
o
i

by Jim Turley

Addressing a growing chorus of users seeking
better digital-signal-processing performance,
ARM has composed its own signal processor.

Named Piccolo (Italian for small; apparently no suitable
human appendages were left), the new DSP core will become
yet another optional piece of the modular ARM portfolio.
Working in concert with an ARM7 core, Piccolo should
boost ARM’s fortunes with makers of wireless devices, PDAs,
modems, and disk drives.

ARM architect Dave Jaggar described Piccolo at last
month’s Microprocessor Forum. Never a vendor to adhere
blindly to convention, ARM developed an unusual new DSP
core while preserving the traditional ARM merits of low
transistor count, small die size, and modest power consump-
tion. The Piccolo core should be available in 10–12 months,
debuting in application-specific devices from an unnamed
vendor, possibly in cellular phones or pagers.

Piccolo does not replace the ARM core but rather
works in parallel with it, expanding a chip’s DSP capabilities.
The concept is not new and is reminiscent of Hitachi’s
SH-DSP (see 091603.PDF) and Motorola’s 68356
(see 080802.PDF). TI has also combined its TMS320C54x
DSP with an ARM7 core.

Register File Backed with Reorder Buffer
Piccolo is an autonomous digital-signal processor sharing
some resources with an ARM7-based chip. The DSP exe-
cutes its own instruction set (which is incompatible with
ARM code), uses its own registers, and follows its own con-
trol path. The ARM and Piccolo cores communicate solely
through a pair of input and output buffers. The ARM core
orchestrates overall chip control as well as accessing oper-
ands in memory, while Piccolo concentrates on signal-
processing loops.

Piccolo has its own register set, independent of ARM’s,
as Figure 1 shows. The register set is nominally orthogonal,
with sixteen 32-bit registers variously referred to either as
d0–d15 or as a0–a3, x0–x3, y0–y3, and z0–z3. The upper and
lower halves of all sixteen registers can alternatively be
addressed as “half registers” for 16-bit operations. The first
four registers, a0–a3, double as 48-bit accumulators for some
instructions, notably multiply-accumulate.

Piccolo’s register file is logically accessible from ARM
code, although access is physically mediated by the input and
output buffers. The registers are addressed with LDP (load to
Piccolo) and STP (store from Piccolo) instructions, which
are simple variations of existing ARM coprocessor instruc-

ARM Tunes Piccolo f
Full DSP Module to Add Signal-Process

M
IC

R
O
P

ROCESSOR

FORUM
© M I C R O D E S I G N R E S O U R C E S N O V E M B E R
V O L . 1 0 , N O . 1 5

tions. These transfer up to 16 bytes of data between Piccolo
registers and memory without passing through the ARM
register file. Piccolo also has three special registers that hold
ID information, status, and the DSP program counter.

The input buffer acts something like a data cache for
the Piccolo registers. It is organized as eight 32-bit entries but
can double as sixteen 16-bit entries as well.

Input, Output Buffers Decouple Two Cores
The input buffer is not simply a FIFO from ARM to Piccolo.
Instead, it is managed more as a reorder buffer, or ROB. Each
entry in the ROB is tagged with its destination register as the
ARM core loads it. When a Piccolo register is freed, that regis-
ter is automatically refilled with an entry from the ROB tagged
for that register. If more than one ROB entry is tagged for the
same register, Piccolo selects the oldest entry. (The oldest
entry is identified by its position in the ROB.) If the same reg-
ister becomes free again, Piccolo selects the next-oldest entry
from the ROB destined for that register, and so on.

The ROB allows ARM code to fetch DSP data or coeffi-
cients from memory in whatever order is most convenient
while allowing the DSP code to consume the items in what-

r DSP Performance
ng Capacity to ARM7 Chips in 2H97
31 0 31 15 015

48
Output
Buffer

Input
Reorder
Buffer47

16
Multiply, Add

Subtract,
Shift, Logic

Acc

Scale

031d0

d15

a0

x0

y0

z0

Ta
gs

ARM

Data
Bus

Figure 1. Piccolo includes its own register file and loads and stores
its data from two buffers attached to the ARM data bus. The ARM
core loads and empties the buffers with coprocessor instructions.
 1 8 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

E
2 A R M T U N E S P I C C O L O F O R D S P P

ever order they are required. For example, ARM code can
load a block of four data points from memory with a single
LDP instruction and write them to the ROB, then load a set of
four coefficients from a different area of memory. Piccolo
can then pull the data and coefficients from the ROB in pairs.

The output buffer is much simpler than the input ROB.
It is a fairly straightforward 8 × 32-bit FIFO that queues
results until ARM can retrieve them. The only special feature
of Piccolo’s output buffer is that it concatenates two consec-
utive 16-bit entries into a single 32-bit word. Thus, a single
16-bit result will not “fill” the first entry in the FIFO; a sec-
ond 16-bit result is needed before ARM can remove the entry
from the output buffer.

Input, Output Buffers Mediate Communications
If Piccolo tries to read from an empty input buffer, it will stall
until ARM loads it. Conversely, if the input buffer is full
when ARM tries to load it, ARM will stall until Piccolo
removes at least one entry. The same is true of the output
buffer: either Piccolo or ARM will stall if the buffer is full or
empty, respectively. Jaggar optimistically described this con-
dition as an opportunity to save power.

There is no signaling between ARM and Piccolo; the
two cores are interlocked only through these two buffers. For
instance, Piccolo cannot interrupt or otherwise indicate to
ARM that the output buffer is full. It is the programmer’s
responsibility to synchronize integer and DSP code so that
ARM services Piccolo’s data-input and -output needs.

Piccolo is unaware of interrupts, exceptions, or faults
that may occur while the ARM chip is running. Hardware
© M I C R O D E S I G N R E S O U R C E S N O V E M B E R
R F O R M A N C E V O L . 1 0 , N O . 1 5

interrupts, for example, do not stop Piccolo processing. If,
during interrupt processing, the ARM CPU neglects to
empty Piccolo’s output buffer, Piccolo simply stalls until the
output buffer is emptied again. Likewise, Piccolo stalls if its
input buffer runs dry.

Piccolo fetches its own DSP code from on-chip or off-
chip memory, which is cached in a private instruction cache.
This cache is separate from any cache the ARM core might
also have. Piccolo’s cache is fully associative and holds at least
64 instructions, arranged in four or more 64-byte lines.
Although this cache is small in size, ARM claims most com-
mon DSP inner loops fit easily into this space.

Programmers wishing to optimize performance can
directly manipulate Piccolo’s cache. By writing an address to a
Piccolo coprocessor register, ARM code can force a Piccolo
cache miss at that address, loading a line of 16 DSP instruc-
tions. Using this technique, control code can preload DSP
code into some or all of Piccolo’s cache. To launch DSP code,
ARM writes to Piccolo’s program counter.

Reordered Refill Reuses Registers
With Piccolo’s limited resources and the data-hungry
nature of most DSP algorithms, it is important to keep Pic-
colo’s register file as busy as possible. After the contents of a
register are used for the last time, Piccolo automatically
reloads that register with new data from the ROB. Deter-
mining when a value is used for the last time is the pro-
grammer’s responsibility.

Piccolo’s instruction format includes a “refill” bit for
each source operand. Programmers must flag the last use of
ADD
ADC
ADDA
CAS
SADD
SUB
SBC
SUBA
SSUB
RSB
SRSB
RSC
CAS
CASC
CMP
CMN
SABS
MIN
MAX
MINMIN
MAXMAX

Add
Add with carry
Add and accumulate
Add conditional
Add, saturating
Subtract
Subtract with carry (borrow)
Subtract and accumulate
Subtract, saturating
Reverse subtract
Reverse subtract, saturating
Reverse subtract with carry
Conditional add/subtract
Conditional add/subtract w/carry
Subtract w/o register write
Add w/o register write
Absolute value, saturating
Find minimum absolute value
Find maximum absolute value
Parallel minimum, minimum
Parallel maximum, maximum

Arithmetic

Mnemonic Description

Table 1. The Piccolo DSP core adds an entire
16-bit values simultaneously.
AND
ORR
BIC
EOR
TST
TEQ
ASL
ASR
LSR
ROR
MOV
CLB

Logical AND
Logical OR
Bit clear (Logical AND NOT)
Logical exclusive-OR
Logical AND, no register write
Logical EOR, no register write
Shift left, arithmetic
Shift right, arithmetic
Shift right, logical
Rotate right
Copy 16-bit immediate
Count leading bits

Mnemonic Description

ADDADD
ADDSUB
SUBSUB
SUBADD
CMNCMN
CMNCMP
CMPCMN
CMPCMP

Parallel add, add
Parallel add, subtract
Parallel subtract, subtract
Parallel subtract, add
Parallel compare (add/add)
Parallel compare (add/sub)
Parallel compare (sub/add)
Parallel compare (sub/sub)

Logical

Arithmetic

new instruction set to ARM processors. A numb
 1 8 , 1 9 9 6
Bcc
SELcc
SELTTcc
SELTFcc

Branch conditional
Select (conditional move)
Parallel select, true/true
Parallel select, true/false

RMOV
REPEAT
NEXT

Set register-mapping parameters
Initiate loop
Terminate loop

EMPTY
ZERO
OUTPUT

Mark register for refill
Clear selected registers
Force registers to output FIFO

MUL
SMUL
MULA
MULS
SMULA
SMULS
SMLDA
SMLDS

Multiply
Multiply, saturating
Multiply-accumulate
Multiply-subtract
Multiply-accumulate, saturating
Multiply-subtract, saturating
Multiply-accumulate, doubling
Multiply-accumulate, dbl, saturate

Mnemonic Description

Multiplication

Loop Constructs

Branch & Miscellaneous

Special

er of parallel instructions can operate on two
M I C R O P R O C E S S O R R E P O R T

3 A R M T U N E S P I C C O L O F O R D S P P E

each register so a new value can be obtained from the ROB.
The last use is specified in the assembler syntax by affixing a
caret (^) to the register name. After the last use, hardware
moves the oldest pending entry in the ROB to that register in
the next cycle. A one-cycle load-use penalty is exacted if the
immediately subsequent DSP instruction depends on the
new value.

Instruction Set Parallels ARM
Piccolo instructions are encoded differently from ARM
instructions; because they are executed in different pipelines,
they don’t have to be compatible. Like ARM, Piccolo instruc-
tions offer in-line operand scaling and optional flag updat-
ing. Unlike ARM, conditional execution is not supported;
Piccolo uses conditional-branch instructions instead. Taken
branches face a three-cycle penalty.

The current core implementation has four pipeline
stages (fetch, decode and register read, execute, and write-
back). At 40 MHz, a Piccolo-equipped ARM processor can
execute 40 MOPS. Counting multiply-accumulate as two
operations, or using parallel “split” instructions, Piccolo
reaches 80 MOPS.

The complete Piccolo instruction set is listed in Table 1.
The instruction set includes the usual add, subtract, and
multiply operations (no divide), with both saturating and
nonsaturating versions. Piccolo also has a number of “split”
functions that work on two 16-bit operands at once, similar
to MMX and other new media extensions. Just as with ARM,
integer division is a stepped, iterative process that takes 3–19
cycles for 32÷16-bit division.

Multiply-accumulate, add-accumulate, and subtract-
accumulate are also supported and use one of the 48-bit
accumulators, a0–a3. The large accumulators avoid any pos-
sibility of overflow on 16 × 16-bit operations. With a 48-bit
accumulator, even repeated multiply-accumulates would not
overflow in less than 65,535 iterations, an ample number for
any practical application.

The CLB (count leading bits) instruction reports the
number of bits by which the source must be shifted left until
its two most significant bits differ. That count can then be
used for normalizing other numbers.

Every instruction has, conceptually, two possible desti-
nations. Depending on the assembly syntax, Piccolo can
store results to the register file, the output buffer, both, or
neither. (This last combination, while seemingly pointless,
is useful for creating nondestructive comparison or test
instructions.)

Writing the results to the register file is the usual case
when output values will be reused as input in a subsequent
calculation. When the output value will not be reused, it can
be written directly to the output buffer for later removal by
ARM. Storing results to both the register file and the output
buffer allows ARM code to retrieve intermediate results. To
specify that the result should be stored to the output buffer,
the assembly syntax adds a caret (^) to the destination.
© M I C R O D E S I G N R E S O U R C E S N O V E M B E R
Register Remapping Rotates Resources
Like most DSPs, Piccolo has a loop-construct primitive. The
REPEAT instruction takes two arguments: the size of the loop
and the intended number of iterations, which can be a regis-
ter value. REPEAT instructions can be nested four deep.

The looping construct also supports a feature whereby
Piccolo’s registers are remapped after each pass through the
loop. The purpose of this unusual feature is to allow DSP
loops to operate on a series of coefficients without explicitly
addressing different registers. Using the loop-remapping
option, up to eight registers shift one, two, or four apparent
positions in the register file, modulo the number of registers
being remapped. After the final pass through the loop, the
registers are back in their original positions.

The code fragment in Figure 2 illustrates how both the
register remapping and the ROB refill are used on an FIR fil-
ter. The code multiplies a series of data points (d[n]) with an
eight-element vector (c[0]–c[7]). Because each data point is
multiplied with each of the vector elements, a loop with
modulo-8 remapping will automatically access each element
in turn. Also, once a data point has been fully accumulated,
its register is no longer needed and can be refilled with new
data from the ROB. The net result is that Piccolo needs to
R F O R M A N C E V O L . 1 0 , N O . 1 5

P r i c e & Av a i l a b i l i t y

The Piccolo DSP core has been licensed to a number
of semiconductor companies. The first Piccolo-equipped
processor is expected to ship in 2H97. For information,
contact ARM (Cambridge, U.K.) at 44.1223.400.400, fax
44.1223.400.410 or in the U.S. at 408.399.5190, fax
408.399.8854 or visit the Web at www.armltd.com.
REPEAT #N/4, x++ n4, y++ n4

MULA A0, X0.L^, Y0.L, A0
MULA A1, X0.H, Y0.L, A1
MULA A2, X1.L, Y0.L, A2
MULA A3, X1.H, Y0.L^, A3

d[0] × c[0]
d[1] × c[1]
d[2] × c[2]
d[3] × c[3]
d[4] × c[4]
d[5] × c[5]
d[6] × c[6]
d[7] × c[7]

Set of four coefficients

Set of four data points

d[1] × c[0]
d[2] × c[1]
d[3] × c[2]
d[4] × c[3]
d[5] × c[4]
d[6] × c[5]
d[7] × c[6]
d[8] × c[7]

d[2] × c[0]
d[3] × c[1]
d[4] × c[2]
d[5] × c[3]
d[6] × c[4]
d[7] × c[5]
d[8] × c[6]
d[9] × c[7]

 d[3] × c[0]
 d[4] × c[1]
 d[5] × c[2]
 d[6] × c[3]
 d[7] × c[4]
 d[8] × c[5]
 d[9] × c[6]
d[10] × c[7]

Figure 2. In this example of an FIR filter, a sequence of data points
is multiplied with each of eight coefficients in turn. For every fourth
pass through the loop, one data point and one coefficient can be
replaced with new values. Piccolo’s register rotation and register
reloading handle both these tasks without explicit code, while
ARM handles memory accesses.
 1 8 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

R

M
th
s

4 A R M T U N E S P I C C O L O F O R D S P P E

load only one new data value on each pass through the loop,
which will probably be waiting in the ROB.

Piccolo Debut Set for Mid-1997
During his presentation, Jaggar confirmed that Piccolo devel-
opment is complete and that some number of both current
and unannounced ARM licensees have signed on. Those com-
panies have not been identified, but at least one is said to be
working on a Piccolo-based chip for release in mid-1997. The
first implementation will be with an ARM7TDMI (that is, an
ARM7 core with the Thumb, hardware multiplier, and emula-
tor/debugger modules).

The company claims Piccolo requires somewhat less
than 1.5 mm2 of silicon in a 0.35-micron three-layer-metal
process. A basic ARM7 core needs about 2.2 mm2 in the same
process, making Piccolo about two-thirds as large as ARM7.

In a 0.6-micron process, parts are expected to reach 40
MHz, about the same speed as ARM7 in the
same process. In 0.35-micron technology,
which more aggressive ARM vendors like
VLSI are now delivering, Piccolo should hit
66–80 MHz. Jaggar suggested an updated
Piccolo with a longer pipeline will reach
120 MHz. This version might be mated to
an ARM8 or StrongArm core.

DSP-Like Performance
Piccolo has not been fabricated, so no defi-
nite performance figures are available.
ARM has simulated Piccolo running at
a variety of clock speeds and compared
its performance with that of more con-
ventional, albeit aging, parts from AT&T,
Motorola, and TI. A 66-MHz Piccolo edged
out the 1627, the 56002, and the 320C52
running at 40–70 MHz.

Granted, the performance of Piccolo was simulated
and the three competitors chosen don’t represent the state of
the art, but ARM’s version seems to hold its own. On the
other hand, TI, Motorola, AT&T, and other vendors are all
shipping parts now, with 100-MHz and faster DSPs in the
works. Before Piccolo ships, a performance gap may open up.

ARM’s results indicate that customers with a moderate
requirement for DSP speed need not give up performance to
use Piccolo. Many embedded DSP applications also require a
conventional integer processor for control flow, user inter-
face, protocol handling, and other features. ARM’s CPU/DSP
combination may be more convenient and more economical
than separate parts. It may be more accurate to characterize
a Piccolo chip as a DSP with CPU capabilities rather than a
CPU with DSP capabilities.

Two Cores Need to Cooperate
Although DSP performance looks good, ARM performance
suffers terribly when the DSP is active. According to ARM’s

Dave Jaggar of AR
first disclosure of
at the Microproces
© M I C R O D E S I G N R E S O U R C E S N O V E M B E R
F O R M A N C E V O L . 1 0 , N O . 1 5

own figures, from 33% (during GSM loops) to 87% (during
FFTs) of ARM’s bandwidth is used to feed Piccolo. In either
case, there’s little time remaining for a task switch or for
meaningful processing.

In an ARM/Piccolo duet, the two cores essentially take
turns running. The CPU can run at full bandwidth when the
DSP is idle, or vice versa. This characteristic is a good match
with a large subset of application requirements. A cellular
telephone, for example, might depend on the ARM for the
user interface and for number recall while dialing, then
switch to heavy DSP usage while the call is in progress. Disk
drives provide another applicable example: interface proto-
cols (SCSI, IDE, etc.) can be handled by ARM code while data
recovery is handled by the DSP.

Piccolo is less well suited for a handheld organizer or
PDA; while Piccolo will make a fine modem or wireless
controller, the remaining ARM bandwidth might frustrate

users. Consumers will generally want to
continue using their system while the
modem or wireless link is active, and Pic-
colo would sap most of the ARM’s strength
in such circumstances.

Different Bottlenecks
Piccolo bears similarities to both the 68356
and the SH-DSP. Like the Motorola part,
Piccolo-equipped chips will execute two
separate instruction streams on two dif-
ferent cores at the same time. Unlike the
68356, however, the CPU and DSP cores
share an address and data bus, necessitating
a lot of cooperation between the two.

The SH-DSP binds the two cores more
tightly, as does ARM’s approach. In fact, in
the Hitachi design, the CPU and DSP exe-
cute from a single instruction stream and

are not independent at all. Each 32-bit instruction is split,
with half going to the DSP and half to the CPU for address
generation and flow control.

Both the 68356 and the SH-DSP have separate X and Y
memories typical of DSPs but not found in Piccolo. ARM
chose instead to be clever with its register file, supplying
operands from DSP registers, not local memories. Even
though Piccolo can access a pair of registers per cycle, it can
reload only one from the ROB. A data-intensive algorithm
can starve the register file. In the end, Piccolo is cursed with
lower operand bandwidth than other DSPs, and this may
prove to be its ultimate weakness.

Like other companies, ARM has responded to a growing
need to merge signal processing with arithmetic or control-
flow processing. As Hitachi and Motorola have found, the
combination can be a popular one, as the nature of embed-
ded designs changes and the demand for wireless appliances
increases. With its announcement of Piccolo, ARM can end
1996 on a high note. M

 conducts the
e Piccolo DSP
or Forum.

M
IC

H
A

E
L

M
U

S
TA

C
C

H
I

 1 8 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

	ARM Tunes Piccolo for DSP Performance
	Register File Backed with Reorder Buffer
	Input, Output Buffers Decouple Two Cores
	Figure 1. Piccolo includes its own register...
	Input, Output Buffers Mediate Communications
	Reordered Refill Reuses Registers
	Table 1. The Piccolo DSP core adds an entire new instruction set...
	Instruction Set Parallels ARM
	Register Remapping Rotates Resources
	Figure 2. In this example of an FIR filter....
	Piccolo Debut Set for Mid-1997
	DSP-Like Performance
	Two Cores Need to Cooperate
	Different Bottlenecks

	Price & Availability

