
3DNow Boosts Non-Intel 3D Performance
Compact Instruction Set Extends MMX With Packed FP Operations
by Brian Case

Following through on promises made at last year’s
Microprocessor Forum (see MPR 10/27/97, p. 19), AMD has
formally introduced x86 instruction-set extensions for
speeding 3D-graphics applications. As we speculated, the
parallel-floating-point instructions pack two 32-bit floating-
point values into a single MMX register and compute two
results in parallel. Also confirming speculation, the first
implementations will be able to issue and execute two arith-
metic instructions simultaneously, yielding a peak through-
put of four floating-point operations per cycle.

Since last October, AMD has made a few name changes.
Along with co-collaborators Cyrix and IDT, the company has
officially dubbed the technology 3DNow! instead of AMD-
3D (our style, however, is to leave off the gratuitous exclama-
tion point). Wisely, the three companies agreed to support a
single MMX-like, parallel floating-point instruction set
instead of each trying to promote proprietary designs. In
addition to being vendor-neutral, the name 3DNow empha-
sizes that users need not wait for Intel’s forthcoming Katmai
processor to achieve 3D acceleration.

To agree on a common set of extensions, the companies
were forced to make some changes to their original designs.
Because AMD already had first silicon of its 3D extensions,
the others essentially dropped their own designs, despite
some superior features. Cyrix, for example, planned for bet-
ter exception handling (see MPR 10/27/97, p. 22), and IDT
sacrificed its expanded floating-point register file (see MPR
11/17/97, p. 17). AMD’s changes were simply to drop three
instructions that the others didn’t want to implement.

AMD’s first chip with 3DNow is the K6-2 (see MPR 6/1/98,
p. 16), formerly known as the K6 3D. IDT says its WinChip 2 3D
(see MPR 6/1/98,p.1) will ship in July.Cyrix will include 3DNow
in products using its Cayenne core, the first of which, the inte-
grated MXi processor, is expected to ship late this year.
© M I C R O D E S I G N R E S O U R C E S J U N E 1
New Instructions Focus on Basic Arithmetic
As Table 1 shows, 3DNow consists of a relatively lean set of
21 instructions that do for single-precision floating-point
data what the original 57 MMX instructions do for integers.
(Centaur originally planned a set of 53 new instructions.)

Ten 3DNow instructions provide basic add, subtract,
multiply, divide, and square-root functions. Addition is pro-
vided in two forms. As illustrated in Figure 1, PFADD sums
corresponding values from the two source operands and
places the results in the corresponding positions; PFACC sums
the two values in the first source operand to produce one
result and sums the two values in the second source operand
for the second result. PFADD is used to form intermediate
results in, for example, a matrix multiply, while PFACC per-
forms the final steps of two dot products. The choice of PFADD

or PFACC depends on how data is packed into operands.
Divide and square root are supported by providing

primitives that compute approximations of reciprocal and
reciprocal square-root. The advantage of this approach is
that these primitives are easy to implement and can be fully
pipelined. Properly scheduled code can reap high perfor-
mance from simple hardware.

The PFRCP or PFRCSQRT instructions provide an ap-
proximation with 14 or 15 bits of accuracy via table lookups;
if this accuracy is sufficient, two divisions can be computed
with only four instructions, including operand memory
loads, with four cycles of latency. If full single-precision
accuracy is required, the PFRCPIT1/PFRSQIT1 and PFRCPIT2

instructions are used to implement efficient Newton-
Raphson iteration. Six instructions, including the operand
loads, can compute two 24-bit-precision divides with eight
cycles of latency. Some programs will be able to achieve even
greater efficiency by scheduling integer operations along
with the 3DNow instructions.

Subtraction is supplied in normal and in operand-
reversed versions to make up for the limitations of the x86
high half low half

Register 1
03163

high half low half
03163

Register 2 or Memory

high half low halfRegister 1
03163

+

+

high half low half

Register 1
03163

high half low half
03163

Register 2 or Memory

high half low halfRegister 1
03163

+ +

PFADD
PFACC

Figure 1. The PFADD and PFACC instructions both perform two packed floating-point adds, but the way they combine operands is differ-
ent. The PFACC instruction is used at the end of a vector dot product to compute a single final sum. The PFADD instruction is usually used
simply to compute two independent sums simultaneously.
, 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

2 3 D N O W B O O S T S N O N - I N T E L 3 D P E R F O R M A N C E
architecture. The x86’s two-operand format combined with
only eight registers makes it useful to have subtract-reverse.

Two new integer instructions plug holes in the original
MMX instruction set. PAVGUSB computes the unsigned,
rounded integer averages of the eight corresponding pairs of
bytes in two operands. This instruction was included to
speed motion compensation in MPEG-2 video decoding.
Interestingly, Cyrix’s parallel-sum-of-differences instruction
for accelerating motion estimation (used in video encoding)
didn’t make the 3DNow final cut.

The PMULHRW instruction calculates the signed,
rounded integer products of the four corresponding pairs of
16-bit words in two operands and stores the high 16 bits of
each product. This operation is a numerically more accurate
version of the existing MMX PMULHW instruction, which
truncates instead of rounding.

Two Instructions Reduce Wasted Cycles
The FEMMS instruction is a faster version of the existing
EMMS (Empty MMX State) instruction. EMMS leaves the
shared MMX/floating-point registers in a valid state, but set-
ting a valid value into each register and register tag takes
time. FEMMS speeds the switch between MMX and floating-
point code by leaving the shared registers in an undefined
state. The code being entered can therefore make no assump-
tions about the values in the registers, but code normally
operates under this assumption anyway.

Though widely implemented in many RISC architec-
tures, 3DNow’s PREFETCH instruction provides a capability
that is fundamentally new to the x86 architecture. The
© M I C R O D E S I G N R E S O U R C E S J U N E 1
action of PREFETCH is to bring a line of data into the L1
data cache; it has the same semantics as a byte load opera-
tion, but data is not actually loaded into a processor regis-
ter. For the K6-2, the line size is 32 bytes; for all future
implementations of PREFETCH, a cache line is specified
to be at least 32 bytes. The byte address generated by
PREFETCH need not be aligned in any special way, such as
on a cache-line boundary.

PREFETCH is important for applications to exploit
3DNow instructions, because the raw processing power of
the parallel arithmetic will be wasted if even a few cycles are
spent idle waiting on cache misses. With careful scheduling
of PREFETCH operations, it will be possible for some appli-
cations to significantly reduce time wasted due to cache
misses. AMD’s “Code Optimization Application Note” shows
an example of a matrix multiply that uses PREFETCH along
with other carefully scheduled 3DNow instructions to
achieve maximum performance.

The PREFETCH instruction is available in two variants
initially, and more can be defined if needed. The three
register/opcode bits in the modR/M byte of the PREFETCH

instruction determine the variant. Thus, six new variants can
easily be defined.

PREFETCH loads a cache line and sets its MESI-protocol
state to Exclusive, while the PREFETCHW variant loads the
line and sets the MESI state to Modified. If it is known that
the prefetched data will be modified, the PREFETCHW op-
code will save one cycle that the PREFETCH opcode would
spend setting the cache line MESI state to Exclusive.

While the PREFETCH instruction is clearly beneficial
for speeding up code with 3DNow operations, it will also
help MMX code and some applications that use only the
standard x86 instructions. It seems likely that Intel will intro-
duce one or more prefetch instructions in Katmai.

PREFETCH brings to the x86 some of the benefits of
speculative loads, which have received significant attention
lately, especially in the context of new architectures like
IA-64 (see MPR 10/27/97, p. 1). Like a speculative load, if an
exception is detected, no activity occurs and the PREFETCH is
treated as a no-op instruction. A true speculative load, how-
ever, also hides the L1 cache latency by actually loading the
data into a target register. With its dearth of registers, a true
speculative load probably doesn’t make sense for the x86
architecture.

Rounding, Overflow Handling Simpler Than IEEE
The 3DNow single-precision floating-point format is com-
patible with IEEE-754, but results computed by 3DNow
instructions do not fully comply with the IEEE standard.
Where IEEE dictates support for four rounding modes,
3DNow supports only one, which can be either round-to-
nearest or round-to-zero (i.e., truncation). The choice is up
to the designers of each implementation of 3DNow. AMD’s
first implementation, in the K6-2, will provide round-to-
nearest mode.
Mnemonic

PFMAX
PFCMPGE
PFCMPGT
PFCMPEQ

PFMIN
PFRCPIT2
PFRSQIT1
PFRCPIT1
PFRSQRT
PFRCP
PFMUL
PFSUBR
PFSUB
PFACC
PFADD
PF2ID
PI2FD
PMULHRW
PAVGUSB
PREFETCH
FEMMS

Packed FP maximum
Packed FP compare, greater than or equal to
Packed FP compare, greater than
Packed FP compare, equal to

Packed FP minimum
Packed FP reciprocal/recip-sqrt second step (N-R)
Packed FP reciprocal-sqrt first step (N-R)
Packed FP reciprocal first step (Newton-Raphson)
Packed FP reciprocal sqrt approx (table lookup)
Packed FP reciprocal approximation (table lookup)
Packed FP multiply
Packed FP subtract reverse
Packed FP subtract
Packed FP accumulate
Packed FP add
Packed convert FP to 32-bit integer
Packed convert 32-bit integer to FP
Packed 16-bit int rounded multiply, keep high half
Packed 8-bit unsigned integer average
Prefetch at least 32-byte line into L1 data cache
Fast entry/exit of MMX or FP state

Description

Table 1. 3DNow adds 21 instructions to the x86 architecture. Most
deal with two 32-bit floating-point numbers packed into a single
64-bit MMX register.
, 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

3 3 D N O W B O O S T S N O N - I N T E L 3 D P E R F O R M A N C E
Regardless of the mode implemented by the hardware
for the computation instructions, the PF2ID and PI2FD

integer/floating-point conversion instructions always imple-
ment round-to-zero mode.

Overflow is also handled in one of two ways, deter-
mined by the implementation. All overflowing results are
saturated to either the appropriately signed value with max-
imum representable magnitude or to the appropriately
signed infinity. The K6-2 implements the former approach,
but perhaps saturation to infinity will be implemented in
chips from Cyrix and/or Centaur. Values that underflow the
minimum representable value, which is ±2–126, are clamped
to zero. Finally, 3DNow floating-point instructions do not
generate exceptions and do not set any status flags.

All of these restrictions are acceptable in the applica-
tion domain of 3D scene generation, either because excep-
tional conditions and out-of-range results and operands are
detected by algorithms before the 3DNow instructions come
into play or because the behavior as defined by 3DNow is
sufficient. If full IEEE compatibility or double- or extended-
© M I C R O D E S I G N R E S O U R C E S J U N E 1
precision calculations are required, programs must use the
standard x86 floating-point instructions.

Instruction Format Uses Few x86 Opcodes
AMD chose an encoding scheme for the 3DNow instructions
that minimizes the use of unassigned x86 opcodes. Intel’s
encoding of the MMX instructions uses the initial 0x0F byte
(“two-byte escape”) followed by a second opcode byte. In
keeping with the traditional x86 format, the second opcode
byte is followed by the modR/M byte, to specify operand
location information, and then any SIB (scale/index/base)
and/or displacement bytes.

As Figure 2 shows, the 3DNow encoding uses the previ-
ously unassigned 0x0F code in the second opcode byte, cre-
ating what could be called a “three-byte escape.” The familiar
x86 instruction components come next, including the op-
tional SIB and displacement. The distinguishing 3DNow
opcode byte comes at the end, where an eight-bit displace-
ment would normally be placed according to the traditional
x86 format rules.

This encoding scheme is certainly nontraditional and
potentially creates a serial decoding headache: the instruc-
tion’s function is specified by a byte whose location isn’t
known until the number of SIB and displacement bytes is
known. But with the aggressive decode and predecode strate-
gies used in modern x86 instruction-fetch units, this non-
conformist format should cause no significant problem. Plus,
with the modR/M, SIB, and displacement bytes in standard
positions, changes to existing decode logic were minimized.

A significant advantage of this encoding scheme is that
only a single previously unassigned two-byte opcode is
needed to encode the 3DNow extensions, which minimizes
3DNow’s “footprint” in the traditional x86 opcode space.
0F

Existing MMX Instruction Encodings

0F modR/M opcode

0F opcode modR/M

New 3DNow Instruction Encodings

SIB disp

SIB disp

Figure 2. Most 3DNow instructions have their opcode at the end
of the instruction, where an 8-bit displacement would normally
appear in the x86 format. This scheme has a minimum impact on
the existing x86 opcode space, but it makes 3DNow instructions
slightly longer and demands sophisticated decoding logic to hide
the decoding overhead.
Scheduler Buffer
(Twelve x86 / 24 RISC86)

Integer X ALU
add/sub,
logical,
shift,

mult/div,
byte ops,

special regs,
segment loads

MMX ALU
add/sub,
compare,
logical,

pack/unpack

3DNow!/MMX
Multiplier

multiply,
iteration of

reciprocal and
reciprocal sqrt

MMX Shifter
mmx shifts

3DNow! ALU
add/sub,
compare,
converts,

table lookup for
reciprocal and
reciprocal sqrt

MMX ALU
add/sub,
compare

Integer Y ALU
add/sub,
logical

X-Pipe
Issue Bus

Y-Pipe
Issue Bus

Figure 3. The new execution units that implement the 3DNow instructions are shared by the K6's two execution pipelines. Both pipelines have
equal access to the shared units, and as long as there are no data dependencies and no contention for resources, instructions may issue with
no restrictions. Note also the addition of a second MMX execution unit, and that the X-pipeline is, in general, more capable than the Y-pipeline.
, 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

4 3 D N O W B O O S T S N O N - I N T E L 3 D P E R F O R M A N C E
AMD did take the liberty of assigning two-byte opcodes for
two instructions: FEMMS and PREFETCH. These instructions
are generally useful both for 3D and non-3D code, so it
makes sense to keep their encodings short.

An important question is whether the 3DNow instruc-
tion encodings will conflict with the encodings for Intel’s
forthcoming Katmai new instructions (KNI). Sources indi-
cate that Intel has used unassigned two-byte opcodes, which
means that KNI and 3DNow should not overlap. Wisely,
Intel’s competitors seem to have said to Intel, “We recognize
your right to the juiciest opcodes; let’s just stay out of each
other’s way.”

Execution Units Shared by Two Pipelines
The first chip with 3DNow is the K6-2, which is now in pro-
duction. To support the new instructions, its execution
resources have been significantly enhanced over those of the
K6. In addition to the execution units that support 3DNow,
the K6-2 adds a second integer MMX unit, as Figure 3 shows.

One major execution unit, the 3D ALU, has been added
to support 3DNow, and the existing MMX multiplier has
been enhanced to support the extensions. The 3D multiplier
handles the multiply and reciprocal iteration instructions,
while the 3D ALU handles everything else: addition, subtrac-
tion, converts, compares, and table lookups.

AMD’s implementation of the 3DNow floating-point
instructions is fully pipelined, yielding a latency of two cycles
and a throughput of one cycle. PAVGUSB and PREFETCH

both have single-cycle latency and throughput. This perfor-
mance is better than what Cyrix had originally planned for
its 3D instructions (see MPR 10/27/97, p. 23), so it seems
possible that Cyrix and IDT may choose to implement these
instructions differently.

Figure 3 makes it clear that two similar 3DNow instruc-
tions cannot begin execution in the K6-2 simultaneously;
only one 3D ALU or one 3D multiply can begin per cycle.
The units are fully pipelined, however, so at most a single
cycle of delay is incurred if two operations contend for
the same resource. If two operations do not contend and
operand dependencies permit, both may start execution on
the same cycle, because the shared resources are equally
available to the operation-issue buses.

3DNow Overshadowed by AltiVec, KNI
The core arithmetic instructions in 3DNow are roughly
comparable to the basic floating-point operations pro-
vided by the recently announced AltiVec extensions to the
PowerPC architecture (see MPR 5/11/98, p. 1). For example,
both 3DNow and AltiVec use reciprocal approximation and
iteration to perform fast divide and square root. 3DNow’s
table lookups provides 14 or 15 bits of accuracy, more than
the 12 bits provided by AltiVec.

AltiVec goes far beyond 3DNow in most aspects, how-
ever, with 32 dedicated registers that are twice as wide, and it
has unique instructions such as base-2 logarithm estimation,
© M I C R O D E S I G N R E S O U R C E S J U N E 1
two-to-the-power, versatile multiply-accumulate, and gen-
eral data permutation.

In addition, AltiVec is much more faithful to the IEEE
standard in handling events such as overflow. Better IEEE
compliance was necessary to meet the requirements of appli-
cations beyond 3D acceleration. For example, in audio appli-
cations, it is necessary to know when a computed value over-
flows, so audible distortion is not generated. 3DNow will be
adequate for speeding 3D graphics, but AltiVec is more gen-
eral-purpose, and KNI may be as well.

Intel has said that KNI, which is also expected to em-
phasize parallel floating-point computation, will consist of
about 70 new instructions. Sources (see www.tbcnet.com/
~clive/vcomwinp.html#KNI) suggest that KNI supports a set
of new registers (see MPR 5/11/98, p. 4) that will each be able
to hold four FP values. Thus, KNI will likely be much more
powerful than 3DNow for a wide range of applications.

3DNow, KNI Later
AMD, Cyrix, and Centaur have chosen a wise path, imple-
menting as small a set of extensions as possible while still
offering significant acceleration for 3D game applications.
Games are important in the consumer market, where these
chip vendors are successfully competing with Intel.

With Katmai set to debut early next year, 3DNow must
garner support and achieve a payoff very quickly. Significant
support from software vendors and a marketing blitz will
help secure some consumer mindshare for the coming holi-
day buying season. Having all three chip vendors united in
support of 3DNow presents the strongest position possible,
but while some software ISVs may support both 3DNow and
Intel’s KNI, no vendor can justify supporting 3DNow instead
of KNI.

3DNow will be unique in the market for a few months,
but the technology is destined to coexist with Intel’s. Thus,
when KNI becomes available in Intel’s chips, the value of
3DNow will quickly fade. The likely scenario is that 3DNow
has only this holiday season to make its impact. But to many
ISVs, especially 3D-game companies, gaining an advantage
for even a single product cycle is enough motivation to com-
mit to using a technology like 3DNow. Many of the ISVs
interested in 3DNow are accustomed to making major mod-
ifications to their products once a year.

Although 3DNow is well designed, AMD, Cyrix, and
IDT must work hard over the next few months to guarantee
a return on their investment. Eventually, they will all imple-
ment KNI in their processors, and 3DNow is likely to end up
as a footnote in x86 history. M
F o r M o r e I n f o r m a t i o n

For more information on 3DNow, access the Web at
www.amd.com/products/cpg/k623d/inside3d.html.
, 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

http://www.tbcnet.com/~clive/vcomwinp.html#KNI
http://www.tbcnet.com/~clive/vcomwinp.html#KNI
http://www.amd.com/products/cpg/k623d/inside3d.html

	3DNow Boosts Non-Intel 3D Performance
	Figure 1. The PFADD and PFACC instructions both...
	New Instructions Focus on Basic Arithmetic
	Table 1. 3DNow adds 21 instructions to the x86...
	Two Instructions Reduce Wasted Cycles
	Rounding, Overflow Handling Simpler Than IEEE
	Figure 2. Most 3DNow instructions have their opcode...
	Figure 3. The new execution units that implement the 3DNow...
	Instruction Format Uses Few x86 Opcodes
	Execution Units Shared by Two Pipelines
	3DNow Overshadowed by AltiVec, KNI
	3DNow, KNI Later

	For More Information

