering.
Direct3D is the layer for converging all the high-level

APIs into a single platform. This way, a software developer
can focus primarily on the dynamics of applications rather
than putting effort toward creating and debugging a propri-
etary 3D engine. This is especially useful when porting an
existing DOS-based 3D game to Windows 95. Modifying a
small portion of a program not only allows the program to
execute under Windows 95 but allows it to be accelerated by
available hardware.

Direct3D can do everything in software if there is no
hardware support available. Direct3D’s built-in software
emulation will perform 3D functions that are not accelerated
by hardware.

It is worth pointing out that even with Direct3D, devel-
oping a device driver is still not easy. Most chip companies,
2 PC Graphics Reach New Level: 3D Vol. 10, No. 1, January 22, 1996
such as 3Dlabs and 3Dfx, spend more resources to create
support software than to complete their hardware designs. A
good product needs to support popular operating systems
like DOS, Windows 3.1, and Windows 95 and interface with
key APIs such as DirectDraw, Direct3D, RealityLab, and
RenderWare.

3D Graphics Pipeline
Processing 3D graphics can be viewed as a three-stage pipe-
line: tessellation, geometry, and rendering. In the tessellation
stage, a description of an object is created and the object is
then converted to a set of polygons. The geometry stage
includes transformation, lighting, and setup. The rendering
stage, which is critical for 3D image quality, creates a two-
dimensional display from the polygons created in the geo-
metry stage.

Various techniques may be applied to the rendering
stage to achieve photorealistic and interactive 3D graphics.
Among them, flat and Gouraud shading, texture-mapping,
Z- and double-buffering, and perspective correction are
essential features for 3D accelerators in 1996. Advanced fea-
tures include MIP mapping, texture filtering, anti-aliasing,
subpixel correction, and special effects like fogging and
depth cueing. We project that all these features will be avail-
able to PC OEMs in 2Q96.

Theoretically, 3D graphics can be handled entirely by
software. But even a CPU with performance ten times better
than that of a Pentium-133 might not be enough for profes-
sional-level 3D graphics or even high-quality game pro-
grams. Thus, for many years to come, 3D-graphics process-
ing tasks will be shared between a host CPU and a dedicated
hardware accelerator.
CGL RealityLab OpenGL

BRender

Direct3D

Direct 3D HAL

3D hardware accelerators

Application layer

High-level API layer

Low-level API layer

Device-driver layer

Physical layer

RenderWare

Windows 95 applications

Figure 1. Microsoft 3D application programming interface and
five-layer 3D graphics macroarchitecture. Microsoft’s Direct3D
works with a variety of high-level interfaces from Microsoft and
from third parties.
© 1996 MicroDesign Resources

There are different ways to divide tasks between a host
CPU and a hardware accelerator. A logical way is to have the
host CPU handle operations in both the tessellation stage
and the geometry stage, as Figure 2 shows. The hardware
accelerator then handles operations in the rendering stage.
Therefore, the hardware accelerator can also be viewed as a
rendering engine. The data streams in the tessellation and
geometry stages have conventional data types, and the oper-
ations involve vector and matrix processing. A CPU with
high floating-point performance is ideal for these tasks.

In the rendering stage, data is pixel-based. Rendering
requires tremendous pixel-processing capabilities. The ren-
dering engine must be able to process thousands of polygons
per scene and construct a quality 2D representation in 1/30th
of a second to produce real-time animation. This construc-
tion consists of many pixel reads and writes, which require a
great deal of memory bandwidth. It makes sense for a dedi-
cated rendering engine to deal with the pixel-related opera-
tions. Another advantage of sharing the tasks in this way is
3 PC Graphics Reach New Level: 3D Vol. 10, No. 1, January 22, 1996
that while the hardware accelerator is producing the current
frame, the host CPU is calculating the geometry for the next
frame, maximizing performance.

In the tessellation stage, a description of an object is
created, and the object is converted to a set of polygons.
Then, the geometry stage performs the following tasks:
• Transformation: Translating and rotating 3D objects,

thereby positioning the viewer within the 3D space.
• Lighting: Determining lighting, shading, and texture

characteristics of each polygon.
• Setup: Determining the shape of each polygon displayed.

Typically, the most compute-intensive task is setup,
followed by transformation and then lighting. But the cost of
lighting is very dependent on the lighting equation and can
vary substantially. Setup depends heavily on the number of
parameters (such as color, transparency, depth, etc.) iterated
across a polygon as well as the rasterization algorithm and
what inputs are required. Transformation is fairly pre-
dictable in all cases.

Consider a scene composed of 1,000 polygons for a 30-
fps display. If these polygons are triangles, and half are
meshed and half are independent, this results in 2,000 ver-
tices that need to be transformed (500 × 1 + 500 × 3). Each
vertex requires transformation through a 4 × 4 floating-point
matrix, resulting in 16 multiplies and 12 additions, or 2,000
(vertices) × 28 (operations) × 30 (frames) = 1.7 MFLOPS.
Doubling this figure to account for clip-testing and perspec-
tive adjustment yields 3.5 MFLOPS. Assuming that lighting
and setup also average 3.5 MFLOPS each, the geometry stage
needs a total of roughly 10 MFLOPS.

Thus, the geometry stage does not consume a signifi-
cant portion of today’s high-end CPU horsepower. A 90-
MHz Pentium has a peak throughput of 90 MFLOPS and
with good assembly code can sustain about a third of that, or
30 MFLOPS. Thus, according to our estimate, a 1,000-poly-
gon scene requires only a third of the performance of a 90-
MHz Pentium. A 166-MHz Pentium can handle perhaps
5,000 polygons per frame, although this would leave few, if
any, cycles for other tasks.

It is better, however, to have a dedicated hardware
accelerator handle the rest of the 3D processing, i.e., the ren-
dering, which consists of:
• Coverage: Determining which pixels are covered
• Color: Determining the color of each pixel
• Clip: Determining which pixels are visible
• Merge: Writing pixels to the frame buffer

Figure 3 shows a rendering pipeline in more detail.
There are many techniques, such as texture mapping

and perspective correction, that can be applied during the
rendering stage. Other features, like atmospheric effects and
anti-aliasing, can be used to further improve 3D realism.

Basic 3D Graphics Techniques
The features discussed in this section are mandatory for
either software or hardware 3D implementation. They have
M I C R O P R O C E S S O R R E P O R T

Figure 2. A logical way to divide 3D graphics processing tasks.
The geometry stage involves steps two through four. The render-
ing stage involves the last four steps. Although current CPUs have
enough power to handle 3D setup, it may be faster to execute it
on a dedicated hardware accelerator.

Tessellation

Transform

Lighting

Setup

Coverage

Color

Clip

Merge

runs on host CPU

runs on hardware
accelerator

Geometry Stage

Rendering Stage
points/lines/polygons/bitmaps

4x4 or 8x8 subpixel sampling

flat/Gouraud shading

per-pixel fogging

map images on polygons

compare against z-value/pixel write

scissor clip/stenciling/stippling

logic operations/dithering

add transparency

Rasterization

Anti-aliasing

Shading

Fogging

Texture mapping

Alpha blending

Z-buffering

Clipping

Frame buffer ops

Figure 3. The pipeline details of a typical rendering engine.
© 1996 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

been recommended by Microsoft, 3Dlabs, and other indus-
try leaders as features required by the lowest common deno-
minator of games and APIs. These features also guarantee a
minimum level of functionality to game developers.

Shading. Polygons can be rendered in one of many
ways, such as flat shading, Gouraud shading, Phong shading,
or texture mapping.

Flat shading assigns a uniform color throughout an
entire polygon. This shading results in the poorest quality,
creating images that look “blocky.” Gouraud shading assigns
color to every pixel within each polygon based on a linear
interpolation from the polygon’s vertices. This method
removes the blocky look and provides an appearance of plas-
tic or metal surfaces. Phong shading is based on a lighting
equation at each pixel. It interpolates between the vertex
normals to produce smooth shading, adding specular high-
lights to represent the effects of light sources.

Lacking computing power, most software 3D engines
use the flat shading method. Most 3D hardware implemen-
tations, however, are based on Gouraud shading due to the
intensive computing required by Phong shading. Texture
mapping is used to more efficiently increase visual realism.

Texture mapping. Based on a stored bit-map consisting
of texture pixels, or texels, texture mapping has the single
biggest impact on bringing professional-level 3D graphics to
the PC platform. It involves wrapping a texture image onto
an object to create a realistic representation of the object in
3D space. As mentioned above, the object is represented by a
set of polygons, usually triangles. Every vertex in each poly-
gon references a UV address, called the texel address, as Fig-
ure 4 shows. A texture-mapping algorithm determines the
texel addresses of the rest of the polygon.

The texture mapping of the single triangle requires
determining the UV address associated with the pixels in the
triangle. Once the host CPU computes the U and V values
for each vertex, two other parameters, known as du and dv
and called texture slopes, are also generated. As the triangle
is being rendered, the du and dv parameters determine the
rate of change of the texture address.

Let us consider the edge AB in the triangle shown in
Figure 4. As X is increased by one pixel position, the U tex-
ture address is increased by du. When a sufficient number of
du terms are accumulated, the address of the texel in the
U direction will change. If the addition of a du or a dv does
not cause the UV address to change, the same texel is mapped
onto the triangle; if a change is made, a new texel is mapped
onto the triangle. The du and dv values thus determine the
particular set of texels that map to the edge of the triangle.
Y and V are handled in a similar fashion. This processing is
repeated for the other two edges. After that, the texture map-
ping determines texels on each horizontal span.

Point sampling is the simplest, lowest-cost, and lowest-
quality method of applying textures onto an object. The ren-
dering engine bases the texture on a one-to-one relationship
between a texel on the rendered polygon and the texture
4 PC Graphics Reach New Level: 3D Vol. 10, No. 1, January 22, 1996
map. The advantage is the speed of rendering, since only one
texel read is required for each pixel being written to the
frame buffer. The disadvantage is the blocky image that
results when the object moves. More advanced texture-map-
ping algorithms include bilinear filtering and MIP mapping.

Z-buffering. When objects are rendered into a 2D
frame buffer, the rendering engine must remove hidden sur-
faces. The two common techniques used to accomplish this
are Z-sorting and Z-buffering.

Z-sorting algorithms sort the polygons in back-to-
front order prior to rendering. Thus, when the polygons are
rendered, the forwardmost surfaces are rendered last. The
rendering results are correct unless objects are close to or
intersect each other.

Z-buffering algorithms store a depth value for every
pixel in a buffer, known as the “Z-buffer.” The Z-buffer has
the same size as the main frame buffer. Before bringing in a
new frame, the rendering engine clears the buffer, setting all
Z values to “infinity.” When rendering objects, the engine
assigns a Z value to each pixel: the closer the pixel to the
viewer, the smaller the Z value. When a new pixel is ren-
dered, its depth is compared with the stored depth in the Z-
buffer. The new pixel is written into the frame buffer only if
its depth value is less than the stored one.

The number of bits used for the Z value is usually 16,
24, or 32 bits. An accuracy of 16 bits is good enough for most
entertainment applications; 24-bit accuracy is adequate for
the majority of professional applications. If the scene con-
tains objects that are close together over a wide range, 32-bit
accuracy is required.

Z-sorting algorithms have the advantage of not requir-
ing RAM for storing depth values, but at the cost of accuracy.
Z-buffering algorithms have the advantage of accuracy at the
cost of RAM storage. Even with 16-bit accuracy, support of
Z-buffering is very memory-bandwidth intensive. Both algo-
rithms involve a great deal of computing.

Perspective correction. A particular way to do texture
mapping, perspective mapping is extremely important for
creating a realistic image. It takes into account the effect of
the Z value in a scene while mapping texels onto the surface
(0,0)

Texture Map Rendered Triangle

Y

V

(u1,v,1)

(du,dv)

(u2,v2)

U X

Z

(x1,y1,z1)
C

B

(x3,y3,z3)

(x2,y2,z2)

horizontal span

A

Figure 4. Basic texture mapping of a single triangle. The two-
dimensional texture map is applied to the rendered triangle with a
three-dimensional perspective, creating a more realistic represen-
tation of a 3D object.
© 1996 MicroDesign Resources

c

of polygons. As a 3D object goes away from the viewer, the
length and height of the object become compressed, making
it appear shorter. This compression of the texture is achieved
by a perspective algorithm. Its basic idea is that the rate of
change of the UV texture address is proportional to the
depth. Let a variable W be inversely proportional to the
Z value. When the UV addresses are divided by W, the UV
addresses will be changed in larger steps as polygons move
away from the viewer. This results in a shrinking of the tex-
ture. Since it requires a division per pixel, perspective cor-
rection is very computing intensive.

Enhanced 3D Graphics Techniques
Features discussed in this section are for advanced high-
performance implementations. Some of them are consid-
ered beyond mainstream PC applications in the near future.

MIP mapping. If a texture-mapped polygon is smaller
than the texture image itself, the texture map will be under-
sampled during rasterization. As a result, the texture map-
ping will be noisy and “sparkly.” The purpose of MIP map-
ping is to remove this effect.

This algorithm stores a number of different sizes of the
texture map in memory, representing different resolutions.
When a 3D object is large, due to its proximity to the viewer,
5 PC Graphics Reach New Level: 3D Vol. 10, No. 1, January 22, 1996
a correspondingly large texture map is used. As the object
moves away from the view point, the rendering engine
switches to a smaller texture size.

Another texture-aliasing artifact occurs due to sam-
pling on a finite pixel grid. Point-sampled texels jump from
one pixel to another at random times. This aliasing is very
noticeable on slowly rotating or moving polygons. The tex-
ture image jumps and shears along pixel boundaries. Bilinear
filtering eliminates this problem.

Bilinear filtering takes a weighted average of four
nearby texture pixels to create a single texel. This form of
texture mapping typically requires four times the memory
bandwidth of point-sampled texture mapping. Bilinear MIP
mapping simply combines MIP mapping and bilinear tex-
turing in which the four sampled texels are fetched from one
of several versions of the original texture map.

Since the number of texture maps is limited, one arti-
fact possible in a MIP-mapping approach occurs when an
object is moving toward or away from the view point. As the
object crosses a “MIP boundary,” a change can sometimes be
noticed when switching from one texture map to another.

Trilinear MIP mapping solves this problem by interpo-
lating between MIP map levels. The texel value is computed
by performing a bilinear filter on four texels each from the
M I C R O P R O C E S S O R R E P O R T

This glossary briefly defines acronyms, abbreviations,
and terms frequently used in 3D literature. Several of these
terms are discussed in more detail in the main text; these
concepts are only summarized here.
Alpha-blending—Technique for adding transparency infor-

mation for translucent objects.
Alpha buffer—An extra channel to hold transparency infor-

mation; pixels become quad values (RGBA).
Anti-aliasing—Subpixel interpolation, which makes the

edges appear to have better resolution.
Atmospheric effect—The result of adding one more layer of

reality, such as fog and depth cueing, to an image.
Bilinear filtering—A method of anti-aliasing texture maps

that averages four adjacent pixels.
Bilinear MIP mapping—A texture-mapping process com-

bining bilinear filtering and MIP mapping (see below).
Blending—Combining two or more images by adding them

on a pixel-by-pixel basis.
Decal texturing—The process of applying a texture to a sur-

face without lighting.
Depth cueing—The lowering of intensity as objects move

away from the viewpoint.
Direct3D—Microsoft’s low-level primitive-based 3D API. It

includes optional control for low-level transforma-
tions, lighting, and rasterization.

3 D G r a p h i

Dithering—A technique for achieving 24-bit quality in 8- or

16-bit frame buffers.
Double buffering—A method of using two buffers, one for

display and the other for rendering. When the new
frame is rendered, the two buffers are switched.

Fast-clear buffer—Used to quickly clear the frame buffer
and the Z- buffer.

Flat shading—Rendering a polygon with a single color and
uniform intensity.

Fog—Blending an object with a fixed color as its pixels
increase in distance away from the viewer.

Frame buffer—Holds display pixels, either indexed or RGB
triplets.

Geometry engine—The stage in the 3D pipeline for trans-
formation and lighting.

Gouraud shading—Rendering a polygon through linear
interpolation using a specified color at each vertex.

Lighted textures—A method of rendering that takes ac-
count of lighting source(s).

Meshed triangles—see Tristrips.
MIP mapping—Multum In Parvum (Latin) means “many in

one.” A method of increasing the quality of a texture
map by applying different-resolution texture maps for
different objects in the same image, depending on
their size and depth.

s G l o s s a r y
© 1996 MicroDesign Resources

ing. Less accurate than Z-buffering.

o

two nearest MIP maps and then interpolating between the
two to determine the output texel. This method typically
requires twice the memory bandwidth of bilinear texture
mapping and eight times the bandwidth of point mapping,
as well as far more computational power.

Edge anti-aliasing. Rasterization of polygon edges
results in “jaggies” due to sampling a geometric figure on a
finite pixel grid. Edge anti-aliasing solves this problem by
computing the percentage of a pixel that is covered by a
polygon and then using this value to blend the color of the
pixel with that polygon’s color. The coverage can be com-
puted in a variety of methods, including subpixel point-sam-
pling (typically on a 4 × 4 or 8 × 8 grid) and area sampling.

Atmospheric effects. Effects such as fog and depth cue-
ing improve the rendering of real-world environments. Fog
blends an object with a fixed color as its pixels become fur-
ther away from the view point. Depth cueing lowers the
intensity as objects move away from the viewpoint.

Lighting effects. One lighting method is called lighted
texture mapping. It takes place as the last step before pixels
are written to the frame buffer. The texture is modulated
with respect to the lighting source(s). Lighted texture map-
ping is a feature beyond Gouraud shading with an intensity
ramp to achieve lighting effects.
6 PC Graphics Reach New Level: 3D Vol. 10, No. 1, January 22, 1996
3D Adds Complexity
There are additional 3D techniques that go beyond those
described here, but this article outlines the basic techniques
used by most hardware and software implementations ex-
pected this year. Just as the GUI model increased the com-
plexity of both software and hardware compared with simple
text-mapped displays, moving to 3D adds another layer of
complexity. Yet with increasing transistor budgets and the
availability of inexpensive DRAM and hard drives, the cost
of this complexity is small.

The value perceived by the end user, however, will be
significant. 3D graphics is one of the most important emerg-
ing technologies for PCs. Microsoft has provided an operat-
ing system, Windows 95, along with the Direct3D API and
necessary development tools. Applications are being devel-
oped by various ISVs and will be widely available for PC
users in 2H96.

Intel’s high-end Pentium and Pentium Pro are capable
of handling 3D graphics tessellation and geometry process-
ing. More than a dozen vendors have, or will soon have, 3D
graphics rendering engines. We expect 3D graphics will be
the hottest thing for the 1996 Christmas season. ♦

Part 2 (see 100304.PDF)will describe and compare sev-
eral recently announced 3D graphics accelerators for PCs.
Tessellation—The first stage of the 3D pipeline, which con-
verts a description of an object into a set of three-
dimensional polygons.

Texture filtering—Removing aliasing artifacts, such as
sparkles and blockiness, through interpolation of
stored texture images.

Texture mapping—Wrapping textures around objects to
add realism or to reduce complexity.

Transformation—Translation and rotation in a 3D environ-
ment, positioning the viewer.

Trilinear MIP mapping—A method of reducing aliasing arti-
facts within texture maps by applying a bilinear filter
on four texels from the two nearest MIP maps and
then interpolating between the two.

Tristrips—A series of triangles where each triangle shares
two vertices with at least one other triangle. It in-
creases the rendering rate by eliminating the process-
ing of two additional points per triangle.

Z-buffer—Holds the distance from the viewpoint for each
pixel to ensure that only the nearest pixel is visible.

Z-buffering—A process of removing hidden surfaces using
the depth value stored in the Z-buffer.

Z-sorting—A process of removing hidden surfaces by sort-
ing polygons in a back-to-front order prior to render-

s s a r y (C o n t .)
M I C R O P R O C E S S O R R E P O R T

OpenGL—Silicon Graphics’ high-level API, containing many
useful graphics building blocks. It is designed for CAD,
not games.

Perspective correction—The process of adding realistic con-
vergence to three-dimensional objects as they move
away from the viewpoint.

Phong shading—Rendering polygons based on a given
lighting equation at each pixel.

Point-sampled texture mapping—Texture mapping based
on a one-to-one relationship between texels on a ren-
dered polygon and a texture map.

Rasterization—Translating an image into pixels.
RealityLab—Microsoft’s high-level object-based 3D API,

originated by Rendermorphics. It directly manipulates
objects, lights, and cameras.

Rendering—The stage of the 3D pipeline that creates a 2D
display from a set of 3D polygons fed from the geom-
etry engine.

Scissor clip—Tests pixel coordinates against clip rectangles
and rejects them if outside.

Stencil buffer—A screen-sized buffer holding a pixel mask.
Stenciling—Testing pixels against bit masks, rejecting them

if masked.
Subpixel correction—A form of rendering based on subpixel

interpolation.

3 D G r a p h i c s G l
© 1996 MicroDesign Resources

	PC Graphics Reach New Level: 3D
	3D Market Emerges for PCs
	The Biggest Challenge for Multimedia PCs
	Direct3D Encourages ISVs
	Figure 1. Microsoft 3D application programming interface
	3D Graphics Pipeline
	Figure 2. A logical way to divide 3D graphics processing tasks.
	Figure 3. The pipeline details of a typical rendering engine.
	Basic 3D Graphics Techniques
	Shading
	Texture mapping
	Z-buffering
	Perspective correction

	Figure 4. Basic texture mapping of a single triangle
	Enhanced 3D Graphics Techniques
	MIP mapping
	Edge anti-aliasing
	Atmospheric effects
	Lighting effects

	3D Adds Complexity
	3 D G r a p h i c s G l o s s a ry

