
V O L . 1 1 , N O . 2

IW Design
ovative Instruction Set and CPU
by Linley Gwennap

Pushing the boundaries of instruction-set design,
startup DanSoft has developed an innovative VLIW (very
long instruction word) architecture and dual-processor CPU
design that it believes will outperform any RISC-based pro-
cessor. The company, located in Eastern Europe, is seeking a
foundry partner to build and help market the processor,
which is aimed at PCs and high-end consumer devices.

The design started as academic research by Radoslav
Danilák, who founded DanSoft with government and private
support to commercialize the design. Many of the basic ideas
are similar to those being pursued by other academic pro-
grams and, in all likelihood, by the Intel/HP alliance and
other top-secret industry projects. We believe DanSoft, if it
can find a foundry partner, has a legitimate possibility of
gaining commercial success, most likely in the embedded
market. But whether or not the company succeeds, its design
demonstrates some interesting twists that are likely to appear
in future processors from mainstream vendors.

DanSoft has designed its architecture for speed: the
company believes its design could reach 800–900 MHz in
0.25-micron CMOS. The VLIW design reduces the size of
the implementation, shortens the pipeline, and simplifies
instruction execution. With a small CPU, the Dan 2433 chip
can hold two processors, each capable of executing four
RISC-like instructions per cycle. A uniprocessor version, the
Dan 1432, would be even smaller and more appropriate for
consumer devices. Given its current state, however, the
design is unlikely to appear in products before 1999.

Instruction Grouping Avoids Complexity
The basic DanSoft instructions are similar to traditional
RISC instructions; they are about 32 bits wide and directly
reference a set of 32 integer registers of 32 bits and 32 float-
ing-point registers of 64 bits. The instruction set contains
basic operations such as arithmetic and logical calculations,
shifts, loads, stores, and branches. These work mainly as in a

DanSoft Develops VL
Slovakian Startup Seeks Partners for Inn
© M I C R O D E S I G N R E S O U R C E S F E B R U A R Y
RISC processor but with a few twists. In addition, condi-
tional moves and SIMD multimedia extensions match the
capabilities of the most recent RISC instruction sets.

Like other VLIW designs (see 0802MSB.PDF), the Dan-
Soft architecture groups these basic instructions into longer
instruction words. In DanSoft’s design, a 128-bit instruction
word holds four basic instructions, as Figure 1 shows. The
compiler guarantees the four instructions have no depen-
dencies; thus, a DanSoft processor contains no complex
dependency-checking logic and can simply issue all four
instructions at once.

To avoid resource conflicts, the basic DanSoft design
includes four complete integer units and enough ports on
the integer register file to support four integer operations per
cycle. The floating-point unit is divided into an adder and a
multiplier; an instruction word may contain two FP instruc-
tions if one is a multiply and the other is not. In FP-intensive
code, the other two instruction slots can be used for loop
control and to load and store operands, as Figure 1 shows.

Compiler Drives Parallelism
A key to achieving performance in a VLIW design is for the
compiler to insert useful instructions into the four instruc-
tion slots a large percentage of the time. Without enough
parallelism in the code stream, each instruction word may
need one or two NOPs, bloating code size and reducing the
efficiency of the CPU.

DanSoft’s design allows the compiler to explicitly per-
form speculative execution. In this way, the compiler can
reorder instructions beyond branch boundaries to fill extra
instruction slots. When instructions are executed specula-
tively, the danger is that an exception can be triggered, either
by a load or by an arithmetic operation. If the speculation is
later found to be incorrect, a lengthy exception handler may
have been invoked for no reason.

To avoid this scenario, DanSoft includes an “E” bit in
arithmetic and load instructions. If this bit is set, exceptions
are logged in the register file but ignored by that instruction.
The exception is triggered only if the erroneous result is read
by a later instruction without the E-bit set. When executing
speculative instructions, the compiler simply sets their E bits.
The downside of this method is that exceptions are not pre-
cise; they can be signaled several cycles after they occur, and
the DanSoft processor doesn’t maintain enough history to
track the original fault. Although imprecise exceptions make
debugging more difficult, Alpha and POWER made the same
tradeoff to achieve higher performance.

Philips’s Trimedia design (see 091506.PDF), another
VLIW instruction set, achieves a similar effect using predica-
128-bit instruction word

instr 1 instr 2 instr 3 instr 4

Integer operate
Load/store

Integer operate
FP operate

Integer operate
FP operate

Integer operate
Branch

127 93 63 33 0124

FLAGS: instruction-prefetch mode, cache bypass, 1/2-cycle mode

Figure 1. Each DanSoft instruction word contains four separate
instructions. All four can be integer operations; up to two can be
floating-point operations. There can be at most one load/store
instruction and one conditional branch.
 1 7 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T



V O L . 1 1 , N O . 2
2 D A N S O F T  D E V E L O P S  V L I W  D E S I G N

tion. Trimedia operations contain guard bits and are exe-
cuted only if the guard bits meet specific conditions. The
DanSoft method reduces the impact on instruction size
(only one extra bit) and simplifies the execution path at the
cost of adding one bit per register to log exceptions.

By combining the E-bit option with aggressive com-
piler optimizations such as loop unrolling and subroutine
inlining, DanSoft’s compiler generates less than 10% NOPs
on most applications, according to the company.

Like Mitsubishi’s LIW chip (see 101601.PDF), the Dan-
Soft design includes a two-cycle execution mode. In this
mode, the first two instructions are executed in one clock
cycle, followed by the second two instructions in the next. A
flag in each instruction word controls the execution mode.
The two-cycle mode is useful in reducing memory space for
code segments with limited parallelism; the company claims
it reduces NOPs to less than 5% of instructions.

Nanothreading Improves Parallelism
Despite the best efforts of the compiler, processor execution
will occasionally stall due to cache misses and other dynamic
events. Because the VLIW design can’t rearrange instruc-
tions on the fly to avoid stalls, DanSoft uses nanothreading to
improve processor utilization.

The DanSoft processor contains a second program
counter that points to a nanothread. This PC has only 9 bits,
so the nanothread must reside in the same 8K page as the
main thread. Whenever the processor stalls on the main
thread, it automatically begins fetching instructions from the
nanothread. Only one set of registers is available, so the two
threads must share the register file. Typically, the nanothread
will focus on a simple task, such as prefetching data into
buffers, that can be done asynchronously to the main thread.
In this case, few registers are required.

This method is a subset of full multithreading using
multiple PCs and multiple register sets. The nanothread
requires much less hardware: only a 9-bit PC and some sim-
ple control logic. Nanothreading will not provide the same
level of parallelism as multithreading, but it could provide a
performance boost if handled properly by the programmer.
DanSoft’s compiler contains constructs to simplify the con-
struction of nanothreads, but it cannot create nanothreads
without explicit help from the programmer.

Loop Coloring Overlaps Loads
After simulating the initial simple VLIW design, DanSoft
found a performance bottleneck in many loops. For enough
cycles to be inserted between loading data and using it to
allow for an L1 cache miss, loops must typically be unrolled.
This common compiler technique requires lots of registers to
cover multiple simultaneous loop iterations; it also increases
code size by duplicating instructions.

To avoid this problem, DanSoft uses a technique it calls
loop coloring. The lower eight registers can be renamed using
24 additional registers. This technique is simpler than the
© M I C R O D E S I G N R E S O U R C E S F E B R U A R Y
renaming in high-end RISC chips, because only the lower
eight registers can be renamed, and registers are renamed as a
block. Register references are expanded to 6 bits; if the upper
bit is set, the instruction can refer to the values of the registers
from previous iterations of the loop. This mechanism allows
loops to be unrolled four times (or more, for simpler loops)
without adding four times as many instructions.

In case this technique still doesn’t provide enough
cycles to cover cache misses, the CPU includes instruction
queues that are invoked during loop coloring. Each of the
four instruction slots has its own queue, and instructions are
always issued from the queues in order. If one instruction is
stalled—for example, an integer operation waiting for data
from a load—the others queues can continue. This method
avoids stalling the entire CPU.

In this situation, however, instructions can be executed
out of order, because the queues can get out of sync. Register
scoreboarding keeps instructions from executing before their
data is ready, and all memory references are in the same
queue and thus always executed in order, preventing obvious
problems. But because the chip lacks the reorder buffer or
shadow registers found in most out-of-order chips, recover-
ing from an unexpected exception is difficult.

Loop coloring increases parallelism and reduces the
chances of stalling during a cache miss. It requires far fewer
instructions than explicit loop unrolling, reducing code size
and improving instruction-cache efficiency. It adds com-
plexity compared with a pure VLIW design but is still far
simpler than an out-of-order RISC machine. Loop coloring
is effective, however, only when exceptions can be avoided.

Compiler-Driven Branch Prediction
DanSoft assumes most hardware implementations will not
use dynamic branch prediction, except for a simple subrou-
tine return buffer. Branch instructions include 3 bits to
direct the instruction-fetch stream. These bits specify eight
levels of branch direction, as Table 1 shows. For the middle
four cases, the processor fetches from both the branch target
and the fall-through path, storing the unused instructions in
a small queue. In these cases, if the branch is mispredicted,
the penalty is only 1–2 cycles.
000
001
010
011
111
110
101
100

Fall-though
Fall-though
Fall-though
Fall-though

Taken
Taken
Taken
Taken

Heavy
More

Slightly
Same
Same

Slightly
More
Heavy

Fetch fall-through
Fetch fall-through
Fetch both paths
Fetch both paths
Fetch both paths
Fetch both paths
Fetch taken path
Fetch taken path

Hint Prediction Weight Fetch Stream

Table 1. The compiler can indicate eight levels of branch predic-
tion to the CPU, which responds by following the predicted path
and, in some cases, prefetching instructions from the other path.
Although the initial CPU has only four responses, future imple-
mentations may interpret the eight hints differently.
 1 7 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T



3 D A N S O F T  D E V E L O P S  V L I W  D E S I G N
DanSoft estimates its static-prediction schemes can
achieve at least 85% accuracy on most applications. In con-
trast, advanced dynamic branch-prediction schemes such as
the two-level method used in Pentium Pro and Digital’s
21264 (see 101402.PDF) deliver 90–95% accuracy. Both of
these processors have much longer misprediction penalties
than the DanSoft device; the smaller penalty compensates
for the lower accuracy.

DanSoft’s branch instructions use pseudo-relative
addressing. The low 10 bits of the address contain a portion
of the absolute address of the target instruction. The hard-
ware uses these bits to immediately index the instruction
cache for the next access, achieving zero-cycle branching for
correctly predicted branches. The upper bits of the branch
address are a relative value that is added to the current loca-
tion to calculate the final branch address.

The 21264 implements zero-cycle branching in a simi-
lar fashion, but the chip must calculate the target address
after the branch is decoded and store it separately in the
cache. The DanSoft method requires no additional cache
storage. Since the instruction format allows only one branch
per instruction word and the branch is always in the same
place, the DanSoft method is easy to implement in hardware.

Simple Processor Implementation
The simpler implementation is the Dan 1432. As Figure 2
shows, the 1432 is very straightforward compared with other
four-way superscalar processors. Instructions flow from the
cache to the execution units with minimal decoding. There is
no branch prediction (other than a 16-entry subroutine
buffer), no dependency checking, limited register renaming
(only for loop coloring), and no reorder buffer. Deleting this
overhead logic leaves room for four full integer ALUs, one of
which also handles loads and stores, and an FPU.
© M I C R O D E S I G N R E S O U R C E S F E B R U A R Y
V O L . 1 1 , N O . 2

For basic integer operations, the pipeline contains only
five stages, keeping the mispredicted branch penalty to 2–3
cycles. The shorter penalty applies to some conditional
branches, such as less than zero, for which the condition is
resolved by the end of the decode stage.

For maximum speed and reduced hardware complex-
ity, none of the integer units contains a full shifter, although
they can shift one bit left or right. All other shifts, as well as
integer multiplication, are handled through the FPU. The
physical location of the shifter has no software-visible effect.
The only performance impact is the limit of one shift per
cycle, but most superscalar processors have a similar limit.
The DanSoft design removes the shifter from a critical tim-
ing path, which should improve clock speed.

The FPU also handles some SIMD instructions. For
example, each part of the FPU can launch one double-preci-
sion operation or two single-precision operations per cycle.
This technique is also used in the MIPS V instruction set (see
101505.PDF). When operating in SIMD mode, the FPU can
sustain two single-precision multiplies and two single-
precision adds per cycle, or 3.2 GFLOPS at 800 MHz.

Short Pipeline Reduces Penalties
To facilitate high clock speeds, the instruction-cache access is
divided across two cycles. Again, this is similar to the tech-
nique used in the 21264, slated to operate in excess of 500
MHz. After the first cycle, at least the low 10 bits of the
instruction must be available; these determine if the instruc-
tion is a predicted-taken branch and provide the cache index
of the target instruction. These bits can be used to start the
next access immediately; otherwise, cache access continues
in a sequential fashion. By the end of the second cycle, the
complete instruction has been fetched and the instruction
TLB has been read.

The 1432 decodes instructions and accesses the register
file during the decode stage. All single-cycle instructions are
completed in the next stage. The 1432 uses register score-
boarding to avoid stalls due to long-latency instructions. The
processor can continue executing instructions during this
latency; it stalls only if an instruction attempts to read the
result being computed.

Data-cache accesses add up to two cycles. A data-cache
miss is treated as a long-latency operation; execution contin-
ues until the missing word is needed. To avoid stalls, the
DanSoft compiler attempts to prefetch data into the cache.
All load instructions contain prefetch bits that instruct the
processor to load the next 32 or 64 bytes. The prefetch can be
specified to occur only if the data is in the secondary cache,
or it can access main memory if necessary.

Small Primary Caches
Digital adopted a two-cycle cache access for the 21264,
mainly to permit expanding the primary caches to 64K
each. In contrast, DanSoft has specified just 8K instruction
and data caches, although the cache size could easily be
PC
Unit

Instruction Cache and TLB
(8K four-way cache, 32-entry TLB)

Decode

128
Target addr

Int
ALU

Int
ALU

Int /
Branch

Unit

FP
ADD

FP Regs
(32 × 64 bits)

Data Cache and TLB
(8K four-way cache, 64-entry TLB)

Virt
Addr

128
/

Virt
Addr

128

Phys
Addr

Phys Addr

64
/

Integer Registers
(32 × 32 bits)

FP
MUL

L2
Cache

and
Bus

Inter-
face
Unit

Int/
Mem
Unit

Figure 2. A single-processor implementation of the DanSoft
design contains an integer core (purple), floating-point unit, small
primary caches, and an interface to the external cache and bus.
 1 7 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T



4 D A N S O F T  D E V E L O P S  V L I W  D E S I G N V O L . 1 1 , N O . 2
increased. These caches are four-way set-associative, with
small, 16-byte lines to increase their hit rate, but they still
hold far less information than competing processors. The
company believes that these small caches will enable very
high clock speeds.

DanSoft has added several features to improve the effi-
ciency of these caches. Instruction and data prefetching is
controlled by the compiler, not the hardware; this method
improves the chances that the prefetched information is
actually needed. Each instruction word contains a bit to
specify whether the next four or eight instructions are to be
loaded into prefetch buffers; these instructions are loaded
into the cache only when accessed. This level of control
avoids polluting the cache with unneeded instructions. Sim-
ilarly, load instructions contain a bit to specify either 32 or 64
bytes to prefetch.

In addition, all load instructions contain two hint bits
that specify whether the data should be stored in both the L1
and L2 caches, just the L2, or neither. In this way, the com-
piler can control the contents of the caches, preventing rarely
used data from forcing useful information out of the cache.
These hints can also improve access times: if the caches are
bypassed, there is no need to check the tags, and a main-
memory access is started without delay.

With these features, the company estimates the miss
rate of the caches on typical PC applications will be 4–6% for
the instruction cache and 8–10% for the data cache. While
these rates are good for such small caches, they are worse
than for the 32K or 64K primary caches found in many mod-
ern processors.

The DanSoft design assumes a large external secondary
cache that is closely coupled to the CPU chip, probably in the
same physical package (as in Pentium Pro, for example).
Even with this expensive packaging and fast custom cache
chips, the delay in accessing the secondary cache will be
roughly 8–9 cycles at 900 MHz. With this delay, avoiding pri-
mary cache misses is imperative. Proper use of prefetching,
supported in some cases by nanothreading, and inserting
many instructions between loading data and using it, sup-
ported by loop coloring, should avoid many cache misses.

Dual Processors on Chip
The small primary caches and relatively simple integer core
allows DanSoft to fit two complete integer processors on a
single die, creating the 2433. As Figure 3 shows, the processor
© M I C R O D E S I G N R E S O U R C E S F E B R U A R Y
cores share the dual-issue floating-point unit as well as the
system interface, which connects to both the second-level
cache and the main system bus.

Most programs will not use the floating-point unit at
all, and even for FP-intensive programs, the peak perfor-
mance of several GFLOPS for the single FPU should be ade-
quate. Instead of assigning the FPU to one processor, it is
shared by both through a simple arbiter that allows each pro-
cessor to access the FPU for one cycle if the other is waiting.
Both processors have their own FP register file to maintain
separate contexts. In most cases, DanSoft expects one proces-
sor to handle FP-intensive threads while the other takes care
of integer-only housekeeping, but the sharing arrangement
provides flexibility with little hardware overhead.

While the high single-precision FP throughput of the
2433’s FPU is ideal for 3D geometry, DanSoft is considering
adding a separate rendering unit on the processor chip. This
unit, shared by both processors, would perform polygon fills,
texture mapping, alpha blending, and Z-buffering while the
processors handled the geometry calculations. This combi-
nation would eliminate the need for an external media pro-
cessor or graphics chip.

Both processors access the external system through a
128-bit bus. This bus can fetch an entire 16-byte cache line in
a single access, quickly freeing the bus for another access.
DanSoft has not completely specified this interface but
assumes the bus protocol includes a separate address bus and
multiple pending transactions.

The size of the secondary cache can vary, but DanSoft’s
simulations assume 512K. To back up this cache, DanSoft
expects a high-bandwidth Rambus-style memory subsys-
tem. Again, this interface has not been specified.

DanSoft has not completed a circuit design but esti-
mates the single-processor design will require 3.7 million
transistors: 1.2 million for the two 8K caches plus 2.5 million
for the four-way superscalar VLIW core. By comparison,
8K Instr Cache

Decode

128

128
/

Integer and
FP Regs

L2
Cache

and
Bus

Inter-
face
Unit

Four
Integer
Units

8K Data Cache

Shared
FP
Unit

64

8K Instr Cache

Decode

128

Integer and
FP Regs

8K Data Cache

64

Four
Integer
Units

128

Figure 3. The 2433 contains two processors that share a floating-
point unit and system interface.
F o r  M o r e  I n f o r m a t i o n

The Dan x4xx processors are not yet available for
sale. DanSoft has a technical manual available describing
its architecture. Contact DanSoft Ltd. (Kos̈ice, Slovak
Republic) at 42.95.633.1206; fax 42.95.633.3134; or
access the Web at www.napri.sk/dansoft.
 1 7 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T



N
5 D A N S O F T  D E V E L O P S  V L I W  D E S I G

UltraSparc, a four-way superscalar RISC, contains 2.0 mil-
lion logic transistors.

The two-processor 2433 design is expected to contain
5.5 million transistors, about the same as Pentium Pro. These
estimates imply the 2433 would require about the same die
area as Pentium Pro (196 mm2 in a 0.35-micron four-layer-
metal process), assuming an equivalent process technology
and Intel’s level of circuit-design expertise. The latter may be
a stretch, but in a typical 0.35-micron process, the design
should easily fit within a 300-mm2 die. DanSoft’s aggressive
estimates show the 2433 fitting into about 150 mm2 in a
0.35-micron process or 100 mm2 in 0.25-micron CMOS.

Performance Could Exceed Digital’s 21264
DanSoft compares its design to the Alpha 21264’s and believes
that the 2433 can run 25% faster due to its simpler design.
Although the elimination of out-of-order logic simplifies the
design, it doesn’t necessarily allow high clock speeds; Digital
has carefully inserted extra pipe stages where needed. Like the
21264, the DanSoft chip is designed to clock at the speed of
the integer ALU, but the startup has removed the shifter from
the ALU, shortening the critical path. The company estimates
this change, combined with the narrower ALU (32 bits vs. 64)
could improve clock speed by 25%.

On the other hand, to realize this gain, DanSoft would
have to find a circuit-design partner that can match Digital’s
expertise in high-speed logic design. We believe the DanSoft
chip, with reasonable circuit design, could perhaps match
Digital’s clock speeds. We expect Digital to deliver parts
at 800–900 MHz using 0.25-micron CMOS, so DanSoft’s
claims to reach these speeds are not unreasonable.

Assuming the 2433 could match the 21264’s clock
speed, the next issue is the instructions per cycle (IPC). Both
processors have a peak rate of four integer operations per
cycle. If DanSoft has a strong compiler, it could theoretically
exceed the IPC of the 21264, since the Alpha chip can sched-
ule instructions within an 80-instruction window, whereas
the compiler can examine hundreds or thousands of instruc-
tions at once. For recompiled code, however, the 21264 com-
piler can rearrange instructions in the same way as the Dan-
Soft compiler, so there is no advantage for the VLIW design.
DanSoft gains a small advantage from instructions, such as
conditional load, that are not found in Alpha.

Compilers can only look at static instruction schedul-
ing; the 21264 can handle dynamic events. In particular, the
Alpha chip’s extensive dynamic branch prediction logic
should outperform the static prediction of the 2433. On the
other hand, the DanSoft design has a much smaller mispre-
dicted branch penalty, so this effect may even out. In sum-
mary, the 2433 could achieve IPC similar to the 21264,
assuming DanSoft has similar or better compiler technology.

The trump card of the VLIW design is the second pro-
cessor unit, crammed onto the chip by eliminating the com-
plexity of the 21264’s out-of-order design. (Note that this
complexity is almost entirely for executing “old” unrecom-
© M I C R O D E S I G N R E S O U R C E S F E B R U A R Y
V O L . 1 1 , N O . 2

piled binaries, a problem DanSoft doesn’t face.) Each of the
two DanSoft CPUs could theoretically match the throughput
of the 21264. For Windows NT applications that take advan-
tage of the second CPU, this design could deliver a significant
performance advantage over the 21264.

To match the performance of the 21264 on real appli-
cations, however, the 2433 needs an improved cache struc-
ture and high-bandwidth system interface. The 8K primary
caches are inadequate for modern software; they can be
enlarged without modifying the core architecture. Designing
a good system interface is more difficult. If DanSoft finds the
right system partner, it could unleash the performance of the
VLIW core. The startup is engaged in high-level discussions
with at least one major semiconductor vendor that may fab
its parts.

Ideas Need More Development
One major criticism of VLIW designs in general is the diffi-
culty of improving performance without breaking binary
compatibility. By combining VLIW with multiple processors
on a chip, DanSoft shows one method of getting around this
problem. Varying clock speeds and cache sizes could offer
additional price/performance points. For the longer term,
the company is developing a seven-way VLIW design that
would execute four-way binaries: each instruction word will
simply use four of the seven available execution slots.

DanSoft’s design is the first general-purpose VLIW
microprocessor to be fleshed out to this level in public. The
small European vendor has developed some interesting ideas
that show significant promise in delivering performance bet-
ter than that of the leading processors expected in the near
future. Some of these ideas are likely to appear in other next-
generation instruction sets, including the HP/Intel IA-64.

To be successful in the market, DanSoft has a long path
ahead. The company needs a strong system partner with
competitive circuit-design capabilities and IC process tech-
nology. Together, these companies must implement the
VLIW core design and add a high-performance cache struc-
ture and system interface. DanSoft must complete a compet-
itive compiler and other development tools.

To play in the PC market, a port of Windows NT is
required, and Microsoft’s willingness to support a radical
new architecture with no installed base is near zero. A more
likely possibility is the embedded market, where binary
compatibility is not as important. DanSoft’s design is only
slightly more radical than Philips’s TM-1 media processor or
TI’s ’C6x DSP (see 110204.PDF). With many emerging appli-
cations seeking immense signal-processing capabilities, the
power of the DanSoft design could be compelling.

The DanSoft chip is much further from implementa-
tion than these two devices, however. Until the Slovakian
startup finds a credible partner, its technology will remain
unavailable for product designs. As Alpha has shown, how-
ever, the lure of leadership performance is a forceful one, and
DanSoft is counting on landing a big fish with it. M
 1 7 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T


	DanSoft Develops VLIW Design
	Instruction Grouping Avoids Complexity
	Figure 1. Each DanSoft instruction word contains...
	Compiler Drives Parallelism
	Nanothreading Improves Parallelism
	Loop Coloring Overlaps Loads
	Table 1. The compiler can indicate eight levels...
	Compiler-Driven Branch Prediction
	Figure 2. A single-processor implementation...
	Simple Processor Implementation
	Short Pipeline Reduces Penalties
	Small Primary Caches
	Dual Processors on Chip
	Figure 3. The 2433 contains two processors...
	Performance Could Exceed Digital’s 21264
	Ideas Need More Development

	For More Information

