
e Compression
presses Entire Blocks of Object Code

E
M

B
E
D

D
E
D

by Jim Turley

Code compression, long a feature of ARM and MIPS
chips, is coming to PowerPC. IBM’s new 405 will be the first

PowerPC chip to have this important
feature. Perhaps thumbing its nose at
the other code-compression developers,
IBM believes that CodePack will squeeze

PowerPC code by an average of 40%, and that it can do so
without resorting to an alternative, shorthand instruction
set. CodePack will be included in the PowerPC 405 when it
first appears in 2Q99.

At the Embedded Processor Forum earlier this month,
Tom Sartorius, IBM’s principal architect for embedded
PowerPC, lifted the wraps on the company’s latest processor
core for ASIC designs. The PowerPC 405 is faster, smaller,
and more power efficient than the current 403 core, and it
offers some additional features as well.

Real Compression, Not Compaction
CodePack is fundamentally different from both Thumb (see
MPR 3/27/95, p. 1) and MIPS-16 (see MPR 10/28/96, p. 40).
The latter two are actually separate 16-bit instruction sets
that duplicate a subset of the host chip’s native 32-bit
instruction set. CodePack, on the other hand, offers com-
pression in the literal sense: it compresses blocks of object

PowerPC Adopts Cod
IBM PowerPC 405 Core’s CodePack Com
© M I C R O D E S I G N R E S O U R C E S O C T O B E R
code using run-length encoding that are then decompressed
in real time with symbol tables generated by the compres-
sion utility. Using CodePack is like running PKZip on
PowerPC programs.

There is no secondary CodePack instruction set. Pro-
grams are simply written, compiled, assembled, and linked in
a perfectly ordinary manner. Then, before the executable
code is burned into ROM, stored onto disk, or downloaded,
it passes through a compression postprocessor. The com-
pression utility scans the entire object file, analyzes it for fre-
quency distribution, and outputs a compressed version of
the program.

This compressed object file would be completely use-
less and unexecutable without a CodePack-equipped pro-
cessor to run it. At run time, the processor decompresses the
object code in real time, restoring each instruction to its
original condition as it is fetched and loaded into the instruc-
tion cache. The underlying concept is deceptively simple; the
devil lies in the details of IBM’s implementation.

Code Is Cached in Uncompressed Form
CodePack works entirely “outside” of the caches, so its effect
(indeed, its presence) is completely undetectable to the pro-
cessor core. CodePack conceptually lies much closer to the
chip’s bus interface than to its cache or pipeline.

Because CodePack works its magic before code reaches
the caches, packed code is cached in its uncompressed form.
Both MIPS-16 and Thumb, on the other hand, cache instruc-
tions in compacted form, effectively increasing the capacity
of their instruction caches by 25% or more (but only when
executing compacted code).

The PowerPC 405 chip, therefore, does not enjoy the
same benefits from increased code-cache capacity as do the
compacted-mode processors. On the other hand, CodePack
does not in any way affect the internal design of the pro-
cessor pipeline, so it can easily be applied to any PowerPC
CPU, including existing cores such as the 401 or 603e. Code-
Pack could also be applied to future PowerPC cores without
compromising their basic performance or compatibility.

Algorithm Not New; Hardware Implementation Is
IBM’s compression algorithm is patented, although it relies
heavily on prior art and other generally available compres-
sion algorithms, such as Huffman or Lempel-Ziv. IBM’s sys-
tem makes no real contributions to the art and science of
data compression. Rather, it marks the first time that decom-
pression has been done in real time, in hardware.

For its compression algorithm, IBM was able to as-
sume the input data (the symbol set, for the initiated) was
00

01

100

101

110

111

nnn

nnnnn

nnnnnn

nnnnnnn

nnnnnnnn

opcode (16)

00

01

100

101

110

111

nnnn

nnnnn

nnnnnnn

nnnnnnnn

literal (16)

8

32

64

128

256

16

32

128

256

1

Rt RaOpcode

Opcode

Opcode RbRt Ra

C
om

bi
na

tio
ns

C
om

bi
na

tio
ns

Figure 1. IBM’s CodePack splits each 32-bit instruction into halves
and compresses each half separately, into a 2- or 3-bit tag followed
by a variable-length symbol. The most frequently occurring
instructions are encoded into the fewest bits. Infrequent patterns
might be “compressed” into more bits than they had originally.
 2 6 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

2 P O W E R P C A D O P T S C O D E C O M P R E S S I O N

E
M

B
E
D

D
E
D

PowerPC object code. That being the case, CodePack’s
algorithm does not have to be general purpose or deliver
consistent results across a random set of inputs data.
Because IBM knew about the inputs CodePack would re-
ceive, it was able to fine-tune the algorithm to produce
better results.

The upper half of each PowerPC instruction always
holds the opcode, usually with two or more register speci-
fiers, while the lower half usually holds immediate data or a
branch displacement, as Figure 1 shows. The opcodes tend to
be encoded in a regular and predictable manner, a vestige of
their RISC-inspired heritage.

Data, inconveniently, tends to be random. Immediate
data displays neither the regularity nor the predictability so
characteristic of opcodes. IBM’s frequency analysis showed
that the upper and lower halves of typical PowerPC instruc-
tions have quite different frequency distributions, shown in
Figure 2, so the two halves are handled with slightly different
algorithms.

Compression Changes From Program to Program
After evaluating the entire program to be compressed, the
CodePack compression utility develops a frequency profile
and assigns the most frequently occurring patterns to the
shortest compressed tokens (Huffman encoding). That fre-
quency distribution changes from one program to the next,
so CodePack does not use a single, fixed encoding scheme as
Thumb or MIPS-16 does.

Instead, the CodePack compression utility determines
the best, most efficient encoding for each program individu-
ally. After the program is compressed, the utility also pro-
duces two symbol, or decompression, tables, one each for the
opcodes and for data. (The compression utility can also be
used to analyze multiple programs and produce a single,
shared set of decompression tables.)

These two symbol tables must stay with the program,
for they are the only key to decompressing it properly. There
is no universal key to decompressing CodePack programs;
each key is different. These symbol tables, which are 2K in
size, are downloaded into RAM cells within the CodePack-
equipped processor by the bootstrap loader (which must
obviously be uncompressed code).

IBM believes that CodePack can reduce object code size
by 35–40%, which is about equal to the claims of MIPS-16
and Thumb devotees. Unlike the others, CodePack can com-
press all code, including interrupt handlers, systems func-
tions, and OS calls. Like the others, CodePack also has a
somewhat unpredictable effect on performance. In all three
cases, data structures are not compressed at all.

IBM is considering producing chips with hardwired
symbol tables built into the CodePack logic, in lieu of SRAM
lookup tables. Such hardwired tables would be cheaper and
smaller than SRAM tables, but they would force a fixed
encoding for all programs the chip might run. If the code
base is known ahead of time, the proper table could be
© M I C R O D E S I G N R E S O U R C E S O C T O B E R
designed in; if not, the table would have to be supplied as
input to the compression utility for all future programs.

Common Patterns Are Given Short Tags
CodePack treats the upper 16 bits differently than the lower
16 bits, as Figure 1 shows. The upper 16 bits (the opcode and
registers) can be compressed into as few as 5 bits or as many
as 19. Frequently occurring patterns in the lower half might
be compressed into as few as 2 bits or as many as 19 bits. In
the best case, an entire 32-bit PowerPC instruction can be
compressed into 7 bits, or about 22% of its original size.

In contrast, infrequently used combinations of opcode
and immediate data might each be “compressed” to greater
than their original size. The worst-case compression of a
32-bit instruction would be into two 19-bit fields, or 120% of
its original size.

As the figure shows, compressed fields (either upper or
lower half) are identified by one of six tags. The “00” tag
identifies the shortest encoding for the most frequently
occurring symbols. For upper-half (opcode field) encoding,
the 00 tag is followed by a three-bit field identifying the eight
most commonly occurring opcodes; 01 identifies the 32
next-most frequently occurring symbols, and so on.

After the 488 most common symbols have been en-
coded, CodePack handles the remainder (potentially another
65,047 permutations) as literals, and it labels them as such by
tacking 111 on the front. For lower-half (immediate field)
encoding, the 00 tag stands alone. IBM found that zero occurs
frequently enough to warrant its own extra-short tag.

Compression Done in 64-Byte Chunks
Using CodePack is not an all-or-nothing proposition for pro-
grammers (or processors). Some parts of a program may be
compressed and other parts left uncompressed. As men-
tioned previously, some sections of code may actually swell
when “compressed.” In such cases, the CodePack compression
14,000

12,000

10,000

8,000

6,000

4,000

2,000

Upper half
Lower half

1st 2nd 3rd 5th 10th 15thSymbol
Frequency:

N
um

be
r

of
 o

cc
ur

re
nc

es

Figure 2. IBM’s frequency analysis for typical embedded PowerPC
code reveals that the distribution for the upper half (opcode) rolls
off much more slowly than does the lower half (immediate data).
The heavy usage of the value zero is also clear from the chart.
2 6 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

3 P O W E R P C A D O P T S C O D E C O M P R E S S I O N

f
 C
s

E
M

B
E
D

D
E
D

utility will not compress those portions of the program, opt-
ing instead to leave them in their natural state.

Programs to be compressed are scanned in 64-byte
(16-instruction) blocks. If compression will result in a
smaller block, those 16 instructions are compressed. If the
block would get larger, or not compress at all, those instruc-
tions are left alone, and the compression utility moves on to
the next 64-byte block. The entire program is eventually
evaluated, 64 bytes at a time. By the end, perhaps three-
quarters of the blocks might actually be compressed.

This invites the question: How does the the PowerPC
405 know if the code it’s executing has been compressed or
not? This quandary is handled by the MMU.

A previously reserved attribute bit in the MMU’s lookup
tables marks each page as either compressed or uncom-
pressed. (Pages may be from 1K to 16M in size.) Fetching
code from an uncompressed page bypasses
CodePack entirely and avoids its perfor-
mance penalty, as if nothing had happened.

Instructions in a compressed page
are not necessarily compressed, but they
may be. A tag at the beginning of each
block identifies its compression status.

If a block is uncompressed, it will
bypass CodePack when it is fetched. The
penalty for checking and then discarding
the header is one access to an index table.
Thus, there is some incentive for program-
mers to store uncompressed code in un-
compressed pages.

If the block is, in fact, compressed,
the entire 64-byte block is transferred in a
burst from memory and passes through
the CodePack decompression hardware.
The block is then decoded into an internal buffer before
passing to the instruction cache or execution unit.

This process repeats indefinitely, for as long as the pro-
gram executes. Serial execution of compressed code is rela-
tively straightforward. Handling compressed branches, on
the other hand, presents a new set of problems.

Change of Flow Causes Problems
A drawback to IBM’s approach to compressing code is locat-
ing the exact address of a compressed instruction. When the
405 branches to compressed code, the CodePack logic must
translate the target address to the actual location of the
instruction in compressed memory. This problem doesn’t
arise with either Thumb or MIPS-16, because those exten-
sions use fixed-length instructions whose location is known
to the compiler, assembler, and linker.

CodePack-equipped processors handle this problem
with a translation stage independent of the MMU. The
CodePack logic maintains a hash table of entries, each 32 bits
in size, that map decompressed addresses to their actual,
compressed locations. In each entry, 26 bits point to the

Tom Sartorius o
the PowerPC 405
Embedded Proces
© M I C R O D E S I G N R E S O U R C E S O C T O B E R
beginning of the compressed block in physical memory. The
remaining six bits point to the beginning of the next com-
pressed block relative to the first one.

As with MMU tables, the compressed-to-decompressed
translation table is kept in memory. The 405 must fetch a
table entry from memory to do a lookup. Only the most
recently used entry is maintained in a “cache” on the chip.

Having located the target block of instructions, the 405
fetches it from memory and begins decompressing the entire
block into an internal 64-byte buffer. Finally, the target
instruction is forwarded to the processor core for execution.

The duration of this ordeal varies widely and depends
on many things, including the instruction’s position within a
block. IBM’s compression algorithm forces CodePack to
decompress instructions serially, starting from the beginning
of the block. It cannot decompress instructions “critical

word first.” In the current implementation,
CodePack decompresses two instructions
per clock, or eight clock cycles for the entire
64-byte block. If the target instruction is the
sixteenth one in the block, it will be decom-
pressed last. On the other hand, if the com-
pressed instruction is the first in its block,
the 405 will receive it eight clocks sooner.

IBM claims that the performance of
CodePacked programs will be within ±10%
of the performance of uncompressed pro-
grams. The positive value (i.e., a speedup)
is possible when code is executed directly
from very slow memory (such as ROMs), or
over a narrow data bus, because blocks of
compressed code can be fetched in less time.
Both Thumb and MIPS-16 offer the same
advantage, executing faster over a narrow

bus than uncompressed code would.

Apart From CodePack, Little Is New With 405
In his presentation, Sartorius described the PowerPC 405
pipeline and the core’s interfaces, although CodePack was
the highlight of the design. Like ARM’s 740T (et al., see MPR
4/20/98, p. 10), the 405 includes the instruction and data
caches as part of its base definition; the core cannot be used
without them. This is only logical, as any 200-MHz ASIC
design would need sizable caches to get decent performance.

IBM has set a minimum target frequency of 200 MHz
for its 405 core in 0.25 micron, but Sartorius feels that speeds
of 275 MHz or more are likely. The 2.5-V core is expected to
cover just 2.0 mm2 and draw 400 mW.

Interestingly, the 405’s five-stage pipeline is not signifi-
cantly different from that of the PowerPC 403 (see MPR
5/9/94, p. 1), yet it runs at four times the clock rate. The 405
achieves this improvement largely by reversing many of the
decisions made with the 403, which was designed to minimize
size and power usage. That, and its better process technology
(0.25-micron vs. 0.35-micron), allowed the speedup.

IBM describes
PU core at the
or Forum.

M
IC

H
A

E
L

M
U

S
TA

C
C

H
I

2 6 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

© M I C R O D E S I G N R E S O U R C E S O C T O B E R

4 P O W E R P C A D O P T S C O D E C O M P R E S S I O N

E
M

B
E
D

D
E
D

P r i c e & Av a i l a b i l i t y

IBM’s PowerPC 405 core will appear first in the
405GP microprocessor, which will begin sampling in
2Q99. Pricing for the processor has not been announced.

For more information, contact IBM (Research Triangle
Park, NC) via fax at 415.855.4121 or visit IBM at www.
chips.ibm.com/products/embedded/index.html.
The 405 executes all the standard “Book 1” integer
instructions, including multiply-accumulate functions.
Although the core includes a hardware multiply-accumulate
(MAC) unit, multiply latencies range from 2 to 5 clock
cycles, depending on the magnitude of the operands. Divide
instructions finish in a fixed 35 clock cycles.

The 405’s hardware MAC is viewed as an auxiliary pro-
cessor unit (APU, or coprocessor) by software. The MAC
unit has 24 instructions of its own, all variations on the basic
multiply-accumulate function. Signed, saturating, and mod-
ulo arithmetic options fill out the 24 instructions.

Binary Compatibility Is Somewhat Compromised
CodePack’s after-the-fact compression means that existing
PowerPC binaries can be compressed and run on a new
CodePack-equipped processor, even if the original source
code is not available. And as far as compilers and other
software-development tools are concerned, CodePack doesn’t
exist. It’s invisible to the programmer and the compiler.

CodePack is nearly—but not entirely—invisible to
hardware tools as well. The big hangup will be with debug
systems that examine or modify memory without passing
through the processor. These tools will have to be aware of
CodePack’s existence or risk corrupting program code. At
the very least, disassembling code from memory will require
knowledge of CodePack’s decompression algorithm and
access to the program’s specific decode tables. Inserting a
breakpoint into already compressed code would be virtually
impossible without upsetting the rest of the program.

CodePack exacts its toll in performance, as do Thumb
and MIPS-16. Decompressing the object code takes time, of
course, but the hit is felt only during instruction-cache
misses and appears as unusually long memory latency. On
the plus side, fewer bytes of code need to be transferred dur-
ing a miss, offsetting some of that extra latency.

Unlike other compaction schemes, CodePack doesn’t
require “mode switching” between the compressed and
uncompressed states. Indeed, the processor might switch
between these two states every instruction, without the pro-
grammer’s knowledge or complicity.

While it’s not clear yet whether this might be an advan-
tage or a disadvantage, CodePack could make programs less
portable. Every program will compress differently, yielding
different characteristic decompression tables. Without those
tables, compressed programs are not binary compatible
among PowerPC chips. A multithreaded system would need
to use the same symbol tables for all executables, or waste
time swapping keys along with the code.

This characteristic could be carried over to serve as
encryption for CodePack programs. Without the individual
decompression tables, it would be very difficult to decom-
press a CodePacked program. Reconstructing the lower-half
(immediate-operand) table would be especially challenging.

The emergence of CodePack might also lead to some
previously unthought of benchmarking of compilers. IBM
has established that different compilers, given the same
source code, will produce programs with different frequency
distributions. These, in turn, will compress with varying
degrees of success. (This is one reason IBM did not develop a
single “approved” compression/decompression symbol table
for PowerPC binaries.) That being the case, some compilers
might be preferred not for their “native” code density but for
how well they typically pack with CodePack.

Very Different Technology, Similar Results
The 405 core holds its own against other forthcoming em-
bedded cores, such as the ARM10 and MIPS cores from LSI
Logic and others. As nice as the 405 core is, its significance is
overshadowed by IBM’s innovative CodePack compression
system.With CodePack, IBM may be asymptotically ap-
proaching the ideal code-compression system for micro-
processors.

The absolutely best compression would come from
treating the entire program—data and all—as a single block
to be compressed, using an adaptive algorithm (such as the
Lempel-Ziv). But such systems are designed for all-or-nothing
decompression, not for extracting partial results or inter-
mediate symbols. Total compression makes it impossible to
branch into the middle of compressed code, something that
all programs need to do. So IBM compromised by chunking
up the data set every 64 bytes, using the best algorithm for that
block size. This makes it possible to jump into the middle of
anywhere with some hope of decompressing and executing
the instruction in a reasonable amount of time.

CodePack is a big step to one side in the technology of
code compression. Its claimed compression ratio is about the
same as that for less elaborate alternatives, but it has the
not-insignificant advantages of compressing unmodified
executable programs, leaving the core pipeline untouched,
and being compatible with past, present, and future PowerPC
processors.

Code Pack is also interesting for the pitfalls that it
highlights: decompressing code in real time, relying on mul-
tiple levels of translation, and tying decompression tables to
individual programs. In the end, CodePack will certainly
become widespread within IBM’s ASIC business. It’s also an
interesting highway post on the road toward greater integra-
tion, where transistors are almost free, and features like
CodePack pay off in smaller memory arrays. — M
2 6 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

http://wwwchips.ibm.com/products/embedded/index.html
http://wwwchips.ibm.com/products/embedded/index.html

	PowerPC Adopts Code Compression
	Real Compression, Not Compaction
	Figure 1. IBM’s CodePack splits each 32-bit...
	Code Is Cached in Uncompressed Form
	Algorithm Not New; Hardware Implementation Is
	Compression Changes From Program to Program
	Common Patterns Are Given Short Tags
	Compression Done in 64-Byte Chunks
	Figure 2. IBM’s frequency analysis for typical...
	Change of Flow Causes Problems
	Apart From CodePack, Little Is New With 405
	Binary Compatibility Is Somewhat Compromised
	Very Different Technology, Similar Results

	P r i c e & Av a i l a b i l i t y

