
I

VOLUME 10, NUMBER 7
MAY 27, 1996

a

by Jim Turley

Motorola’s popular 8-bit microcontroller architecture,
the 68HC11, now has a big brother. The new 68HC12 main-
tains all of its sibling’s distinguishing features but doubles
both clock rate and bus width, extends the address space,
improves code density, and adds dozens of new instructions,
including some for fuzzy logic.

Strategically, the 16-bit HC12 family—which initially
includes two members—fills a small gap between Motorola’s
8-bit 68HC11 family and the 16-bit 68HC16 line. The HC12
provides a source-level software upgrade for 8-bit designers
who are outgrowing the HC11 but don’t want to develop
entirely new code and new hardware for the HC16.

Motorola believes the HC12 and HC16 can peacefully
coexist in the company’s 16-bit microcontroller lineup
because the HC16 offers better performance and better
signal-processing capabilities, while the HC12 offers com-
patibility with the HC11 and lower power dissipation. The
first two chips in the new family are both priced below $25
and will begin sampling in June and October of this year.

Programming Model Identical to HC11
The HC12’s register set and programming model are identi-
cal to those of the HC11, as Figure 1 shows. The two 8-bit
accumulators, A and B, can be concatenated into a single 16-
bit register, D. Index registers X and Y are used to reference
memory-resident operands, while the stack pointer (SP) and
program counter (PC) fulfill the obvious functions.

The HC12’s exception stack and fault model are also
identical to those of the HC11 chips, so users with existing
code that examines or manipulates the stack will find that it
works without modification. Source-code compatibility was
a primary concern for the HC12’s designers; given that
Motorola already has a 16-bit product family, the HC12 had
to offer something the HC16 didn’t.

The familiar programming model belies major changes
lurking beneath the surface. Motorola’s customer surveys
indicated that HC11 users were frustrated by the irregular

T H E I N S I D E R S ’ G U I D E T O M

MICROPROCE
68HC11 Grows Up to
Motorola’s 68HC12 Line Boosts Perform
© M I C R O D E S I G N R E S O U R C E S M A Y 2 7
and nonorthogonal treatment of the X and Y index registers.
For example, most HC11 instructions can reference memory
through either the X or Y index registers, but using the Y reg-
ister adds a prefix byte to the object code, which requires an
additional clock cycle to fetch over the HC11’s 8-bit bus.

These concerns were addressed with the HC12, which
encodes X- and Y-indexed instructions equally. At the same
time, addressing modes were modified to support both SP
and PC as index registers. Thus, compiler writers can more
easily reference operands passed on the stack, and position-
independent code can access data relative to the program
counter.

Instruction Set Gets 65 New Mnemonics
The design goals for the HC12 stipulated total source-level
(but not binary) compatibility with the HC11 so users could
transfer existing assembly source without modification. This
it does, duplicating every HC11 mnemonic and addressing
mode, right down to some unintended quirks that users have
learned to accept.

C R O P R O C E S S O R H A R D W A R E

SSOR REPORT
 16 Bits
nce up to 10 Times
A B 07

IX

IY

SP

PC

8-bit accumulators A & B or 16-bit double accumulator D

Index register X

Condition codes register

Index register Y

Stack pointer

Program counter

S X H I N Z V C

15 0

15 0

15 0

15 0

70A B

Figure 1. The register set of the 68HC12 is identical to that of its
predecessor, the 8-bit 68HC11.
, 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

2 6 8 H C 1 1 G R O W S U P T O 1 6 B I T S

The HC12 truly implements its predecessor’s instruc-
tion set one for one; unlike Philips’ 8051XA tools (see
081304.PDF), the HC12 assembler does not replace unim-
plemented legacy instructions with equivalent constructs. In
addition to the HC11 instruction set, the HC12 has more
than 65 new operations that should cheer compiler writers
and relieve assembly programmers.

Table 1 lists the complete set of HC12 instructions with
enhancements over the HC11 indicated. Some examples
include the TFR (transfer) and EXG (exchange) instructions,
which now handle mismatched register sizes. Exchanging an
8-bit with a 16-bit register zero-extends the 8-bit value; copy-
ing mismatched registers sign-extends the smaller register.
© M I C R O D E S I G N R E S O U R C E S M A Y 2 7

k

Table 1. The 68HC12 includes more than 50 new instructions compare
new stack operations, extended-precision multiply and divide, minimu
V O L . 1 0 , N O . 7

This latter operation can be used by C compilers to cast a
char to an int.

In cases where HC11 instructions sometimes produce
unwanted side effects, as when the TAB and TBA (transfer
A/B) instructions set condition codes even though most
transfer instructions do not, the HC12 includes compatible
instructions (complete with side effects) in addition to the
preferred (and more orthogonal) versions. The generalized
TFR instruction is now preferred over TAB and TBA, while
ANDCC and ORCC replace SEI, CLI, SEC, and CLC.

No Binary Compatibility with HC11
The HC12’s opcode map was completely rewritten, so binary
l
n

e

n

e

r
o

ABA Add B to A
ABX/ABY Add B to X/Y
ADCA/ADCB Add with carry to A/B
ADDA/ADDB Add to A/B
ADDD Add double D
SBA Subract accumulators
SBCA/SBCB Subtract with carry from A/B
SUBA/SUBB Subract A/B
SUBD Subract double D
DAA Decimal adjust A
MUL Multiply 8 × 8 → 16
EMUL Multiply 16 × 16
EMULS Multiply 16 × 16, signed
EMACS Multiply-add 16 × 16 → 32
EDIV Divide 32 ÷ 16
EDIVS Divide 32 ÷ 16, signed
IDIV Divide 16 ÷ 16
IDIVS Divide 16 ÷ 16, signed
FDIV Divide 16 ÷ 16, remainder 16

MOVB Move byte
MOVW Move word
LDAA/LDAB Load A/B
LDD Load double D
LDS Load stack pointer
LDX/LDY Load X/Y
LEAS Load efective address, stack
LEAX/LEAY Load effective address X/Y
STAA/STAB Store A/B
STD Store double D
STS Store stack pointer
STX/STY Store X/Y
PSHA/PSHB Push A/B to stack
PSHC Push condition codes to stack
PSHD Push double D to stack
PSHX/PSHY Push X/Y to stack
PULA/PULB Pull A/B from stack
PULC Pull condition codes from stac
PULD Pull double D from stack
PULX/PULY Pull X/Y from stack
TAB/TBA Transfer A to B/B to A
TAP Transfer A to condition codes
TFR Transfer register to register
TPA Transfer condition codes to A
TSX/TSY Transfer stack pointer to X/Y
TXS/TXY Transfer X/Y to stack pointer
SEX Sign-extend 8 → 16
XGDX/XGDY Exchange double D with X/Y
EXG Exchange registers

Data Transfer

Arithmetic
INC Increment memory
INCA/INCB Increment A/B
INS Increment stack pointer
INX/INY Increment X/Y
DEC Decrement memory
DECA/DECB Decrement A/B
DES Decrement stack pointer
DEX/DEY Decrement X/Y
MAXA Maximum to A
MAXM Maximum to memory
MINA Minimum to A
MINM Minimum to memory
EMAXD Maximum to D, 16-bit
EMAXM Maximum to memory, 16-bit
EMIND Minimum to D, 16-bit
EMINM Minimum to memory, 16-bit

BCS/BCC Branch if carry set/clear
BEQ/BNE Branch if equal/not equal
BGE/BLE Branch if greater/less or equa
BGT/BLT Branch if greater than/less tha
BHI/BLO Branch if higher/lower
BHS/BLS Branch if higher/lower or sam
BPL/BMI Branch if plus/minus
BRCLR/BRSET Branch if bits cleared/set
BRA/BRN Branch always/never
BVS/BVC Branch overflow set/clear
BSR Branch to subroutine
CALL Call subroutine
RTC Return from CALL
DBEQ Decrement, branch if zero
DBNE Decrement, branch if not zero
IBEQ Increment, branch if zero
IBNE Increment, branch if not zero
JMP Jump
JSR Jump to subroutine
RTS Return from subroutine
LBCS/LBCC Long branch if carry set/clear
LBEQ/LBNE Long branch if zero/not zero
LBGE/LBLE Long branch if less/greater, eq
LBGT/LBLT Long branch if greater/less tha
LBHI/LBLO Long branch if high/low
LBHS/LBLS Long branch if high/low, sam
LBPL/LBMI Long branch if plus/minus
LBRA/LBRN Long branch always/never
LBVS/LBVC Long branch if overflw set/clea
TBEQ/TBNE Test and branch if zero/not zer
RTI Return from interrupt

Flow Control

Arithmetic (con't)
, 1 9 9 6

d with the 68HC11
m and maximum ca
BSET/BCLR Set/clear bits in memory
SEC/CLC Set/clear carry
SEI/CLI Set/clear interrupt mask
SEV/CLV Set/clear overflow
BITA/BITB Bit test A/B
CLR Clear memory
CLRA/CLRB Clear A/B
TBL/ETBL Table lookup and interpolate
SWI Software interrupt
WAI Wait for interrupt
BGND Enter background debug
STOP Stop processing
TRAP Unimplemented opcode trap
NOP No operation

MEM Determine fuzzy membership
REV Rule evaluation
REVW Rule evaluation, weighted
WAV Weighted average

ANDA/ANDB Logical AND A/B
ANDCC Logical AND condition codes
ASL/ASR Arithmetic shift left/right
ASLA/ASLB Arithmetic shift left A/B
ASLD Arithmetic shift left double D
ASRA/ASRB Arithmetic shift right A/B
CMPA/CMPB Compare A/B
COM Complement memory
COMA/COMB Complement A/B
CPD Compare double D
CPS Compare stack pointer
CPX/CPY Compare X/Y
EORA/EORB Exclusive-OR A/B
LSL/LSR Logical shift left/right memory
LSLA/LSLB Logical shift left A/B
LSLD Logical shift left double D
LSRA/LSRB Logical shift right A/B
LSRD Logical shift right double D
NEG Negate memory
NEGA/NEGB Negate A/B
ORAA/ORAB Logical-OR A/B
ORCC Logical-OR condition codes
ROL Rotate left memory
ROLA/ROLB Rotate left A/B
ROR Rotate right memory
RORA/RORB Rotate right A/B
TST Test memory
TSTA/TSTB Test A/B

.

Shift and Logical

Miscellaneous

Fuzzy Logic
M I C R O P R O C E S S O R R E P O R T

. New instructions, highlighted in purple, include
lculations, and new intersegment branches.

code from the HC11 will not run on the HC12, although
about half the HC12’s mnemonics produce the same encod-
ings as on the HC11. The reworked encoding means some
instructions will be shorter than their HC11 counterparts
and some will be longer.

Motorola’s tests indicate that simply reassembling
HC11 source code for the HC12 has a negligible effect on
object size. On the other hand, rewriting assembly code or
passing C source through a new compiler can yield code-size
reductions of as much as 30%, according to the company.

Users should also see a performance improvement
along with tighter code. Several HC12 instructions execute
in a single clock cycle, whereas the HC11 always takes at least
two. Arithmetic instructions, in particular, have been im-
proved, as Table 2 shows.

Fuzzy Logic Support a First
Four truly new instructions have been added to provide sup-
port for fuzzy-logic control applications. These complex
instructions take from a few cycles to a few hundred cycles to
execute and were made interruptible to avoid compromising
worst-case latency.

The MEM instruction computes a Y value, given an X
value as the index. Its operation goes beyond a simple linear
table interpolation (which the HC12 can also perform) in
that it operates on a trapezoidal membership function. That
© M I C R O D E S I G N R E S O U R C E S M A Y 2 7
V O L . 1 0 , N O . 7

is, for values of X that are under the sloping side of a con-
ceptual trapezoid, Y is interpolated from its slope; for values
under the flat side of the trapezoid, Y is capped at 0xFF.

The rule-evaluation instructions REV and REVW pro-
cess a list of pointers to values, alternately performing mini-
mum and maximum operations to implement min-max
fuzzy-rule evaluation. The REVW variation allows 8-bit
weighting factors to be applied to each rule.

The WAV instruction is basically an 8-bit multiply-
accumulate instruction, useful for low-precision pseudo-
DSP operations but also as the basis for a weighted-average
defuzzification. (For background on fuzzy-logic programming,
see 061702.PDF)

The New Bus: Same as the Old Bus
The HC12 copies its predecessor’s straightforward synchro-
nous bus interface rather than following the asynchronous
example of the HC16, 68300, and early 68000 processors.
HC11 customers are used to simple peripheral logic with
fixed and predictable (albeit sluggish) response times mea-
sured in multiples of a 4-MHz bus clock. No external logic is
required (or able) to insert wait cycles or extend access times.
Instead, chip-select logic in the HC12 can be programmed
with the desired access time for each external device. We
expect Motorola to expand the HC12 family in this way.

Internally, the HC12 uses the same intermodule bus
(IMB) design philosophy that Motorola uses on its HC16
and most of the 68300-family devices. In fact, many HC16
and 68300 chips can and do use identical peripheral blocks,
a fact that allows Motorola to spin application-specific vari-
ations of these two families on short notice.

The first two 68HC12 devices, the 68HC812A4 and
68HC912B32, both run at a comparatively speedy 8 MHz,
twice as fast as the quickest HC11 part, boosting perfor-
mance further. Their 16-bit buses also allow them to fetch
code and access the stack in half the time.

With variable-length instructions, misalignment can
be a problem on a 16-bit bus—something HC11 users never
had to worry about. The HC12 design includes three 16-bit
instruction buffers with byte-steering logic. The buffers
allow the HC12 to fetch a 16-bit word on every cycle, ignor-
ing instruction alignment. With the instruction in the buffer,
decoding logic determines the instruction boundaries and
aligns the instruction accordingly before execution. Al-
though not as advanced as a cache, the pair of buffers helps
keep the HC12’s simple pipeline full.

Paging Expands Address Space
Expanding the tiny 64K address space of the HC11 proved to
be tricky without compromising software compatibility or
enlarging registers. The HC12’s designers used a paging
approach that stretches the chip’s reach to 4M and is trans-
parent to ported code unaware of the HC12’s enhancements.

As Figure 2 shows, one-quarter of the HC12’s address
map, from 0x8000 through 0xBFFF, is a window onto addi-
3 6 8 H C 1 1 G R O W S U P T O 1 6 B I T S

P r i c e & Av a i l a b i l i t y

The 68HC812A4 is sampling now for $19 in a 112-
lead TQFP package; production quantities will be priced
in the $10–$15 range. Production is scheduled for 1Q97.

The 68HC912B32 will begin sampling in 4Q96. Pro-
duction pricing is expected to be $20–$25.

For more information, contact Motorola (Austin,
Texas) at 800.765.7795; fax 512.891.4465; or browse to
freeware.aus.sps.mot.com/amcu/home.html.
MUL
EMUL
EMULS
IDIV
IDIVS
FDIV
EDIV
EDIVS
EMACS

8 × 8 → 16 (signed)
16 × 16 → 32 (unsigned)†
16 × 16 → 32 (signed)†
16 ÷ 16 → 16 (unsigned)
16 ÷ 16 → 16 (signed)
16 ÷ 16 → 16 (fractional)
32 ÷ 16 → 16 (unsigned)†
32 ÷ 16 → 16 (signed)†
16 × 16 → 32 (signed)†

2.5 µs
5 µs
5 µs

10.25 µs
—

10.25 µs
8.25 µs
9.25 µs
5 µs*

0.375 µs
0.375 µs
0.375 µs

1.5 µs
1.5 µs
1.5 µs

1.375 µs
1.5 µs
1.5 µs*

Mnemonic Math Operations
68HC11 68HC12

cycles cyclestime time

10
20
20
41
—
41
33
37

20*

3
3
3

12
12
12
11
12

12*

Table 2. Multiply and divide performance varies considerably
between the HC11 and HC12 cores, in part because the HC12 is
clocked twice as fast as its predecessor. †operations possible only
on HC11 with math coprocessor. *per iteration.
, 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

4 6 8 H C 1 1 G R O W S U P T O 1 6 B I T S

tional external memory. Any access to this 16K space causes
the contents of an 8-bit page register to be driven on the
chip’s high-order address lines. The page register selects one
of 256 possible 16K pages. To software, the page register itself
appears as another control register in the chip’s memory-
mapped on-chip peripheral space.

The page register is literally just gated onto the address
bus; its contents are not available to the address-generation
logic or to the ALU. A pair of new flow-control instructions,
CALL and RTC, allow HC12 programs to jump between
pages. The CALL instruction specifies a 24-bit target address,
the upper eight bits of which are copied into the paging reg-
ister after pushing the previous page value onto the stack.
The RTC instruction restores the page address from the stack.

As simple as it seems, the HC12’s method of code and
data paging is more elegant than most. Other 8-bit and 16-
bit controllers—such as the 8051, 68HC05, and 80251—
require at least two instructions to change the page and jump
to the target address, a construct that necessitates disabling
interrupts, lest the chip get interrupted at an inopportune
moment and vector to the wrong page.

An atomic page-switching instruction can switch pages
while executing out of paged memory. In other systems, the
paging code must be located in memory that cannot be
paged. Otherwise, incautious programmers can wind up
pulling the rug out from under themselves.

Two additional paging windows, located at 0x0000 and
0x7000, expand the data space even further. Like the 16K
page at 0x8000, these 1K and 4K data pages each have their
own paging register. Because they are not linked to flow-con-
trol instructions, they would normally be used only for
accessing data.

Motorola Plays Low-Power Card
One distinction between the new HC12 parts and the faster
HC16 devices is the former’s lower power consumption.
Whereas the original HC16 chips were 5-V–only parts, the
A4 and B32 are designed to tolerate a wide supply range,
from 3 to 5 V. A specified 10% tolerance brings the viable
range from a low of only 2.7 V to a high of 5.5 V, covering the
sweet spot for most two-cell battery technologies.

Typically, a broad supply tolerance forces significant
speed derating at lower voltages, but both the A4 and the B32
run at 8 MHz across their entire supply range. This flat volt-
age rolloff suggests that these chips may have some substan-
tial clock-speed headroom near 5 V. Although Motorola
won’t officially sanction operation beyond the published
limit, the company hints that users might be able to discover
a performance upside without too much effort.

The chips are built in a 0.65-micron two-layer-metal
CMOS process, using Motorola’s UDR (universal design
rules) geometry, a process optimized for low power dissipa-
tion rather than for high speed. Still, the HC12’s frequency
characteristics and the fact that Motorola’s PowerPC 602
runs at 66 MHz in a similar process make it appear that the
© M I C R O D E S I G N R E S O U R C E S M A Y 2 7
V O L . 1 0 , N O . 7

performance of the HC12 is being artificially limited to avoid
competing with the faster 16-bit and 32-bit devices.

The HC12 chips offer the familiar sleep and standby
modes. On the A4, entering sleep mode cuts power con-
sumption by 75% to 32 mW (typical) while the chip waits
for an interrupt to resume operation. In standby mode, all
operation ceases, and power drops to just 25 µW. Peripherals
that aren’t active have their clocks gated off automatically,
and software can disable unused peripherals entirely.

Debug Functions Reduced to a Single Pin
Motorola continues to hone its background debug mode
(BDM) feature, a set of on-chip debugging resources that
first appeared with the debut of the 68300 family in 1989. As
the name might imply, BDM works by placing the chip in a
background mode, similar to low-power sleep or standby
operation. While BDM is active, a developer can interrogate
and modify system resources like CPU registers, memory-
mapped I/O registers, internal EEPROM, or external mem-
ory via simple commands from an emulator or development
system. On the HC12, the BDM interface has been reduced
to a single pin.

Taking advantage of the BDM functions is simply a
matter of serially transferring an 8-bit command word over
the chip’s BDM pin. Data may be clocked in asynchronously
at conveniently arbitrary rates, up to a maximum of 500 kHz.
The transfer protocol is simple enough that the emulator
software can control it by toggling an external I/O line con-

nected to the BDM pin.

The BDM features
access memory-mapped
resources while the pro-
cessor is running at full
speed. Both on-chip and
off-chip memory can be
examined and modified
without altering the sys-
tem’s execution profile.
The HC12 delays BDM
memory accesses until
the bus is unused, then
steals a memory cycle.
In the pathological case
where the bus is always
busy, the chip will wait
for up to 128 cycles (16
microseconds) before it
seizes the bus to access
memory.

In addition to the
basic BDM functions,
the B32 version includes
a set of internal break-
point registers. Loading
16-bit address or data

0000

8000

C000

FFFF

4000

7000

Program
Page
(16K)

(4K)

(1K)

Figure 2. The HC12’s memory map
includes three segmented windows
for data, one of which can also be
used to expand the instruction space.
, 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

5 6 8 H C 1 1 G R O W S U P T O 1 6 B I T S

values into these registers enables the hardware breakpoints,
which can force an exception on selective patterns of address,
data, or cycle type.

New Options for Controller Users
Prices for the HC12 chips will fall below those of many mem-
bers of the HC16 family. For 8-bit and 16-bit microcon-
trollers, price is determined largely by a chip’s peripherals or
on-chip memory, not its CPU core, which accounts for only a
small portion of the die. High-end HC11 and low-end HC16
devices already overlap in price; placing the new HC12 parts in
the middle will further muddy the price differential between
these families.

The HC11 family is currently ranked third in worldwide
unit shipments for 8-bit microcontrollers (behind the 68HC05
and 8051), according to published reports. With that kind of
volume, it’s logical for Motorola to do everything it can to pro-
tect is lucrative customer base.

Before the HC12, customers loyal to Motorola but look-
ing for an upgrade for their 8-bit controller were steered
toward the HC16, an architecture with a completely different
programming model and hardware interface. Although most
software tools for the HC16 accept HC11 assembly syntax, the
translation is not straightforward, and the hardware differ-
ences are impossible to mask.
© M I C R O D E S I G N R E S O U R C E S M A Y 2
V O L . 1 0 , N O . 7

Both Intel and Philips lured their 8051 customers with
easy 16-bit upgrades; Intel’s is binary compatible, while
Philips followed a looser definition and created a chip that
maintained only source-level compatibility and overhauled
the interior design. Both companies are now successfully
introducing 8-bit customers to the joys of 16-bit computing.

In addition to HC11 upgrades, the prospects for the
HC12 look good. Judging from the first two chips, Motorola is
offering competitive performance for a reasonable price. The
company’s modular design philosophy, tried and proven with
the HC16 and 68300, will allow it to duck and swerve as
changes in the market drive new peripheral requirements. By
sacrificing binary compatibility, the HC12 is able to achieve
good code density even with an entirely new instruction set.

A few years ago, the conventional wisdom held that 8-bit
users would skip over the 16-bit generation and move directly
to 32-bit CPUs. The rumors of the demise of 16-bit micro-
processors have been greatly exaggerated; in any field as cost-
competitive as microcontrollers, every penny is worth saving.
Thus, today’s 16-bit controllers are going strong. When a
design like the HC12 can offer users significant and tangible
advantages in code compatibility, improved performance, bet-
ter code density, and reduced power consumption, it should
have no trouble making its way in the thick of the steadily
growing 16-bit market. M
7 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

	68HC11 Grows Up to 16 Bits
	Programming Model Identical to HC11
	Instruction Set Gets 65 New Mnemonics
	Figure 1. The register set of the 68HC12...
	No Binary Compatibility with HC11
	Table 1. The 68HC12 includes more than 50 new instructions...
	Fuzzy Logic Support a First
	Table 2. Multiply and divide performance varies...
	The New Bus: Same as the Old Bus
	Paging Expands Address Space
	Motorola Plays Low-Power Card
	Debug Functions Reduced to a Single Pin
	Figure 2. The HC12’s memory map...
	New Options for Controller Users

	P r i c e & Av a i l a b i l i t y

