
Point DSP Lead
 Powerful ’C6701
By Amit Shoham and Jeff Bier,
Berkeley Design Technology, Inc. (BDTI)

Next month, Texas Instruments plans to reassert itself
in the floating-point DSP market by sampling the TMS-
320C6701, the first member of its new high-performance
floating-point product family. With the introduction of the
’C6701, TI has put another egg in its VLIW basket, strength-
ening its commitment to the VLIW approach for high-
performance DSPs.

Floating-point devices have historically accounted for a
small share of the market for DSPs. Indeed, in recent years,
two of the four major DSP vendors—Lucent and Moto-
rola—have withdrawn from the floating-point market (for-
mally or otherwise), leaving Analog Devices and TI as the
only contenders. While TI’s earlier TMS320C3x and TMS-
320C4x lines met with success, in recent years these families
have stagnated as TI has focused on much higher volume
fixed-point products. In the resulting competitive void,
Analog Devices (ADI) has made significant inroads with its
ADSP-2106x SHARC devices. (ADI recently announced a
second generation of SHARC processors with SIMD en-
hancements and higher clock speeds.) Making matters
worse, high-end CPUs have pulled ahead of DSP chips on
floating-point DSP application performance.

With the ’C6701, TI is back in the floating-point DSP
game. Using the same underlying VLIW-like architecture as

TI Aims for Floating-
DSP Giant Ups the Ante on VLIW With
© M I C R O D E S I G N R E S O U R C E S S E P T E M B E R
the fixed-point ’C6201 (see MPR 2/17/97, p. 14), the ’C6701
promises to make TI’s floating-point DSP performance
competitive with that of SHARC and of high-end general-
purpose processors. In doing so, however, the new device
makes the same sacrifices as the ’C6201: voracious program-
memory usage, software-development complexity, high
power consumption, and system-integration challenges.
Users of floating-point DSPs are accustomed to sacrificing
memory usage and power consumption compared with
fixed-point devices, but the ’C67xx is even more resource-
hungry than other floating-point DSPs.

A First in Compatibility
Notably, the ’C67xx and ’C62xx families are the first floating-
point and fixed-point DSP families to share the same under-
lying architecture: the instruction set of the ’C67xx is a
superset of the ’C62xx instruction set, allowing the ’C67xx to
execute ’C62xx object code. Additionally, the ’C6701 will be
pin-compatible with the fixed-point ’C6201. Because of the
differing priorities of fixed-point and floating-point DSP
users, all previous generations of floating-point DSPs have
been incompatible with their fixed-point siblings.

Developers of DSP-intensive applications often begin
with a floating-point simulation of their application and can
spend months porting it to a fixed-point implementation to
minimize production costs. For applications where the
’C6xxx devices fit, users may create an initial floating-point

product or prototype based on the ’C67xx and later
migrate to the ’C62xx without having to switch to a
very different type of device.

The pin-compatibility between the ’C6701
and ’C6201 will allow developers to use the same
hardware design for an initial floating-point prod-
uct and for a later fixed-point implementation.
Unfortunately, the software compatibility between
the ’C67xx and the ’C62xx will prove less advanta-
geous than one might expect. Converting optimized
’C67xx assembly code to optimized ’C62xx assem-
bly code will require almost complete rewriting and
will be extremely challenging, due to the program-
ming complexity of these devices. If programmers
are willing to give up much of the performance
advantage of the devices and write applications
in C, however, the similarity between the two fami-
lies will simplify porting to a modest degree.

Up to One Billion FLOPS
In many respects, the ’C6xxx families resemble
a high-end RISC architecture with an unusual

ecution
ows the
256

Register Bank A
(16 × 32)

Register Bank B
(16 × 32)

Program Fetch
Instruction Dispatch
Instruction Decode

L1 S1 M1 D1

ALU
ALU,

Shifter Multiply Add/Sub

L2 S2

ALU
ALU,
shifter

M2

Multiply

D2

Add/Sub

Data Bus 1 (64 bits)

Program Memory
(16K × 32)

Data Memory
(32K × 16)

Control/Status
Registers

Data Bus 2 (64 bits)

Figure 1. The block diagram of the ‘C67xx core illustrates the eight ex
units, arranged in two sets of four. The 256-bit-wide instruction bus all
core to fetch eight 32-bit instructions per cycle.
 1 4 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

2 T I A I M S F O R F L O A T I N G - P O I N T D S P L E A D
instruction set more than a conventional DSP architecture.
Like its fixed-point counterpart, the ’C67xx core is eight-way
VLIW, has a very deep pipeline, and sports two sets of four
execution units, as Figure 1 shows. The ’C67xx extends the
11-stage pipeline of the ’C62xx to a breathtaking 16 stages.

Like the ’C62xx, the ’C67xx is nominally divided in
half, with 16 registers and four execution units on each side
(A and B). The ’C6xxx families have a register-oriented
architecture, providing 32 general-purpose 32-bit registers.
In contrast, more traditional DSPs typically provide dedi-
cated address registers, operand registers, and accumulators.
Each of the execution units of the ’C67xx has unlimited
access to the registers on its side of the device. Additionally,
during each clock cycle, any one execution unit on each side
may access one register on the opposite side of the device.

The two groups of execution units are nearly identical,
and they perform the same functions as on the ’C62xx. Three
of the execution units on each side, however, have been
extended to support 32-bit floating-point arithmetic. Each
group contains a floating-point multiplier (M), a floating-
point adder (L), a floating-point unit for comparisons and
other miscellaneous operations (S), and a load/store unit (D).

With three FP execution units per side, the ’C67xx is
capable of up to six FP operations per clock cycle, or one bil-
lion FP operations per second at its projected clock speed of
167 MHz. But keeping all six FP execution units busy during
every clock cycle requires an even mix of multiply, add, and
miscellaneous operations, such as compare or absolute
value. This instruction mix is uncommon in DSP applica-
tions, so the chip’s peak performance will rarely be achieved
in applications.

With one FP multiplier and one FP adder per side, the
’C67xx is capable of performing up to 334 million multiply-
accumulates per second at 167 MHz—assuming software
pipelining or loop unrolling is used to cover the latencies of
the multiply, add, and load operations. By this somewhat
more realistic performance measure, the ’C67xx is still faster
than any other floating-point DSP.

The two FP adders also perform 40-bit fixed-point
arithmetic as well as logical compares, normalization, bit-
count operations, and integer/FP conversions. Multiplica-
tion is handled by the M units. In addition to FP multiplica-
tion, the M units can perform both signed and unsigned 16
× 16 → 32-bit multiplication and 32 × 32→ 32-bit or 32 × 32
→ 64-bit integer multiplication.

The S units perform FP comparison, absolute value,
and reciprocal or reciprocal–square-root estimate opera-
tions. The S units also have a 32-bit fixed-point ALU and a
40-bit shifter. These units can perform some of the same 32-
bit fixed-point arithmetic operations as the L units, along
with 32-bit and 40-bit shifts. One S unit is also responsible
for branching and branch-address generation.

A 32-bit adder allows the D units to perform simple
fixed-point arithmetic operations, but their primary pur-
pose is address generation.
© M I C R O D E S I G N R E S O U R C E S S E P T E M B E R
Most fixed-point operations execute in a single cycle
(multiplies, loads, and branches are exceptions), but floating-
point operations have longer latencies (typically three to five
cycles), complicating software development.

Double-Precision Arithmetic Takes Longer
The ’C67xx is the only DSP to support both single-precision
and double-precision IEEE-754 floating-point arithmetic.
All floating-point instructions include both single- and
double-precision variants, and instructions to convert
between the single- and double-precision formats are also
provided. Double-precision values are stored in adjacent
pairs of registers, as are 40-bit fixed-point operands.

While all single-precision arithmetic instructions have
single-cycle throughput, most double-precision arithmetic
instructions stall the corresponding execution unit for one
or three cycles and have longer latencies than their single-
precision variants.

These stalls and other restrictions considerably reduce
the performance of the ’C67xx on double-precision arith-
metic compared with single-precision arithmetic. For
example, the ’C67xx is capable of up to 83.5 million double-
precision multiply-accumulates per second at 167 MHz
compared with 334 million single-precision multiply-
accumulates per second at the same clock rate.

For the vast majority of signal-processing applications,
single-precision arithmetic is sufficient. However, for those
rare applications that require double precision, the ’C67xx
will have a strong performance advantage over other floating-
point DSPs, which must emulate double-precision opera-
tions in software.

Up to 256 Bits of Instructions Per Cycle
The ’C67xx has a VLIW-like architecture like that of its
fixed-point predecessor, most accurately described as a stati-
cally scheduled superscalar machine. As on the ’C62xx, the
’C6701 core consumes eight 32-bit instructions at once from
its on-chip 256-bit instruction bus. The eight-instruction
group, known as a fetch packet in TI’s nomenclature, must
be 32-byte aligned. The ’C67xx always fetches a complete
fetch packet at once. However, not all eight instructions in
the fetch packet are necessarily executed simultaneously.

Independent of the 256-bit fetch packet, the ’C67xx
defines an execute packet, which can be 1–8 instructions
long. All instructions in an execute packet are dispatched
together. A bit in each instruction indicates whether that
instruction is the last one in its execution packet. It is the
programmer’s (or compiler’s) responsibility to guarantee
that all instructions in the execute packet can, indeed, be dis-
patched simultaneously. The ’C67xx hardware does no
dependency checking among instructions.

Although there are eight instructions in each fetch
packet, and eight execution units, each instruction does not
necessarily correspond to one execution unit; the instruc-
tions are not position-dependent within the fetch packet,
 1 4 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

3 T I A I M S F O R F L O A T I N G - P O I N T D S P L E A D
which is the traditional VLIW method. Instead, each instruc-
tion is encoded for a specific execution unit.

Some fixed-point instructions can be encoded for multi-
ple types of execution units, but the encoding is fixed prior to
run-time. The fixed-point ADD instruction, for example, can
be encoded for the L1, L2, S1, S2, D1, or D2 units. Floating-
point instructions must be encoded for a particular type of
execution unit; the floating-point ADDSP instruction, for
example, can be encoded only for the L1 or L2 units. Pro-
grammers can explicitly dictate the binding of instructions or
leave it to the assembler or compiler.

Under ideal circumstances, all eight of the ’C67xx’s exe-
cution units can be kept busy on every cycle. In practice, data
dependencies, resource conflicts, multicycle operations, and
other realities of programming will force less than total uti-
lization of the core’s resources. Rather than waste space in
the fetch packet by padding with NOPs, TI allows multiple
execution packets in a single fetch packet.

RISC-Like Instructions With Predication
Table 1 lists the new instructions found in the ’C67xx but not
in the fixed-point ’C62xx. Every ’C67xx instruction (includ-
ing branches) can be predicated, or executed conditionally,
based on the zero/nonzero status of the five condition regis-
ters. Theoretically, all eight instructions in a packet could each
be predicated on a different condition. This type of predicated
execution is also used in the Philips Trimedia architecture (see
MPR 11/13/95, p. 22), a VLIW media processor.

The ’C67xx has none of the moderately complex multi-
operation instructions most DSP chips have. Multiply-
accumulate, for example, is handled as a multiply followed
© M I C R O D E S I G N R E S O U R C E S S E P T E M B E R
by a separate add. Fetching a memory-resident coefficient
requires a third, independent, operation. Loops must also be
explicitly coded in software; there is no intrinsic zero-
overhead loop feature in the ’C67xx. Loop counters must be
explicitly decremented, with a conditional branch used to
return to the top of the loop.

Because the ’C67xx divides common DSP operations
into separate instructions, performance comparisons with
conventional DSPs are tricky. A single multiply-accumulate
becomes three or four different instructions on the ’C67xx
compared with a single instruction on a conventional DSP.
This makes MIPS a poor performance metric when compar-
ing the ’C67xx with other DSPs. In promoting the fixed-
point ’C6201, TI has focused heavily on its “1,600 MIPS”
performance claim, leaving many users to discover for them-
selves that ’C6201 MIPS is defined quite differently from tra-
ditional DSP MIPS. The ’C6701 presents the same hazard.

More Memory, Please!
TI’s initial implementation of the ’C67xx architecture is the
TMS320C6701. The part has 128 Kbytes of on-chip memory,
evenly divided between program and data space.

The on-chip program memory has a 256-bit path into
the ’C67xx core, allowing it to transfer an entire eight-word
fetch packet in one cycle. In contrast, off-chip memory
accesses occur over a 32-bit external bus, requiring at least
eight cycles to transfer an eight-word fetch packet. The
’C67xx must therefore execute from on-chip program mem-
ory for good performance. At the user’s option, the program
memory can be configured as a 64K direct-mapped cache.

The ’C6701’s on-chip data memory is divided into eight
8K banks, each with a 16-bit bus to the exe-
cution units. All eight banks can be accessed
simultaneously, but simultaneous accesses to
the same bank are not allowed. This configu-
ration allows an on-chip access rate of four
32-bit words per cycle, enough bandwidth to
support the core’s peak processing rate of two
multiply-accumulate operations per cycle.
Off-chip data memory accesses incur severe
penalties, so avoiding them is paramount.

VLIW processors traditionally suffer
from very high program-memory usage. TI
has taken steps to mitigate this problem in
the ’C6xxx architectures. Although these
steps alleviate the problem to some degree,
the ’C67xx’s memory usage will still be sig-
nificantly higher than that of a more tradi-
tional DSP. Thus, the 64 Kbytes of on-chip
program memory are equivalent to about
16–32 Kbytes of program memory on a tra-
ditional floating-point DSP.

The amounts of on-chip program and
data memory available on the ’C67xx are
sufficient for many of the applications that

L

•

•

•

•
•
•

M

•

S
•

•
•

•

•
•
•

D

•

•

Ex Unit

nstruction set is
ing support for

Description

Absolute value (single-/double-precision)
Add (single-/double-precision)
Multiply (single-/double-precision)
Subtract (single-/double-precision)
Reciprocal estimate (single-/double-precision)
Reciprocal square root estimate (single/double)

Add doubleword address nonsaturating

Convert double to float
Convert float to double
Convert (float/double) to integer
Convert float to integer, and truncate instead of round
Convert integer to (float/double) (unsigned)

Load doubleword

Compare for equality (single-/double-precision)
Compare for greater-than (single-/double-precision)
Compare for less-than (single-/double-precision)

Mnemonic

Floating-Point Arithmetic
ABS(SP/DP)
ADD(SP/DP)
MPY(SP/DP)
SUB(SP/DP)
RCP(SP/DP)
RSQR(SP/DP)
Fixed-Point Arithmetic
ADDAD
Conversion
DPSP
SPDP
(SP/DP)INT
SPTRUNC
INT(SP/DP)(U)
Load/Store
LDDW
Floating-Point Comparison
CMPEQ(SP/DP)
CMPGT(SP/DP)
CMPLT(SP/DP)

Table 1. New 'C6xxx instructions introduced in the 'C67xx. The 'C67xx i
a superset of the 'C62xx instruction set (see MPR 2/17/97, p. 14), add
floating-point arithmetic and doubleword loads and address calculations.
 1 4 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

4 T I A I M S F O R F L O A T I N G - P O I N T D S P L E A D
utilize fixed-point or older floating-point DSPs, but they are
too small for many of the applications that merit the cost of
a high-performance floating-point processor. In contrast,
Analog Devices’ new ADSP-21160 provides 512 Kbytes of
on-chip memory and generally consumes less program
space than the ’C67xx.

Floating-point DSPs are often used in multiprocessor
configurations. Devices such as TI’s ’320C4x and ADI’s
ADSP-2106x have included extensive features to facilitate
integration in multiprocessor environments, such as spe-
cialized external memory interfaces and multiple inter-
processor communication ports. Surprisingly, the ’C6701
omits these features, making do with a bare-bones comple-
ment of interfaces consisting of its external memory inter-
face, two serial ports, and a host port. Of course, TI may add
multiprocessor features later, but, for now, their absence will
limit the ’C6701’s appeal for many of the applications that
have gobbled up large numbers of floating-point DSPs in
the past.

An Assembly Programmer’s Worst Nightmare
As with the ’C62xx, crafting carefully arranged object code is
crucial to extracting performance from the ’C67xx. This will
be no easy task.

As mentioned previously, the chip does no dependency
checking and incorporates no interlocks; multiple writes to
the same destination register give undefined results. Avoid-
ing this condition can be harder than it sounds, because not
all instructions have the same latency. For example, issuing
an FP add instruction one cycle after a load with the same
destination will cause a failure because of their different
latencies.

Packing two mutually exclusive conditional instruc-
tions in the same execute packet is not a programming
error and, in fact, can be a good idea. Programmers can cre-
ate their own conditional moves, adds, or other functions
simply by combining conflicting instructions that are pred-
icated on opposite states of the same condition. Again,
there is an opportunity for mischief here, as the ’C6xxx
software tools cannot check for unintended conflicting
instructions that are predicated on the contents of unre-
lated registers.

Branches introduce further programming complexity.
Since the chip has no branch prediction, all taken branches
introduce a five-cycle delay before the pipeline refills from
the branch target, as Figure 2 illustrates. The ’C67xx executes
instructions in the branch-delay slot, which in this case has
space for 40 instructions (5 cycles × 8 instructions).

The processor is not interruptible while any execute
packet in the pipeline contains a branch or is in the delay slot
of a branch. Given the long branch latency, this fact means
the processor is rarely interruptible, rendering interrupts
useless in many applications.

Manual scheduling on the ’C67xx is extremely compli-
cated. Figure 3 shows the kernel of a two-tap FIR filter
© M I C R O D E S I G N R E S O U R C E S S E P T E M B E R
implemented in a single repeating execute packet. It per-
forms two multiplies, two adds, and two loads while it decre-
ments the loop counter and branches back to itself.

The effects of this packet are difficult to deduce from a
cursory reading of the source code, complicated by the fact
that adds, multiplies, loads, and branches have different
latencies (four, four, five, and six clocks, respectively).

On any given iteration of this loop, n, the ’C67xx
resolves the multiplies and additions executed on iteration
n–4, the data loaded on iteration n–5, and the branch en-
countered on iteration n–6. Once under way, this loop exe-
cutes two taps per cycle, better than most DSPs and, at
167 MHz, faster than all but the 200-MHz ’C62xx.

The deep software pipeline surrounding this loop (not
shown in the figure), however, takes 5 clock cycles and
21 instructions to fill, and an additional 13 clock cycles and
16 instructions to flush. The extra cycles can significantly
detract from the chip’s peak performance when loops are
nested or when iteration counts are low. Moreover, program-
memory usage can be more than an order of magnitude
greater than for traditional DSPs.
PG

PS

PW

PR

DP

DC

E1

E2

E3

E4

E5

Lo
ad

s

Br
an

ch
es

M
ul

t,
 A

dd
Si

ng
le

-p
re

ci
si

on
 f

lo
at

Generate program address

Program address send

Program memory access

Instruction dispatch

Instruction decode

Execute 1

Execute 2

Execute 3

Execute 4

Execute 5

Fetch reaches CPU boundary

E6

E7

E8

E9

E10

Fi
x

M
ul

t

M
is

c
D

ou
bl

e
Pr

ec
is

io
n

Execute 6

Execute 7

Execute 8

Execute 9

Execute 10

Figure 2. The 'C67xx has a 16-stage pipeline, but few operations
use more than 11 stages. Floating-point adds and multiplies com-
plete in stage E4, and loads complete in stage E5, for example.
LOOP:
 [B0] LDDW .D1 *A4++[1],A7:A6 ; if(B0!=0) load A7:A6
||[B0] LDDW .D2 *B4++[1],B7:B6 ; if(B0!=0) load B7:B6
|| MPYSP .M1X A6,B6,A5 ; A5 = A6 * B6
|| MPYSP .M2X A7,B7,B5 ; B5 = A7 * B7
|| ADDSP .L1 A5,A8,A8 ; A8 = A8 + A5
|| ADDSP .L2 B5,B8,B8 ; B8 = B8 + B5
||[B0] B .S1 LOOP ; if BO not zero, loop
||[B0] SUB .S2 B0,2,B0 ; decrement counter

Figure 3. In this example of an FIR filter, eight instructions fit in a
single execute packet, executing in parallel and calculating two
taps per iteration.
 1 4 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

5 T I A I M S F O R F L O A T I N G - P O I N T D S P L E A D
Manually scheduling the processor’s eight execution
units for optimum performance is a daunting task. As with
the ’C62xx, TI will provide a C compiler and assembly opti-
mizer to ease software development. The assembly optimizer
accepts “linear” meta-assembly code that is not parallelized
and that assumes single-cycle latency for all instructions. The
optimizer attempts to transform this code into a scheduled,
optimized form.

Although the optimizer reduces the difficulty of writing
assembly code for the ’C6xxx families, debugging code gener-
ated by the optimizer is much more difficult than debugging
assembly code for more traditional DSP processors, and the
performance of the optimizer for the ’C62xx has so far been
uneven. Most programmers will find the ’C67xx too complex
for assembly-level coding, forcing them to program in C and
give up some of the part’s impressive performance.

Promising Floating-Point DSP Performance
The final question is whether the performance of the ’C67xx
is as daunting as its programming model. Although no
hardware-verified numbers are available at this time, BDTI
has run some preliminary benchmarks on a cycle-accurate
simulator of the ’C6701.

Although TI announced the ’C6701 at 167 MHz, our
analysis uses a more conservative speed of 150 MHz to evalu-
ate the likely performance of initial ’C6701 devices. The
’C6701’s fixed-point cousin, the ’C6201, was announced by
TI at 200 MHz, but initial samples ran at approximately
120 MHz; and 200-MHz samples did not become generally
available for approximately a year after the first samples were
provided. It isn’t clear whether this unusually long time lag
was part of a deliberate strategy by TI to gain an apparent
advantage by preannouncing, or whether TI simply had diffi-
culty obtaining full-speed silicon. Either way, some skepti-
cism seems warranted until ’C6701 devices become available.

BDTI’s complex-FIR filter benchmark is an FIR filter
that operates on blocks of complex data. Such filters are
commonly used in modem channel-equalization applica-
tions, for example. A simulated ’C6701 finished the BDTI
complex FIR filter benchmark in 12.1 microseconds, 20%
less time than our projected result for the Analog Devices
new ADSP-21160. As Table 2 shows, the ’C6701s are much
© M I C R O D E S I G N R E S O U R C E S S E P T E M B E R
faster than older floating-point DSPs: roughly four times
faster than the ADSP-21065L and more than eight times
faster than TI’s own ’C44 on this benchmark.

In the past few years, high-end general-purpose proces-
sors have outpaced floating-point DSPs, providing better FP
performance. The new ’C67xx and ADSP-21160 can com-
pete head-to-head with the FP performance of general-
purpose processors. The ’C6701 and ADSP-21160 execution
times on BDTI’s complex-block FIR filter benchmark are
faster than that of the 350-MHz PowerPC 604e, as Table 2
shows. As general-purpose processors begin to provide
floating-point SIMD capabilities in the form of multimedia
extensions such as AltiVec and KNI, however, they may
regain the FP performance lead.

As expected, code density leaves much to be desired on
the ’C67xx. The ’C67xx binary for the BDTI complex-FIR-
filter benchmark was almost three times larger than that for
the ADSP-21160 and more than four times larger than that
for the ’C44.

Back in the Game
With the ’C6701, TI is making a big splash in the floating-
point DSP business after several quiet years. While floating-
point devices represent only a small share of the total market,
it appears that the DSP giant is not content to cede leader-
ship of any segment of the market to its competitors.

If TI takes as long to reach its projected 167-MHz clock
speed for the ’C6701 as it did for the ’C6201, however, the
Analog Devices ADSP-21160 may deliver similar perfor-
mance without the ’C6701’s shortcomings in on-chip mem-
ory and multiprocessor support, and with a simpler pro-
gramming model. Because of its pin-compatibility with the
’C6201, the ’C6701 is likely to find a niche as a rapid proto-
typing and algorithm-development tool for users who plan
to build products based on the ’C6201 but want prototypes
running quickly, without first having to grapple with fixed-
point considerations.

Authors Amit Shoham and Jeff Bier are with Berkeley
Design Technology, Inc., the DSP technology analysis and soft-
ware development firm. Shoham and Bier are co-authors of
Buyer’s Guide to DSP Processors, the 1999 edition of which
will be available from MDR in October.

M

P r i c e & Av a i l a b i l i t y

According to Texas Instruments, initial samples of the
’C6701 are expected in October with production quanti-
ties to ship in the second quarter of 1999. Initial pricing is
$196 (quantity 10,000). The device will be fabricated in
TI’s 0.18-micron process and packaged in a 352-pin BGA.
Power consumption is projected to be 1.9 W at 1.8 V and
167 MHz. Further details are available at www.ti.com/sc/
docs/dsps/products/c6000/c67x/index.html.
Processor

'C6701*
'C44
ADSP-21160*
ADSP-21065L
PowerPC 604e

Vendor

TI
TI

Analog Devices
Analog Devices
Motorola/IBM

Execution
Speed (MHz)

150
30
100
60
350

Program
Time (µS)

12.1
99.0
15.4
46.9
16.9

Size
(bytes)

444
96
156
180
192

Table 2. The results of BDTI’s complex FIR-filter benchmark show
the ‘C6701 to be the highest performing floating-point processor
of those evaluated. *These processors are not yet available. Clock
speeds for these processors are BDTI’s projections, and benchmark
results are preliminary. (Source: Buyer's Guide to DSP Processors,
1999 Edition, BDTI)
 1 4 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

http://www.ti.com/sc/docs/dsps/products/c6000/c67x/index.html
http://www.ti.com/sc/docs/dsps/products/c6000/c67x/index.html

	TI Aims for Floating-Point DSP Lead
	Figure 1. The block diagram of the ‘C67xx core illustrates...
	A First in Compatibility
	Up to One Billion FLOPS
	Double-Precision Arithmetic Takes Longer
	Up to 256 Bits of Instructions Per Cycle
	RISC-Like Instructions With Predication
	Table 1. New 'C6xxx instructions introduced in the 'C67xx...
	More Memory, Please!
	An Assembly Programmer’s Worst Nightmare
	Figure 2. The 'C67xx has a 16-stage pipeline...
	Figure 3. In this example of an FIR filter, eight...
	Table 2. The results of BDTI’s complex FIR-filter...
	Promising Floating-Point DSP Performance
	Back in the Game

	Price & Availability

