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by Jim Turley and Harri Hakkarainen

In a leap to the front of the pack, Texas Instruments
unleashed the most radical digital-signal processor to date, a
VLIW design that runs at 200 MHz and executes up to eight
instructions at once. Under ideal conditions, the high-end
DSP runs at an astonishing 1,600 MIPS—5× to 10× the per-
formance of today’s leading DSP chips.

The new TMS320C6201 will be the first in a family of
new DSPs from TI based on the ’C6x core. When the chip
begins production in 3Q97, it will be the fastest—and nearly
the most expensive—fixed-point DSP available. TI hopes to
appeal to makers of telecommunications equipment, both
wired and wireless.

The chip relies on very long instruction word (VLIW)
techniques to achieve its impressive performance. VLIW has
appeared recently in media processors from Chromatic and
Philips, chips that are also DSPs in a sense. This once-esoteric
approach is now becoming almost routine in highly paral-
lelizable applications in media- and signal-processing.

Eight-Way VLIW, 200 MHz—Oh, My!
The ’C6x, which TI has been developing for three years, is
incompatible with anything the company has done before. In
many respects, the chip resembles a high-end RISC processor
with an unusual instruction set more than a conventional
fixed-point DSP.

TI’s New ’C6x DSP Sc
Radical Design Offers 8-Way Superscala
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Figure 1. This block diagram of the ’C6x core illustrates the eight exec
units, arranged in two sets of four. The 256-bit-wide instruction bus a
the chip to fetch eight 32-bit instructions per cycle. 
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The core is eight-way superscalar, has an 11-stage
pipeline, and maintains two sets of four execution units,
shown in Figure 1. The part is nominally divided in half, with
16 registers and four execution units on each side (A and B).
Crossovers allow limited use of the A registers by B-side exe-
cution units, and vice versa. With all eight execution units
running, the ’C6x can perform 1.6 billion operations per sec-
ond at 200 MHz.

The four execution units on each side are a matched
set. Each side contains a 40-bit integer ALU, a 40-bit shifter, a
16-bit multiplier, and a 32-bit adder that is also used for
address generation. Each of the execution units has access to
the same resources and, with only a few exceptions, com-
pletes its operation in a single clock cycle.

The two 40-bit ALUs, or L units, perform arithmetic
and logical compares, normalization, and bit-count opera-
tions. All L-unit operations complete in one clock cycle.

Multiplication is handled by the M units, which can
perform both signed and unsigned 16×16→32-bit multipli-
cation. Latency is two cycles, with single-cycle throughput.

Both S units have a 32-bit ALU and a 40-bit shifter. The
S units can perform some of the same 32-bit arithmetic
operations as the L units, along with 32-bit and 40-bit shifts.
The S units are also responsible for branching and branch-
address generation. A 32-bit adder allows the D units to per-
form simple arithmetic operations, but their primary pur-
pose is address generation.

Registers Are Massively Ported
From the programmer’s perspective, the ’C6x has
32 general-purpose 32-bit registers: A0–A15 and
B0–B15. Any register can hold any address or data
value; 40-bit results are stored in adjacent registers.
Five of the registers—A1, A2, and B0–B2—can be
used for conditional tests (A0 is reserved for future
expansion). Finally, four registers from each bank
serve special duty as circular-addressing pointers.

Both register banks have nine 32-bit read ports
and six 32-bit write ports, allowing all four execu-
tion units in a bank to access the same register simul-
taneously, if required. Two crossovers, one in each
direction, provide limited access to the 16 registers
from the opposite bank. Multiplier M1, for example,
can take one operand from any B register. With only
one pair of crossovers, data crossings are limited to
one execution unit per bank per cycle. In the exam-
ple, the L1, S1, and D1 units would all have to make
do with data from the A registers. This restriction
will probably be most apparent when programs try
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to perform two simultaneous memory accesses with address
pointers from the same register bank.

Although both the L and S units can perform 40-bit
calculations, there is only one 40-bit write port per bank to
the register file. It is the programmer’s responsibility to avoid
generating two 40-bit results in the same cycle.

Instruction Set Shows VLIW Techniques
The ’C6x is the first VLIW chip from TI and the first conven-
tional DSP with VLIW instructions. The core devours eight
32-bit instructions at once from its on-chip 256-bit instruc-
tion bus. All eight instructions are sent to the eight execution
units before the next 256-bit meta-instruction is fetched.

In TI’s nomenclature, the eight-instruction group is
known as a fetch packet. The ’C6x always fetches a complete
fetch packet at once, and fetch packets must be 32-byte
aligned. However, not all eight instructions in the fetch
packet are necessarily executed simultaneously.

Although there are eight instructions in each fetch
packet and eight execution units, each instruction does not
necessarily correspond to one execution unit; the instruc-
tions are not position-dependent within the fetch packet,
which is the traditional VLIW method. Instead, each instruc-
tion is encoded for a specific execution unit. An ADD instruc-
tion, for example, can be encoded for the L1, L2, S1, S2, D1,
or D2 unit. Programmers can explicitly dictate the binding of
instructions or leave it to the assembler or compiler.

Under ideal circumstances, all eight of the ’C6x’s execu-
tion units can be kept busy on every cycle. In practice, data
dependencies, resource conflicts, multicycle operations, and
other realities of programming will force less-than-total uti-
lization of the core’s resources. Rather than waste space in the
fetch packet by padding with NOPs, TI allows multiple groups
of instructions in a single fetch packet.

Independent of the 256-bit fetch packet, the ’C6x
defines an execute packet, which can be 1–8 instructions in
the fetch packet. All instructions in an execute packet are dis-
patched together. It is the programmer’s (or compiler’s)
responsibility to guarantee that all instructions in the execute
packet can, indeed, be dispatched simultaneously—the ’C6x
hardware does no dependency checking among instructions.

Execute packets are identified by the least significant bit
in each instruction. If the bit is set, the instruction may be
dispatched in parallel with the subsequent (next higher-
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addressed) instruction. If all eight instructions in the fetch
packet have their LSB set, all eight will be dispatched simul-
taneously. If none have their LSB set, the eight instructions in
the fetch packet will be executed serially. Figure 2 illustrates
an example with a four-instruction execute packet followed
by two two-instruction packets.

VLIW Approach Breaks Up Basic Operations
Table 1 lists the entire ’C6x instruction set. Every ’C6x
instruction (including the lone branch) can be made condi-
tional, based on the zero/nonzero status of the five condition
registers. Theoretically, all eight instructions in a packet
could each be predicated on some different condition. This
type of predicated execution is also used in the Philips TM-
1, a VLIW media processor.

The ’C6x has none of the moderately complex instruc-
tions most DSP chips have. Multiply-accumulate, for exam-
ple, is handled as a multiply followed by a separate add.
Fetching a memory-resident coefficient would be handled as
a third, independent, operation. Because it divides conven-
tional DSP functions into separate instructions, the ’C6x
needs a somewhat different definition of MIPS than most
DSPs. A simple 16-bit MAC becomes three different opera-
tions on the ’C6x, making the metric of 1,600 MIPS some-
what misleading. Like early RISC chips, the ’C6x thrives on
high clock rates and simple operations.

Indexed addressing and loops must also be explicitly
coded in software. There is no intrinsic zero-overhead loop
feature in the ’C6x. Loop counters must be decremented, and
a conditional branch used to return to the top of the loop.
Index registers do not automatically increment or decre-
ment; their values must be modified explicitly.

Lots of Memory 
TI’s initial implementation of the ’C6x architecture is the
320C6201. The part has a whopping 128 Kbytes of on-chip
memory, evenly divided between program and data space.
The program memory has a 256-bit path into the ’C6x core,
allowing it to transfer an entire eight-word fetch packet in
one cycle. At the user’s option, the program memory can also
be configured as a 64K direct-mapped cache.

The ’6201’s data memory is divided into four 16K
banks, each with a 16-bit bus to the execution units. All four
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TI’s TMS320C6201 is sampling now in a 352-contact
BGA package. The 196-mm2 part is fabricated in a 0.25-
micron five-layer-metal process and runs from a 2.5-V
supply. Pricing has been set at $135 in 1,000-unit quanti-
ties. Production is scheduled for 3Q97. For more infor-
mation, contact TI (Denver) at 800.477.8924, extension
4500, or visit www.ti.com/sc/C6x.
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Figure 2. The least significant bit of each instruction in a fetch
packet indicates whether the instruction can be executed in paral-
lel with its successor. The instructions in this example will be exe-
cuted in three separate packets of four, two, and two instructions.
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banks can be accessed simultaneously, but two simultaneous
accesses to the same bank are not allowed. An on-chip access
rate of two words per cycle is comparable to that of most
DSPs. So even though the ’C6x can execute far more instruc-
tions per cycle than other DSPs, it does not have commensu-
rately higher data memory bandwidth.

Here, the ’C6x shows some RISC-like tendencies. The
chip performs best with register-based operands, exacting a
penalty for frequent memory accesses. TI expects the large,
heavily ported register file will fill in for RAM in many cases.

Branches Introduce Huge Bubble
As in many high-end CPUs, the ’C6x’s long pipeline is both
its treasure and its burden. The chip could probably never
reach 200 MHz or beyond without its 11-stage pipeline, but
the long pipe also exacts a severe penalty for taken branches.

With no branch prediction, all taken branches intro-
duce a five-cycle delay before the pipeline refills from the
branch target, as Figure 3 illustrates. Unlike many CPUs, the
part executes instructions in the branch delay slot, which in
the ’C6x’s case is a whopping 40 instructions (5 cycles ×
8 instructions).
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This huge delay slot leads to some unusual program-
ming practices (as if ’C6x code weren’t difficult enough to
follow). One option is to make each instruction in the subse-
quent five fetch packets conditional, using the same condi-
tion as the original branch. Conversely, execution of these
instructions could be predicated on the opposite condition,
executing only if the branch is not taken.

Manual scheduling on the ’C6x exacts its own peculiar
toll on programmers. Figure 4 shows the kernel of a two-tap
FIR filter done in a single repeating execute packet. It per-
forms two multiplies, two adds, and two loads while it decre-
ments the loop counter and branches back to itself.

The effects of this packet are difficult to deduce from a
cursory reading of the source code, complicated by the fact
that adds, multiplies, loads, and branches all have different
latencies (one, two, four, and five clocks, respectively).

On any given iteration of this loop, n, the ’C6x resolves
the multiplies executed on iteration n-2, the additions from
iteration n-1, the data loaded on iteration n-5, and the
branch encountered on iteration n-6. Once under way, this
loop executes two taps per cycle, which is better than most
DSPs—and at 200 MHz, a lot faster.
B
BIRP
BNRP

Branch
Branch using interrupt return pointer
Branch using NMI return pointer

AND
NOT
OR
XOR
SHL
SHR{u}
SSHL

Logical AND
Logical invert
Logical OR
Logical XOR
Shift left
Shift right {unsigned}
Shift left with saturation

LD{x}
LD
ST{x}
ST
STP
MV
MVC
MVK{L,H}

Load {byte, half, word, double}
Load with 15-bit offset
Store {byte, half, word}
Store with 15-bit offset
Store to program space
Move register to register
Move control register
Move constant to {upper, lower} half

IDLE
NOP

Wait for interrupt
No operation

CMPEQ
CMPGT
CMPGTU
CMPLT
CMPLTU

Compare for equality
Compare for greater-than
Compare for greater-than, unsigned
Compare for less-than
Compare for less-than, unsigned

†

*

†

†

†
*

ABS
ADD{U}
ADDA{x}
ADDK
ADD2
SADD
MPY{U/S}
MPYH{U/S}
MPYHL{U/S}
MPYLH{U/S}
SMPY
SUB{U}
SUBA{x}
SSUB
SUBC
SUB2
ZERO
CLR
SET
EXT{U}
NEG
NORM
LMBD
SAT

Absolute value
Add, signed, nonsaturating {unsigned}
Add {byte, half, word} nonsaturating
Add with 16-bit constant
Add two 16-bit halves
Add, saturating
Multiply lower halves {unsigned/signed}
Multiply upper halves {unsigned/signed}
Multiply upper, lower halves {un/signed}
Multiply lower, upper halves {un/signed}
Multiply, shift left, and saturate
Subtract, nonsaturating {unsigned}
Subtract address {byte, half, word}
Subtract, saturating
Conditional divide step
Subtract two 16-bit halves
Clear destination
Clear bit field
Set bit field
Extract {unsigned} bit field
Negate
Normalize; find first nonredundant bit
Leftmost bit detection
Saturate 40 bits to 32 bits

Mnemonic Description
Arithmetic

Jump/Branch

Mnemonic Description Ex Unit
Logical

Ex Unit

Load/Store

Comparison

Miscellaneous

SM DL SM DL

Table 1. TI’s eight-way ’C6x provides the usual complement of fixed-point DSP instructions, which it executes with a pair of four nearly
identical execution units. About half of the instructions must be dispatched to a particular type of execution unit (L, M, S, or D), while some
instructions, such as ADD and MV, can be handled by two or more different types of units, easing superscalar dispatch.  *LD and ST with
15-bit offsets can execute only in the D2 unit.  †MVC, BIRP, BNRP, and STP can execute only in the S2 unit.
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Dependencies Can Be Tricky to Identify
The architecture of the ’C6x is reminiscent of Intel’s i860 in
that it lays the pipeline open for the programmer to exploit.
Crafting carefully arranged object code is crucial to extract-
ing performance from the ’C6x. It will not be an easy task.

As mentioned previously, the chip does no dependency
checking, and multiple writes to the same destination regis-
ter give undefined results. Avoiding this condition can be
harder than it sounds, because not all instructions have the
same latency. Issuing an ADD one cycle after an MPY with the
same destination will cause a failure because of their differ-
ent latencies. In the MAC example, on the other hand, an
ADD must be scheduled at least one cycle after the MPY for
the result to propagate correctly.

Packing two mutually exclusive conditional instruc-
tions in the same execute packet is not a programming error
and, in fact, can be a good idea. Programmers can create their
own conditional moves, adds, or other functions simply by
including in the same packet duplicate instructions that are
based on opposite states of the same condition. Again, there
is an opportunity for mischief here, as the ’C6x software
tools cannot check for conflicting instructions that are made
conditional on the contents of unrelated registers.

Manually scheduling eight execution units could be a
Sisyphian task for any but the most gifted DSP codesmith. TI
rightly recognizes that software-development tools are going
to be key to the acceptance of the ’C6x family. The company
created a specialized C compiler and an optimizing assem-
bler. Both will be available when the first chip ships in 3Q97.

DSP programmers have historically shunned C compil-
ers, preferring to write in assembly language. C, they say, was
never designed for signal processing. Given the ’C6x’s archi-
tecture, though, those times may be coming to an end. The
chip is too complex for assembly-level coding. ’C6x pro-
grammers are about to go through the same convulsion as
RISC programmers of a decade ago, finally moving from
assembly to C.
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Performance Estimates Look Impressive
The final question is whether the performance of the ’C6x is
as daunting as its programming model. Although no concrete
numbers are available, Berkeley Design Technology has run
some benchmarks on a cycle-accurate simulator of the ’C6x.

The simplistic claim of 1,600 MIPS at 200 MHz would
suggest the ’C6x is 15–40 times faster than currently available
fixed-point DSPs. In reality, because the ’C6x treats every
movement of data as a discrete operation, the net perfor-
mance is not as great, but still impressive. A simulated ’C6x
finished the BDT radix-2, 256-point FFT benchmark in
21 microseconds, which is about five times faster than Moto-
rola’s 563xx-100, eight times faster than Lucent’s DSP16xx-
120, and 12.5 times faster than TI’s own ’C54x-50.

Code density, not surprisingly, was not even close. On
the same FFT code, the ’C6x binary was about 5–6 times
larger than that of either the 563xx or the ’C54x. A 256-bit
instruction word definitely takes its toll in code density.

TI has priced the ’C6201 at $135 in 1,000-piece quanti-
ties. While that price certainly makes the part one of the
most expensive fixed-point DSPs around, its impressive per-
formance makes it a good overall value for those applications
that can make use of its capabilities.

Finding those applications will be TI’s challenge. Few
kinds of systems are big enough to need a DSP of this mag-
nitude. TI expects to replace collections of ganged DSPs,
such as those used in simulators, central-office switches,
modem banks, and cellular base stations. This last market
may be TI’s best bet. Digital PCS (personal communications
service) is just taking off, and its dependence on smaller
“microcells” should spur demand for compact but powerful
DSPs. Replacing racks of discrete DSPs with a few ’C6x
processors could make such equipment smaller, cooler, and
more reliable.

Crucial to the acceptance of the ’C6x will be the soft-
ware tools. TI needs to deliver excellent tools and tolerate
some delays while DSP programmers overcome the emo-
tional hurdle of writing high-performance DSP code in C. If
the company can execute well here, the ’C6x should perform
well in some new high-end applications.

Harri Hakkarainen is an author of Berkeley Design Tech-
nology’s Buyer’s Guide to DSP Processors, the 1997 edition of
which will be available from MicroDesign Resources in April.
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loop:
        ADD.L1    A0,A3,A0  ;A0=A0+A3
||      ADD.L2    B1,B7,B1  ;B1=B1+B7
||      MPYHL.M1X A2,B2,A3  ;A3=A2(hi)×B2(lo)
||      MPYLH.M2X A2,B2,B7  ;B7=A2(lo)×B2(hi)
||      LDW.D2    *B4++,B2  ;load into B2
||      LDW.D1    *A7--,A2  ;load into A2
||      ADD.S2    -1,B0,B0  ;decrement counter
|| [B0] B.S1 loop           ;branch if B0 nonzero

Figure 4. In this example of an FIR filter, eight instructions fit in a
single fetch packet, executing in parallel and calculating two taps
per iteration.
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Figure 3. The ’C6x has an 11-stage pipeline, but most instructions
complete after seven cycles. A 16×16 multiply operation requires
one extra cycle; loads require four extra cycles to transfer data.
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