
M•Core Shrinks Code, Power Budgets
Motorola’s Newest 32-Bit Family Aims to Outdo Low-Power CompetitorsE

M
B

E
D

D
E
D

by Jim Turley

Processor powerhouse Motorola
started up yet another generator at
the recent Microprocessor Forum,

taking the wraps off M•Core, the company’s latest 32-bit
embedded microprocessor family. A totally different instruc-
tion set from 68000, ColdFire, or PowerPC, M•Core promises
to re-energize Motorola’s efforts to power the next genera-
tion of wireless, portable consumer items.

The new architecture has been in development since
1993, but the first hints of its existence surfaced only last
month (see MPR 9/15/97, p. 4). M•Core is intended to wres-
tle with ARM, promising better performance, better code
density, and even lower power consumption than the best
the English firm’s many licensees can offer. Motorola even
plans to license M•Core to outside companies. We expect
Mitsubishi will be the most likely first candidate.

M•Core fills a void in Motorola’s product line for a 32-
bit CPU with very low power consumption. All of its current
32-bit products are either too old, too complex, or both. The
68K is far too complicated to ever reach the lowest power lev-
els, and PowerPC, although generally characterized as a RISC
processor, has one of the more complex internal architec-
tures in existence. Even ColdFire, with its 68K legacy, is bur-
dened with a core architecture that gives it a built-in handi-
cap against its low-power competitors.
© M I C R O D E S I G N R E S O U R C E S O C T O B E R
To compete in the burgeoning market for portable
handheld devices—like the ones Motorola itself makes—the
company felt it needed something entirely new. M•Core is
distinctly different from any of Motorola’s other popular
processors and gives the company its best chance yet of stak-
ing a sizable claim in this expanding territory.

Chip Shadows Registers Like a Microcontroller
The register file, as Figure 1 shows, is fairly straightforward.
It consists of sixteen 32-bit registers, all of which are general-
purpose. The only restrictions are that r0 and r15 are used as
a stack pointer and link register by a few instructions.

In addition to the 16 main registers is another set of 16
identical registers. This “alternate” register set, R0'–R15', can,
at the programmer’s option, be used instead of the normal
register file. Typically, this alternate register set is reserved for
interrupt handlers or other time-critical routines. Such
duplicate register files are common in 8- and 16-bit micros.

M•Core’s control and status registers include a proces-
sor status register (PSR), two pairs of “shadow”registers, and
five scratch registers as well as some global resources. The
PSR contains various control and status flags, including the
lone conditional bit, or C flag. The four shadow registers are
used during interrupt handling and constitute M•Core’s
entire contribution to state preservation during exceptions.
The five scratch registers, SS0–SS4, can be used by supervi-
sory software for any purpose.

The M•Core architecture defines two privilege modes:
user and supervisor. Supervisory code can access all the reg-
isters in Figure 1; user code has access to only the basic 16
registers (or their alternates) and the C flag. Except for a few
operations that modify system registers, any instruction can
be executed in either mode.

First-Level Interrupt Response Is Very Quick
Two input pins can initiate a hardware interrupt: the normal
interrupt and the fast interrupt. Software faults and excep-
tions, can, of course, also initiate exception processing.

M•Core keeps first-order interrupt-response time
extremely brief by avoiding a stack and using shadow regis-
ters. On an interrupt or exception, the chip copies only two
system registers to their respective shadow registers. After
that, exception handling is up to the programmer.

For a normal hardware interrupt or any software excep-
tion, the PC and PSR are copied into EPC and EPSR (or FPC
and FSPR if the exception was caused by a fast interrupt).
The chip then enters supervisor mode, disables tracing, and
disables subsequent normal interrupts (or fast interrupts,
depending on the cause of the exception).
C
op

ie
d

on
 e

xc
ep

tio
n

Standard registers Alternate registers Control/status
registers

Cr0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12
r13
r14
r15

(sp)

(lp)

PSR
VBR
EPSR
FPSR
EPC
FPC
SS0
SS1
SS2
SS3
SS4
GCR
GSR
PC

r0'
r1'
r2'
r3'
r4'
r5'
r6'
r7'
r8'
r9'
r10'
r11'
r12'
r13'
r14'
r15'

(sp)

(lp)

Figure 1. The M•Core architecture has two identical sets of
general-purpose registers, either one of which is available to
user-mode code. On exceptions, the PC and the PSR (processor
status register) are copied to a pair of shadow registers.
2 7 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

2 M • C O R E S H R I N K S C O D E , P O W E R B U D G E T S E
M

B
E
D

D
E
D

o
h

Finally, M•Core clears the exception-enable flag. Clear-
ing EE doesn’t hold off subsequent exceptions, nor does it
prevent the two shadow registers from being overwritten if
one does occur, but it does alert the chip that such an excep-
tion will be unrecoverable (i.e., that state information has
been lost).

To allow nested exceptions or interrupts, programmers
should copy the two shadow registers, re-enable them by set-
ting EE, and set IE (or FE) to recognize new interrupts.

At the end of the exception handler, software uses
either the RTE (for software exceptions and normal hardware
interrupts) or the RFI (for fast interrupts) instruction, which
restores the PC and PSR from the appropriate pair of shadow
registers.

In truth, fast interrupts are no faster than other hard-
ware interrupts; they merely use a different pair of shadow
registers, which makes it possible to acknowledge a fast inter-
rupt while still servicing a normal inter-
rupt, or vice versa.

For applications in which interrupt
latency is critical, programmers can set the
IC (interrupt control) flag in the PSR. The
IC bit determines whether interrupts and
exceptions are recognized on instruction
boundaries or on clock-cycle boundaries.
The difference can be important when
executing long-latency instructions such
as multiplication or division (both of
which M•Core supports in hardware). If a
long-latency instruction is aborted be-
cause of an interrupt, M•Core will auto-
matically restart it.

IRQ Vectors Harken Back to 68K
Each exception or hardware interrupt can
be given its own interrupt handler via M•Core’s vector table.
The table consists of 128 four-byte entries, one for each of
128 possible exception vectors. The process is similar in con-
cept to interrupt handling in the 68000 and ColdFire fami-
lies, and the 6800 before them.

Each 32-bit vector is an address pointer to the appro-
priate exception handler. After any exception, M•Core loads
the PC from the vector table and begins execution at the
specified address. Programmers can use the least-significant
bit of the vector to choose between the main and alternate
register files for the exception handler.

Internal exceptions are assigned fixed vectors; hardware
interrupts can take either the default vector (i.e., autovector)
or a vector supplied by external hardware. Hardware vector-
ing allows the system designer to assign different exception
handlers to different interrupt sources, such as timers, A/D
converters, and the like.

M•Core differs from previous Motorola processors in
one important aspect. With M•Core, the seven-bit interrupt
vector is supplied simultaneously with the interrupt itself:

Motorola’s John
about M•Core’s c
instruction set at t
© M I C R O D E S I G N R E S O U R C E S O C T O B E R
the vector is latched on the falling edge of the interrupt-
request pin. All 68K parts, on the other hand, recognize the
interrupt first and then start a separate interrupt-acknowl-
edge cycle to fetch the vector. The latter method can lead to
lengthy—and, more important, uncontrolled—delays before
the vector comes back and interrupt processing begins.

Instructions Are All 16 Bits
For a 32-bit microprocessor, it’s unusual to have a 16-bit
instruction word, but that is precisely what Motorola wanted.
By keeping all instructions within a tight 16-bit encoding,
Motorola wanted M•Core users to be able to get their best
performance from a 16-bit external bus. In addition to
reducing cost, a 16-bit bus should also reduce power con-
sumption compared with a 32-bit bus, which was another of
Motorola’s goals.

Hitachi’s SuperH family is the only other mainstream
32-bit architecture to use 16-bit instruc-
tions exclusively. Motorola’s own 68K and
ColdFire and NEC’s V800 use a mixture of
16-bit, 32-bit, and longer instructions; so
do members of the x86 family, with some
8-bit instructions thrown in.

M•Core also has similarities to ARM’s
Thumb (see MPR 3/27/95, p. 1) and the
MIPS-16 (see MPR 10/28/96, p. 17) instruc-
tion sets. The latter two are “code compres-
sion” instruction sets that encode a useful
subset of the full 32-bit instruction set and
allow the chip to run in a code-compressed
mode using just the subset. In both cases,
however, ARM and MIPS chips still have
access to their full 32-bit instruction sets, so
these combination instruction sets are more
like the 68K’s mixed 16/32-bit design than a

true 16-bit instruction set.

Addressing Modes Are Fixed
About 14% of M•Core’s opcode space is unused, allowing
room for promised future expansion. Motorola is already
planning enhancements to the basic M•Core instruction set
for special purposes. Thus, as M•Core parts proliferate in the
coming years, they will all support a basic subset, with indi-
vidual members executing a dozen or so extra instructions as
necessary.

M•Core is subject to the usual limitations of a 16-bit
instruction word. Virtually all register-to-register operations
are destructive, with the result replacing one of the source
operands. Immediate (literal) values are generally limited to
5–7 bits. Some specific options or encodings are illegal
because they conflict with other instructions.

As a nouveau-RISC architecture, M•Core allows only
loads and stores to memory; all ALU operations are to regis-
ter contents. Four addressing modes are supported: register
indirect, register indirect through R0 (the stack pointer),

Arends talks
mpact 16-bit
e Forum.

M
IC

H
A

E
L

M
U

S
TA

C
C

H
I

2 7 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

3 M • C O R E S H R I N K S C O D E , P O W E R B U D G E T S

E
M

B
E
D

D
E
D

register indirect with 4-bit offset, and PC-relative with 8-bit
offset. Each of the four addressing modes is used by exactly
two instructions: one load and one store.

M•Core Does a Lot With 16 Bits
It’s tough to break into the market with an entirely new and
incompatible instruction-set architecture unless the new
offering is significantly better than any of its competitors.
Even then, success isn’t assured. In M•Core, though, Moto-
rola has a strong design with a lot to offer.

The nearest—and most relevant—comparisons are to
Thumb, MIPS-16, and SuperH. M•Core’s designers were
faced with the same problems as those of SuperH, inas-
much as there is no 32-bit instruction set to fall back on.
Even little-used system-level operations have to be included
in the 16-bit instruction map.

M•Core is unusual for its pair of signed and unsigned
divide instructions. Most 32-bit CPUs (ARM and MIPS
among them) don’t have a divide operation at all. Although
SuperH chips do, Hitachi makes integer division an awk-
ward, iterative process. M•Core’s throughput is no better
than SuperH’s, but at least it’s a single instruction. Early-out
hardware means that M•Core divides can be as short as
3 cycles or as long as 37; the same shortcut in SuperH code
requires manually examining the operands.

Hitachi’s SuperH chips share the same kind of 16×32-
bit register file as M•Core, but SuperH chips use dedicated
registers for multiplication and division. Separate instruc-
tions are needed to transfer data to/from these registers,
which slows these operations somewhat compared with
M•Core. (Most MIPS chips work the same way.) On the
plus side, SuperH supports 64-bit multiplication (both
signed and unsigned), which M•Core can’t do. Extended-
precision integer multiplication is useful in some DSP
applications or for emulating floating-point arithmetic on
the cheap.

The most significant difference between the instruc-
tion sets is Hitachi’s inclusion of a multiply-accumulate
instruction, which M•Core doesn’t have. A simple MAC
operation goes a long way toward making these chips use-
ful in lightweight signal-processing applications. Given
Motorola’s focus on communications, it’s remarkable that
M•Core doesn’t include this basic function. When Motorola
adds extensions to the M•Core instruction set in 1999, a
MAC will presumably be among them.

M•Core Holds Advantages Over Thumb
Compared with Thumb, M•Core has twice as many regis-
ters, since Thumb’s 16-bit instructions can access only the
first eight. M•Core also has the richer and more varied
instruction set, which is all the more surprising given that
M•Core doesn’t have a 32-bit instruction set to fall back on.
Thumb, which uses its 16-bit instruction set only for appli-
cation code, actually has fewer useful operations and varia-
tions than M•Core does.
© M I C R O D E S I G N R E S O U R C E S O C T O B E R
Both instruction sets include high-frequency instruc-
tions for signed and unsigned addition and subtraction, 32-
bit multiplication, loading and storing multiple registers,
and loading and storing bytes and halfwords (with zero-
extension).

Only M•Core can calculate absolute value or add and
subtract using immediate operands; it even has reverse sub-
traction (where the register is subtracted from a constant,
instead of vice versa). M•Core also has instructions for
signed and unsigned division, which ARM chips have never
had. M•Core’s FF1 (find first one) and BREV (bit reverse)
are odd but crucial additions for those applications that
deal with cryptography.

M•Core, ironically, also has much better support than
Thumb for conditional execution, which has been a hall-
mark of ARM code. Conditional move, clear, shift, incre-
ment, decrement, and decrement-and-branch instructions
can eliminate many short code hops. M•Core also allows
unsigned comparisons (higher-or-same) and can extract
any byte from a 32-bit word in a single operation.

In ARM’s favor, Thumb can sign-extend bytes or half-
words loaded from memory, which M•Core does not sup-
port in one instruction, and Thumb has more conditions
on which to control a branch, compared with M•Core’s sin-
gle condition flag.

First Chips Demonstrate Code-Density Goals
The first chip in the M•Core family will be a mixed DSP/CPU
device similar to the company’s 68356. The device mixes a
56600 16-bit DSP core and a separate M•Core processor with
a host of peripherals; aimed at cellular baseband applica-
tions, it is expected to begin shipping in 1Q98.

The second M•Core device, boldly dubbed Power-
Strike 1, will be a more conventional general-purpose proces-
sor suitable for evaluating M•Core’s merits. It integrates a
33-MHz core with 32K of SRAM, a keypad input, six pulse-
width modulation (PWM) channels, and two UARTs. Housed
in an LQFP-144 package, the 3.3-V chip is expected to sell for
$13 when it becomes available in 1Q98.

One of Motorola’s overall goals in creating M•Core was
to improve on the code density of any of the current crop of
32-bit embedded processors. The company set ARM as its
target, an architecture with unusually good code density for
a 32-bit chip and an obvious target for a company focused on
telecommunications.

As Figure 2 shows, M•Core succeeds admirably, at
least in Motorola’s tests. On a number of C language code
samples, M•Core object code is an average of 50% smaller
than the same code compiled for an ARM7, or 11% smaller
than Thumb code. The code fragments in these tests range
from a few hundred bytes to about 6K in size. All 16 tests
were compiled using the latest C compilers with all the
size optimization switches turned on. Although the tests
are small (and hand-picked by Motorola), the results are
impressive.
2 7 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

4 M • C O R E S H R I N K S C O D E , P O W E R B U D G E T S E
M

B
E
D

D
E
D

Is M•Core Really Necessary?
In this industry, there are few undertakings more expensive
than developing and maintaining a new microprocessor
architecture. AMD, Intergraph, and others have learned this
to their detriment when sales volumes could no longer cover
the burdensome costs of development and tool support.
With so many architectures already on the market, couldn’t
Motorola have found a cheaper route to lower power?

The company believes not. To achieve its stated goal of
“best in class” power efficiency, it chose to optimize every
aspect of the design to reduce power consumption. M•Core’s
16-bit instruction word means narrower buses, fewer signal
transitions, and fewer memory chips. Dense code requires
less memory and fewer instruction fetches, lowering power
and cost. Good signal-processing performance—which
Motorola has promised but which is certainly not in evi-
dence in the first M•Core disclosure—would help eliminate
separate DSP chips. Motorola’s other architectures could not
have achieved the same level of code density and still retained
their software compatibility.

A more aggressive stance on fabrication processes
might have achieved similar goals with much less effort,
however. Much of M•Core’s expected benefit comes from the
0.35-micron process it’s built on, compared with the anti-
quated 0.8-micron process used for most ColdFire chips
today. All other things being equal, a 0.35-micron ColdFire
device would probably also run from a 1.8–3.6-V supply and
still reach 50 MHz—and, more important, drop power con-
sumption by a factor of five or more. Motorola could have
achieved perhaps 70–80% of the same benefit using the tools
it already had, and avoided all the time, money, and effort
expended to develop M•Core.

For comparison, IBM’s 401GF (see MPR 6/17/96, p. 9)
hits 50 MHz while drawing only 140 mW from its 3.3-V sup-
ply, proving that even a PowerPC instruction set needn’t be a
permanent handicap. Instruction sets and microarchitec-
tures do make a difference, but fabrication process, gated
clocks, and static cores are even more important, and can be
applied to almost any architecture.

Motorola’s Dilemma: M•Core or ARM?
ColdFire and M•Core were actually developed concurrently.
Resource limitations within Motorola stalled M•Core’s mat-
uration, delaying its eventual rollout by exactly two years
compared with ColdFire. Though they now seem unrelated,
the two were meant to be fraternal twins.

Timing issues caused Motorola’s Consumer Products
Group to choose ARM (see MPR 3/31/97, p. 4); had M•Core
development stayed on its original schedule, that embarrass-
ment might have been avoided.

The decision to license the architecture of arch-rival
ARM must have been a tough one. It was necessary, though,
and probably helped push M•Core into the market that
much sooner. Motorola is losing its edge in wireless com-
munications to makers of digital gear (namely Nokia and
© M I C R O D E S I G N R E S O U R C E S O C T O B E R
Ericsson), which seem to have made ARM almost a standard
in that market. For its products to be competitive, Motorola
needed to use a low-power, flexible CPU, regardless of its
provenance.

Now that ARM has its foot in the door, so to speak, it’s
there to stay. It will most likely be some years before the
“borrowed” architecture is back out of Motorola, if ever. Nat-
urally, Motorola’s semiconductor group is now pushing
M•Core aggressively to its product group, but ARM-based
products are nearing production, and many will have long
life cycles. Future generations of these products may stick
with ARM to preserve an investment in software, tools, and
interfaces. ARM was ready sooner, and the company can now
thumb its nose at M•Core.

M•Core Spans MCU, MPU Gap
Looking forward, potential Motorola customers will face a
bewildering array of choices for 32-bit embedded micro-
processors. Those who want high performance will gravi-
tate to PowerPC; those who want low power will choose
M•Core; and those who want to split the difference and gain
time to market will be pointed toward ColdFire. The 68K
customers are self-selecting.

As these product lines progress, ColdFire will obvi-
ously take over from the 68K as the basis for a host of
midrange application-specific devices. Motorola has set up
ColdFire’s design methods around synthesizable cores and
peripherals in order to help make that happen.

M•Core, on the other hand, will become the com-
pany’s entry-level 32-bit family: a move up from its many
16-bit microcontrollers for industrial, automotive, and
consumer-electronics applications. General oversight for
M•Core was given to Motorola’s Transportation Systems
Group, which is also responsible for the 68HC16 and 68300
chips used in those markets. As these applications call
for more powerful controllers, M•Core will be waiting
for them. M
1K

6K

5K

4K

2K

3K

O
bj

ec
t

C
od

e
Si

ze

au
to

bi
lv

bl
it

br
ev de

s

dh
ry

 2
.1

en
gi

ne

ev
al

2

fir
_i

nt

g3
fa

x

jp
eg

po
cs

ag

su
m

m
in

uc
bs

or
t

v4
2b

is

bf
fo

M•Core

Thumb

ARM7

Figure 2. On a number of compiled C code fragments, M•Core
consistently produced smaller object code (code and data) than
ARM7 or Thumb. (Source: Motorola)
2 7 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

	M•Core Shrinks Code, Power Budgets
	Figure 1. The M•Core architecture has two...
	Chip Shadows Registers Like a Microcontroller
	First-Level Interrupt Response Is Very Quick
	IRQ Vectors Harken Back to 68K
	Instructions Are All 16 Bits
	Addressing Modes Are Fixed
	M•Core Does a Lot With 16 Bits
	M•Core Holds Advantages Over Thumb
	First Chips Demonstrate Code-Density Goals
	Is M•Core Really Necessary?
	Motorola’s Dilemma: M•Core or ARM?
	Figure 2. On a number of compiled C code fragments...
	M•Core Spans MCU, MPU Gap

