
 P
by Linley Gwennap

Patents are two-edged swords: they offer a company
long-term legal protection for specific inventions, but the
patent procedure reveals the content of these inventions to
the world. In the United States, patents do not become pub-
lic until they are issued, which often takes years. In other
parts of the world, however, patent applications become
public 18 months after they are filed. Because of this process,
an Intel patent application titled “Method and Apparatus for
Transitioning Between Instruction Sets in a Processor,” has
recently become public.

The Intel application describes a processor, which we
assume to be Merced, that executes both x86 instructions
and a second “64-bit instruction set,” which we assume to be
IA-64. Intel patents contain many ideas that are never imple-
mented, however, so there is no certainty that the application
describes the current Merced or IA-64 implementations.
Intel would not comment on the relationship between this
application and the products being developed.

The most interesting feature of the patent application is
a detailed description of several instructions used to switch
modes and share data between the two instruction sets.
These appear to be the first IA-64 instructions to be made
public, and their descriptions shed some light on Merced.

The patent application is number 96/24895, admin-
istered by the World Intellectual Property Organization
(WIPO). If granted, the patent would cover 81 countries
from Armenia to Uzbekistan but not the United States; the
application is based on an earlier U.S. patent application,
08/386,931, dated February 1995, roughly a year after the
Intel/HP partnership was consummated.

First Merced Patent S
Intel Document Reveals Possibilities for
© M I C R O D E S I G N R E S O U R C E S M A R C H
V O L . 1 1 , N O . 4

Flexible Coding Philosophy
The application notes that Digital’s early VAX systems also
executed PDP-11 code. (Other processors to implement two
instruction sets in hardware include Data General’s Nova
and ARM’s Thumb.) The Digital processor required the
operating system to execute in VAX code, and applications
could not mix VAX and PDP-11 code. The Intel document
describes a processor that can support operating systems and
applications that use either or both instruction sets.

Executing x86 operating systems, such as Windows 95,
is essential for Merced to maintain full x86 compatibility. To
take advantage of the performance of IA-64, however, oper-
ating systems and applications must be recompiled and/or
recoded. The mechanism described gives programmers “the
option of implementing a new instruction set where justified
by performance advantages and utilizing the existing soft-
ware where justified by cost considerations.” In other words,
when porting operating systems and applications, only those
portions that will benefit from IA-64 need be converted.

This philosophy would make the IA-64 transition
resemble Apple’s conversion from 68K to PowerPC. In the
initial Power Macintosh, only a small percentage of Mac OS
routines ran in native mode, although these routines were
the most frequently used. Three years later, much of the OS
has been converted to PowerPC, but some portions remain
in 68K. By carefully choosing which parts to convert, Apple
has kept overall performance at a reasonable level while
reducing the development effort.

We believe IA-64 code will consume much more mem-
ory than x86 or even most RISC code (see 110302.PDF). If
only the performance-critical areas are converted to IA-64,
the overall increase in code size will be greatly reduced. If
instruction sets are mixed at a low level, the switching time
from one mode to the other must be kept short, which should
be possible in the structure described.

In some places, the document gives the impression that
Intel will treat IA-64 as simply a 64-bit extension to x86,
much as when the 386 pioneered new 32-bit modes. A key
difference between this and previous x86 transitions, how-
ever, is that the new IA-64 instructions will presumably over-
lap many of the encodings of current x86 instructions. Thus,
a mode bit is needed to properly interpret incoming instruc-
tions. The patent application describes methods for handling
this mode bit.

New Instructions for IA-64, x86
The application outlines several specific instructions, listed
in Table 1. Most of them are intended for IA-64, but two will
be added to the x86 instruction set. Six instructions allow

urfaces
rocessors With Dual Instruction Sets
IA-64 Instructions

Mnemonic
x86MT
x86MF
x86SMT
x86SMF
x86FMT
x86FMF
x86JMP
EVRET
New or Modified x86 Instructions
Mnemonic
JMPX

IRET

Operands
isrc2, dest
src2, idest
isrc2, dest
src2, idest
fsrc2, dest
src2, fdest
rel17/isrc1
none

Operands
rel32/16
r/m32/16
none

Name of Instruction
Move to x86 register
Move from x86 register
Move to x86 segment register
Move from x86 segment register
Floating-point move to x86 register
Floating-point move from x86 register
Jump and change to x86 ISA
Event return

Name of Instruction
Jump and change to 64-bit ISA

Interrupt return

Table 1. IA-64 and x86 instructions for switching processor modes
and accessing data, as listed in an Intel patent application.
3 1 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

S

IA-64 routines to transfer data from 32-bit x86 registers to
the 64-bit “extension” registers, and vice versa. They allow
IA-64 routines to read x86 data, process it, and return it to
the x86 registers for further processing by x86 routines.

Values are truncated or sign-extended to fit the target
register size. Presumably, x86 and IA-64 routines could also
exchange data via memory accesses, but this is not discussed
in the application. Note that x86 routines cannot access the
IA-64 registers.

Two instructions allow IA-64 routines to jump to x86
code, and vice versa. JMPX is a new x86 instruction similar in
form and function to other x86 jumps, supporting both PC-
relative and register/memory-indirect addressing. In addition,
it toggles the mode bit that switches the processor to IA-64
mode, so it can jump to an IA-64 routine.

The corresponding IA-64 instruction is x86JMP, which
switches the processor to x86 mode (see “x86JMP” sidebar). If
we assume this instruction is similar in form and function to
other IA-64 jump instructions, we infer that IA-64 uses 17-
bit relative branch addressing and also supports branching
through a register. Like most RISC architectures, IA-64 shifts
the branch target address left by two bits, implying that IA-
64 instructions are 32 bits wide.

The patent application implies that an interrupt places
the processor into x86 mode, regardless of whether the inter-
rupted code was running in x86 or IA-64 mode. The inter-
rupt handler may include a JMPX instruction, however,
allowing it to complete in IA-64 mode. Thus, two instruc-
© M I C R O D E S I G N R E S O U R C E S M A R C H 3© M I C R O D E S I G N R E S O U R C E S M A R C H 3
tions are supplied to return from an interrupt, also known as
an “event” in IA-64 lingo (see “Glossary” sidebar).

The standard x86 instruction IRET (interrupt return)
has been modified to support the new instruction mode.
After popping the program counter and flag register from
the stack, IRET examines a new flag, XPCR.ISA, to deter-
mine if the interrupt occurred in IA-64 mode. If so, it saves
the flags in the new XPCR register and loads the program
counter in the XIP register. If XPCR.ISA is not set, IRET

returns to x86 code using the same procedure as in current
x86 processors.

The corresponding IA-64 instruction, EVRET (event
return), assumes the XIP and XPCR have been saved in
shadow registers instead of on the stack. This method of sav-
ing state is similar to the way PA-RISC processors handle
interrupts. Like IRET, EVRET can return to either x86 or
IA-64 code, depending on the state of XPCR.ISA.
V O L . 1 1 , N O . 4

x 8 6 J M P : J u m p t o x 8 6 I S A

WO 96/24895 describes this IA-64 instruction:
“The processor switches execution to the x86 in-

struction set and executes the next instruction at the tar-
get address. The relative form computes the target
address in the 64-bit ISA relative to the current XIP and
code-segment base, i.e., XIP=XIP + rel17*4-CS_base.
Note that the target-instruction pointer is converted into
the effective address space. rel17 is sign-extended and
multiplied by four. The target XIP is truncated to 32 bits.

“The register form performs a far-control transfer by
loading the code segment specified by the 16-bit selector
in isrc1[47:32] and the 32-bit offset in isrc1[31:0]. If
EFLAGS.VM86 is set, the processor shifts the 16-bit
selector left by four bits to load the CS base. If EFLAGS.
VM86 is zero, the processor loads the CS descriptor for
the LDT/GDT and performs segmentation-protection
checks. The target XIP is truncated to 32 bits.

“x86JMP can be performed at any privilege level and
does not change the privilege level of the processor.

“If the target XIP exceeds the CS limit, an x86 GP
fault is reported on the target instruction. CS segment-
protection faults are reported on the target instruction.
Gate descriptors are not allowed and result in a GP fault
on the target instruction. If XPCR.d86i or XPCR.d86r is
set, the instruction is nullified and a disabled x86 ISA
fault or disabled x86 register fault is generated on the
x86JMP instruction. If jump breakpoints are enabled, a
jump-debug trap is taken after the instruction completes.

“On 64-bit-only subset implementations, x86JMP

causes a reserved opcode fault.
“Exceptions: disabled-x86 ISA fault, disabled-x86

register fault, general protection fault, reserved-opcode
fault, debug-jump breakpoint.”
2 F I R S T M E R C E D P A T E N T S U R F A C E

A G l o s s a r y f o r M e r c e d

The 96/24895 patent application uses a number of
terms in a consistent fashion to describe the dual-mode
processor. Several of these terms are listed below with
our best guess as to their official meaning.
64-bit extensions, 64-bit ISA—The IA-64 instruction set.
Extension processor—The IA-64 processor.
Extension register—An IA-64 register.
Event—An interrupt, machine check, or other exception.
XIP—Extended (64-bit) instruction pointer (i.e., PC). This

register corresponds to the x86 EIP.
XIP1—A copy of XIP saved during event handling.
XPCR—Extension processor control register. This 64-bit

register corresponds to the x86 EFLAGS register.
XPCR.ISA—This bit in the XPCR indicates the current

instruction-set mode (x86 or IA-64).
XPCR.d86i—If this bit in the XPCR is set, the processor is

not able to decode x86 instructions.
XPCR.d86r—If this bit in the XPCR is set, the processor

does not implement separate x86 registers.
XPCR.dxi—If this bit in the XPCR is set, the processor is

not able to decode IA-64 instructions.
XPCR1—A copy of XPCR saved during event handling.
1 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T1 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

V O L . 1 1 , N O . 4
3 F I R S T M E R C E D P A T E N T S U R F A C E S

Implications for IA-64
Much of the terminology in these IA-64 instructions is rem-
iniscent of PA-RISC instead of x86. For example, the destina-
tion register follows the source registers, and where there is
only one source register, it is src2 rather than src1. The x86
term “illegal opcode” has been replaced with HP’s term
“reserved opcode.” These items support rumors that most of
the IA-64 instruction-set definition was done by HP, not
Intel, and was largely complete before the Intel/HP partner-
ship was officially launched. These similarities may make it
easier to convert PA-RISC code to IA-64.

The instruction descriptions imply that IA-64 is a full
64-bit architecture: both the general registers and the pro-
gram counter are 64 bits wide, allowing both instructions
and data to be accessed linearly throughout a 64-bit memory
space. Intel’s influence is apparent, however, on the floating-
point side: the IA-64 floating-point registers are 80 bits wide.

The description of EVRET contains the following note:
“EVRET does not perform a memory fence operation nor is
full serialization performed like the SRLZ instruction.” We
certainly assume that Merced will reorder memory opera-
tions for maximum bandwidth, but this note may imply that
IA-64 instructions can execute out of order, contrary to our
working assumptions.

Similarly, the document notes “IRET serializes instruc-
tion execution.” This would seem to imply that x86 instruc-
tions can execute out of order in Merced. This would be less
surprising: to achieve high performance on x86 code without
translation, instruction reordering is a must.

There is nothing in the application that supports the
idea of a traditional VLIW architecture, that is, a unified long
instruction word. In fact, the RISC-like concepts of 32-bit
instructions encoding single operations (e.g., move to x86
register) are antithetical to VLIW. The application does not
rule out the option that these 32-bit instructions contain
“grouping” bits to simplify parallel dispatch, nor does it
specify, for example, the size of the register file. Based on this
description, however, it appears IA-64 is not as radical a
departure from the concepts of RISC as the companies had
originally indicated.

Possible Merced Implementations
The application gives less insight into the high-level design
of Merced, as it provides several different alternatives for
implementing the two instruction modes. All but one use a
single execution unit to process instructions, rather than
having an x86 processor and an IA-64 processor, for exam-
ple. This execution unit would certainly have multiple func-
tion units, and these could possibly be partitioned into x86
and IA-64 units, but the application strongly suggests that
Merced will have a single integrated processor core.

Most of the implementations include an x86-to-IA-64
translator. For thoroughness, the application covers transla-
tors implemented as state machines, as logic devices, or in
microcode. One design translates x86 instructions before
© M I C R O D E S I G N R E S O U R C E S M A R C H © M I C R O D E S I G N R E S O U R C E S M A R C H
they are cached; others translate them after they pass through
the cache. Figure 1 shows one of the latter versions.

All implementations in the application include sepa-
rate register files for x86 and IA-64 data, as Figure 1 shows.
The text notes, however, that some designs may alternatively
alias the x86 registers onto the IA-64 registers, eliminating
the need for two register files. The instruction descriptions
note a bit in the control register that allows software to check
whether the x86 registers are implemented (see “Glossary”
sidebar), implying that some IA-64 processors may use one
technique while some use the other.

The application makes it clear Merced will execute x86
instructions in hardware. Its performance in x86 mode is
highly dependent on the complexity of the “translator.” A
simple one-to-one translator would probably produce 486-
like performance. To achieve competitive x86 performance,
the chip must include a complex translator with multiple
parallel decoders and a large reorder buffer. Alternatively,
x86 translation could be done in software, supercharging the
on-chip translator for maximum performance.

A Patent Is Not a Processor
One must be cautious in drawing specific conclusions from a
patent or patent application. This application, like most,
describes several methods of achieving the same result; if
granted, this breadth will increase Intel’s legal protection.
The actual Merced implementation, however, could use any
of the methods described here—or none of them.

In its broadest interpretation, this patent application
could prevent other vendors from building dual-mode
processors, even if neither of the instruction sets is x86. The
core of the application, however, appears to be the claims
that reference the implementation of specific x86 and IA-64
instructions. If granted, these claims could prevent competi-
tors from building processors compatible with Merced, an
outcome Intel certainly desires.

For more information, additional excerpts from the Intel
patent application WO 96/24895 are posted on our Web site at
www.MDRonline.com/mpr/merced.

M

Instruction
Cache

x86
Register

File

IA-64
Execution

Unit

IA-64
Register

File

IA-64
Decoder

x86→IA-64
Translator

Figure 1. One of several possible implementations given in the
Intel patent application shows instructions from the cache being
fed to either an x86 translator or an IA-64 decoder before execu-
tion. All instructions are executed in a single execution unit.
(Source: WO 96/24895; x86 and IA-64 labels added by MDR)
3 1 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T3 1 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

	First Merced Patent Surfaces
	Table 1. IA-64 and x86 instructions for switching...
	Flexible Coding Philosophy
	New Instructions for IA-64, x86
	Implications for IA-64
	Possible Merced Implementations
	Figure 1. One of several possible implementations...
	A Patent Is Not a Processor

	A Glossary for Merced
	x86JMP: Jump to x86 ISA

