
s Taste
arketing Machinery Run Amok
I yield to no one in my appreciation of
advances in computer technology.

Java is not one of them.
Java has worked up the development

community until they’re all but inconti-
nent over the perceived business oppor-
tunities this new language will provide.

Java will topple empires, level playing fields, empower
masses, drain swamps, and right ancient wrongs. It seems
there are no miracles this programming language-cum-
religion can’t perform.

Java may be the grandest hoax perpetrated on the
computer industry in a decade. Yet with all the dark in-
evitability of Greek tragedy, one company after another
announces its plan for Java devices, or operating systems, or
even silicon.

Don’t get me wrong—as a programming language,
Java is a fine and useful tool, a welcome change from C++.
Its enforced discipline makes writing code more oops-proof
than usual. Java applications are constrained to a playpen
beyond which they can’t do much harm, so code is relatively
safe to run. Like any high-level language, Java can be com-
piled into the binary instruction set of just about any micro-
processor. This is a good thing. Instead, conversion to byte-
code is the rule.

Simply put, Java sacrifices performance at the altar of
portability. Zealots chant the “write once, execute anywhere”
mantra, stating the characteristic that supposedly makes
Java perfect for networked systems. To solve the problems
inherent in distributing source code, Java programs are tok-
enized (into “bytecode,” for lack of a better term), a tech-
nique many will recall fondly from pubescent days spent
writing GW-BASIC programs.

The beauty of Java is that it runs equally poorly on all
microprocessors. Executing bytecode involves emulating not
just an alien instruction set but an entire imaginary com-
puter, the Java Virtual Machine (JVM). This requires either
an interpreter or a JIT (just-in-time compiler), both of which
are huge applications. (Even Java chips need an emulation
library.) Quite apart from the memory footprint of the JIT
itself, bytecode swells 2–5× in size during the conversion,
according to those who have witnessed the spectacle.

Java bytecode cannot conceivably run as fast as code for
a chip’s native instruction set. Modern CPU architectures are
designed specifically for efficient instruction execution (a
legacy of RISC). With few constraints other than the pursuit
of performance, these CPUs all adopt similar architectural

Java Not to Everyone’
Much of Industry’s Interest Is Result of M

■ T H E E D I T O R I A L V I E W
© M I C R O D E S I G N R E S O U R C E S M A Y 1 2
features and basic instruction types. The fact that none of
them resembles Java bytecode should surprise no one.

Sun’s marketing staff is to be congratulated for hitching
Java’s PR wagon to that of the Internet. From the ashes of
Oak, Java was recast as Internet technology, and its star has
risen as rapidly as interest in the Internet itself.

Java is touted as a panacea for business, home, and
embedded applications alike. But Java’s strongest point—its
portability—must be traded off against reduced perfor-
mance, increased memory requirements, and a potential
increase in cost. This tradeoff makes more sense in some sit-
uations than others.

Java is terrific at rotating icons—hardly a performance-
intensive task—but missionary Javaphiles attempt to ex-
tend this paradigm to a completely network-based, diskless
existence. Rather than storing applications locally, we
should download them from the Web. Applets can be cre-
ated by anyone and thrown, like a message in a bottle, into
the Internet sea for everyone to use, free of charge. Applets
are inherently safe, they’re modular, and they play together
without crashing.

Shareware may be fine for file-exchange utilities, but
not for mission-critical applications. History teaches that
few competent programmers distribute their wares for free.
Companies like Corel have said they will sell complete Java
application suites, but will end users really value portability
enough to reduce their Pentium PC to the speed of a 486?
Perhaps they’ll just buy Microsoft Office instead.

For embedded uses (i.e., approximately 99% of the
world’s consumption of microprocessors), the tradeoff is
even more clear. Most embedded applications are extremely
cost sensitive and generally ship with their key software
already installed. Since portability is of little value for ROM
code, cost-focused embedded designers are well advised to
compile directly to the native instruction set of their proces-
sor of choice.

Java bytecode is simply a nonsolution for these prob-
lems. As an object-oriented language, Java is great. But
whenever performance or cost are important, programs
should be cast in binary encoding, not bytecode. System
designers who should know better are tossing memory space
and performance out the window. It’s time for the industry
to wake up and smell the coffee. Pass the sugar. M
, 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

