
3D Technology
What 3D Chips Do
by Peter N. Glaskowsky

The microprocessor industry has buzzwords for every-
thing. So does the 3D industry. Unfortunately for readers of
this newsletter, there’s little overlap between the two sets,
and some of the terms don’t mean quite the same thing in
both contexts. In our coverage of microprocessors and 3D
chips, we make free use of the appropriate buzzwords, but
we often don’t stop to define many of the terms that are
unique to 3D chips.

What follows is a modest attempt to rectify this omis-
sion and, we hope, to provide advance warning of some of
the 3D buzzwords we’ll be using in the future. We’ll also
identify the industry leaders in some of the key elements of
3D-chip design.

To make this glossary more useful, we’ve organized it
according to the order these terms appear in a description of
the 3D pipeline. We begin, therefore, by defining that.

The 3D Pipeline
Broadly, the 3D pipeline comprises the sequence of steps
required to render, or generate an image of, a 3D scene. The
target of the rendering operation is a frame buffer, a 2D
array of picture elements (pixels) to be displayed on the
computer monitor. Pixels usually consist of red, green, and
blue color values, each with five to eight bits of precision.

Figure 1 shows a sample 3D pipeline. These steps may
be performed in different orders depending on the imple-
mentation, but all 3D pipelines begin with scene definition.

Scenes are defined by a data structure known as the
scene database. This database provides a mathematical rep-
resentation of the virtual objects in the scene and their posi-
tion relative to each other. The application must also define
the position of the view point—a virtual camera—relative to
the scene. The process of updating these definitions as
objects move or change is called scene management.

A Concise Review of
What We Mean by What We Say About
© M I C R O D E S I G N R E S O U R C E S J U N E 2 1
In today’s 3D programs, object models are usually
defined by a set of polygons—typically triangles or quadri-
laterals—that represent the surface of the object. The poly-
gons themselves are defined by the positions of each vertex
in three dimensions. Figure 2 shows how polygon strips and
meshes can be built from lists of vertices, reducing the num-
ber of distinct vertices per polygon in an object model.

These polygonal definitions require a very large number
of polygons to describe smooth curved surfaces, and they
cannot effectively define some objects (such as hair, fire, and
clouds of dust) at all. Also, they say nothing about the interior
of an object.

Several methods have been developed to solve these
problems. Mathematical functions such as nonuniform
rational B-splines (NURBS) and quadratic patches can
describe curved surfaces directly and are more compact than
long lists of polygons. We expect to see 3D systems capable of
rendering directly from these functions within the next few
years, but most of today’s 3D engines require polygons.
Curved-surface models are converted to polygonal models
by a process known as tessellation. This conversion may take
place just before an object is rendered, in which case the
number and size of the polygons being generated may be
adjusted according to the size of the object on the screen—
visibly smaller objects need fewer polygons. When tessella-
tion is performed in this way, it is described as progressive or
multiresolution meshing, or mesh refinement.

Three-dimensional arrays of voxels—values that de-
scribe the contents of a volume—are used by volume ren-
dering systems such as Mitsubishi’s VolumePro (see MPR
11/16/98, p. 22) to display the cross-sections of solid objects,
a capability lacking in polygonal 3D systems.
Figure 2. Polygon strips and meshes can be built up from a list of
vertex coordinates to reduce the size of object models.
Scene

Objects

Scene

Lighting

Projection

Clipping

Setup

Shading

Texturing

Depth Sorting

Display

Geometry Rendering

View Point Rasterizing

Figure 1. A representative 3D pipeline comprises scene-definition,
geometry, and rendering operations.
, 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

2 A C O N C I S E R E V I E W O F 3 D T E C H N O L O G Y
Geometry Processing
Each 3D object model in the scene has an independent coor-
dinate system, or model space, aka local space. The origin in
a model of a monster for a 3D game may be located near its
left foot, while the origin for the scene in which the monster
appears will likely be elsewhere. If the monster turns or falls
over, its X, Y, and Z axes will no longer be aligned with those
of the scene, which has its own scene space or world space.

All of the independent coordinate systems used within
the scene must eventually be converted into a single coordi-
nate system related to the view point: the view space. Matrix
operations are used to transform one coordinate system to
another.

Any lighting effects used in the scene require a similar
process of coordinate transformation. There are many differ-
ent kinds of lights, from omnidirectional lights to tightly
focused spotlights, and each requires a different form of
processing. Lighting calculations can be simplified by assum-
ing that the light is very far away, in which case every lit
object in the scene receives a similar amount of illumination.
If the distance is relatively small, the inverse-square law must
be considered in the calculations.

Transform and lighting calculations are part of geome-
try processing, the first step in 3D rendering. Geometry pro-
cessing is performed by the host processor in today’s main-
stream 3D systems, but most professional 3D add-in boards
provide hardware geometry acceleration. Several leading
makers of PC graphics chips have announced plans to inte-
grate geometry acceleration into next-generation 3D chips.

Once relieved of these repetitive geometry calculations,
the host processor can perform more valuable work. Both
games and professional applications will benefit from physics-
based modeling of object behavior. Objects that fall, collide,
bounce, and deform like real objects will make car crashes in
racing games more entertaining and make forensic car-
accident simulations more accurate. Monsters and other com-
puter-generated game characters will also become more inter-
esting when more CPU time can be devoted to behavior
simulation and other artificial-intelligence algorithms.

Setup Processing
Once a consistent set of 3D vertex coordinates in view space
has been generated, the next step in the 3D pipeline is to con-
vert these coordinates to screen space: the 2D coordinates of
pixels on the display device plus a third coordinate that
defines the distance from the view point.

Translating from the view space to the screen space is
relatively simple, since these two coordinate systems are
mathematically related. This final translation is known as
setup processing and is performed in hardware on almost all
of today’s PC graphics chips.

These calculations are performed with a resolution
greater than the X and Y pixel coordinates of the display itself
to minimize accumulated error. The edge of a polygon bears
no particular relationship to the edges between pixels, so
© M I C R O D E S I G N R E S O U R C E S J U N E 2
setup processing should preserve sub-pixel accuracy on ver-
tex coordinates. The setup accuracy of graphics chips varies
widely, from as few as one extra bit to as many as eight.

The final step of setup is edge walking, also known as
scan-line conversion. In this step, the setup engine generates
pairs of X coordinates that identify the leftmost and right-
most edges of the polygon for each scan line the polygon
touches on the display. These X coordinates are accompanied
by the distance coordinate, which is used later in the pipeline.

Culling and Clipping
At various points during the geometry and setup operations
it becomes possible to identify polygons that will not be visi-
ble on the screen. Culling such polygons as early as possible
reduces the work that must be done by later stages in the
pipeline. Some culling can even be done by the 3D applica-
tion itself, which may know that some elements of the scene
database are not visible from the current view point. This is
known as database culling. For example, if the view point is
in one room of a house, objects in most of the other rooms
can be culled out immediately.

Culling within the rendering pipeline itself usually
begins by rejecting polygons that face away from the view
point—as many as half of the total. Since these represent the
far side of objects, they will not be visible—they will be
occluded by the near side of the object.

Object definitions may include bounding boxes, simple
3D shapes that encompass the entire object. Bounding boxes
can be transformed to the view space and tested against the
visible limits of the view—the view port—without trans-
forming every polygon in the object. If the box is entirely
invisible, the whole object may immediately be culled. Only if
the box is partially visible must the object within be subjected
to polygon-by-polygon checks.

Any polygon that intersects the edge of the view port
will have the offending portion clipped off by the setup
engine, which will not generate coordinates outside the
range supported by the display device.

Depth Sorting
Culling and clipping don’t catch all of the invisible polygons.
Before each pixel across the specified scan-line segment can be
drawn on the screen, the rendering engine must check to ver-
ify that the polygon is actually visible at that pixel. A previ-
ously drawn polygon may overlap or intersect the current
polygon, making some or all of the current polygon invisible.

Early 3D systems used the Painter’s Algorithm to avoid
this problem, drawing polygons in order, according to their
distance from the view point. The most distant polygon is
drawn first, with the nearest polygon coming last, ensuring
that every polygon is visible. The Painter’s Algorithm re-
quires that the entire polygon list be sorted prior to render-
ing, imposing a substantial burden on storage and computa-
tion. It also requires polygons to be drawn, even if they will
not be seen.
1 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

3 A C O N C I S E R E V I E W O F 3 D T E C H N O L O G Y
The crucial problem with the Painter’s Algorithm is
that it cannot handle intersecting polygons, as Figure 3
shows. The potential for such polygons in complex 3D scenes
makes this algorithm impractical.

Today, rendering engines use the distance information
passed by the setup engine to determine whether the current
pixel on the current polygon is closer or more distant than
the last polygon drawn at that location. The distance to the
last polygon for each pixel on the screen is stored in a sepa-
rate array with the same X and Y size as the screen. (This
buffer is initialized to the maximum-distance value prior to
rendering each image.) When the values are proportional to
the distance, the values are called Z values and the array is
called a Z buffer or depth buffer.

The number of overlapping polygons in the scene (either
the average or maximum number, depending on the context)
is called the scene’s depth complexity. Some 3D engines,
notably those based on the VideoLogic/NEC PowerVR archi-
tecture (see MPR 6/23/97, p. 1), do depth sorting for the entire
scene prior to rendering. These engines avoid rendering invis-
ible polygons and therefore achieve their best performance
relative to conventional 3D chips on scenes with a high depth
complexity.

Shading
Once the rendering engine knows that the current polygon is
visible at the current pixel, it must calculate the pixel’s new
color. If the polygon is part of an object with a specific color,
the polygon’s vertex definitions include color values—a tech-
nique called per-vertex color. When the colors at each vertex
of a polygon are different, the color of each pixel within the
polygon is usually calculated by a 2D interpolation across the
polygon face.

Lighting effects may modify the pixel’s calculated color.
Lighting calculations may be made at a single point for each
polygon (known as flat shading), or made at each vertex and
interpolated across the polygon face in a technique known as
Gouraud shading, or calculated independently for each
© M I C R O D E S I G N R E S O U R C E S J U N E 2
pixel (Phong shading). Phong shading produces the best
results but requires the most work. No mainstream 3D chips
use Phong shading today, but some specialty and high-end
3D engines can use Phong shading, and we expect this fea-
ture to become widely supported over the next few years.

Today’s 3D chips use simple red-green-blue (RGB)
color models. In these models, a green object illuminated by
a red light may not reflect any of the light and thus appear
to be black. In real life, a monochromatic green object
would indeed look black when illuminated solely by a pure
red light, as from a laser. However, real life contains few
monochromatic objects, and lasers are rarely used to illu-
minate real-life scenes. Interactions of real objects and real
light sources are based on the complete spectrum of visible
light (not to mention fluorescence effects). Future 3D hard-
ware will adopt more realistic color and lighting models to
produce more natural visual effects. For example, more
than three colors could be used, or colors could be repre-
sented by equations that define intensity as a function of
wavelength.

Object definitions may also specify information about
the object’s reflectivity. Shiny objects produce what are
known as specular reflections; dull objects produce diffuse
reflections. The appropriate use of specular and diffuse
lighting effects—and chips that implement them cor-
rectly—can be very effective in making objects look more
realistic. A human face exhibits regions of highly specular
reflection in the eyes, and very diffuse reflections on the
cheeks. Areas such as the end of the nose have an intermedi-
ate appearance.

In the real world, lights reflect off objects to illuminate
other objects; even the deepest shadow is not completely
black. A complete and accurate model of these reflections
would require simulating the path of every photon from
every light source in the scene—clearly an impractical
approach. Even a partial simulation produces good results,
however, and this is the basis of radiosity lighting. Radiosity
models are built by an iterative process. In each iteration, the
lights visible from each object, including reflected light, are
used to recalculate each object’s illumination. The visible re-
sults improve rapidly for the first few iterations, then the
results begin to converge. Even so, radiosity lighting can be
prohibitively compute-intensive when the objects in the
scene, or especially the original light sources, are moving
around. Radiosity lighting is not supported by any main-
stream 3D chip today, but it represents another opportunity
for progress and differentiation in future chips.

The best results are achieved by ray tracing, an algo-
rithm that traces the path of the photons that would reach
each pixel on the screen. These paths are traced in reverse
from the view point all the way back to the light sources that
issued the virtual photons. Ray tracing can require even
more calculations than radiosity lighting. Only one com-
pany, Advanced Rendering Technology (www.art.co.uk),
makes ray-tracing accelerator chips.
X

Y

Z

a1
b1

a1
b1

Figure 3. Two intersecting polygons cannot be drawn correctly
using only depth sorting, because neither is entirely in front of
the other.
1 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

http://www.art.co.uk

4 A C O N C I S E R E V I E W O F 3 D T E C H N O L O G Y
Texture Mapping
Colors and lights alone produce good visual results for syn-
thetic objects. Simple shading also works for some real-
world objects composed of materials such as plastic and
steel. Most real-world objects have a much more complex
appearance, however.

Texture mapping wraps 2D images around the surfaces
of 3D objects to produce more natural results. These images,
known as texture maps, add a great deal of detail to the
object without adding any additional polygons. Texture
maps may also be used to simulate reflections from shiny
objects, a technique known as environment mapping.

Texture mapping begins with texture coordinates asso-
ciated with each polygon vertex. These coordinates, defined
when the object was created, tell the 3D engine what part of
the texture map should be applied to each polygon. More
than one texture may be applied to a single polygon to simu-
late lighting effects or multiple independent textures in a
process known as multitexturing.

The texture-mapping unit in the rendering engine uses
the texture coordinates to calculate the precise point in the
texture map of the center of each pixel to be rendered.
Optionally, the rendering engine may select from a set of tex-
ture maps of varying resolutions to find the closest match to
the displayed resolution of the object, which declines as the
apparent distance to the object increases. Multiple texture
maps stored together to support this method are called
MIP maps, for the Latin phrase multum in parvo, or “much
in little.” Each texture map in a MIP map is called a level,
since each has a different level of detail.

There are many different algorithms for texture map-
ping. Point sampling takes the texture pixel, or texel, that
lies closest to the calculated point and uses that texel’s color
for the screen pixel (modified by lighting effects, if any). This
algorithm tends to produce poor results, since a single texel
may be assigned to two adjacent screen pixels, while a nearby
texel is skipped entirely.
© M I C R O D E S I G N R E S O U R C E S J U N E 2
Bilinear filtering, shown in Figure 4, uses a weighted
average of the four nearest texels from a single texture map to
calculate the pixel color. This method produces much better
results than point sampling, but it requires four times the
effective bandwidth to texture-map storage. The primary
problem with bilinear filtering comes at boundaries between
MIP-map levels, where a visible edge is created.

When bilinear filtering is performed on the texel data
from the two MIP-map levels with the closest effective reso-
lution and the results are blended using another weighted
average, the visible boundaries between MIP-map levels are
eliminated. This technique is known as trilinear filtering. It
is the best method in common use today but requires twice
the texture bandwidth of bilinear filtering.

Trilinear filtering can be further improved by changing
the shape of the filter window according to the effective
“footprint” of the screen pixel on each texture map. Figure 5
illustrates this technique, called anisotropic filtering. For an
object surface at a 66° angle to the view point, a typical
anisotropic filter uses 10 texture samples from each MIP-
map level and requires five times the bandwidth and compu-
tation needed for bilinear filtering.

Texture maps may also be used to describe changes in
the location of each pixel in a polygon. Texture maps that
contain relative-distance information—displacements above
or below the plane of the polygon—are called displacement
maps, bump maps, or perturbation maps. Such maps are
used to modify lighting calculations, just as bumps and dents
in a real object produce brighter and darker regions on the
object’s surface.

Blending
Color, texture, and lighting values are eventually combined
in blending, the final stage of rendering. One last possible
problem must be handled at this point—polygon edges that
cover only part of a pixel. The simplest solution is to com-
pute the fraction of the pixel covered by the polygon and
blend that fraction of the new color with the old color, but
this leads to errors. The best results are achieved by keeping
track of all these pixel fragments and combining them intel-
ligently at the end of the rendering process.
∆=0.36

∆=0.68

∆=1.05

∆=0.89

Figure 4. Bilinear filtering uses a weighted average of the nearest
four texel values to calculate the texture of the current pixel.
Texture map from view point Anisotropic filter window

Figure 5. Anisotropic texture filtering uses all the texels covered
by the current screen pixel to compute a more accurate result.
1 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

5 A C O N C I S E R E V I E W O F 3 D T E C H N O L O G Y
The more common solution is to render the image at
a higher resolution than the screen can display (typically
two to four times higher linear resolution). This high-reso-
lution result is then filtered down to the screen resolution,
eliminating most visible rendering errors. This process is
known as antialiasing and is supported by the best new
graphics chips. Antialiasing typically requires 4 to 16 times
as much frame-buffer capacity and bandwidth as nonan-
tialiased rendering.

Rendering translucent objects can add a great deal of
complexity to the pipeline. When the closer of two objects is
translucent, its color must be mixed with that of the more
distant object. This mixing is controlled by the translucency
factor, known as the alpha value. Alpha values, usually
denoted by α, are kept with the R, G, and B color values in
vertex and texture-map definitions.

The results of the blending operation represent the
final color of the pixel, unless it is overwritten by a subse-
quent polygon. Once all polygons have been drawn, the new
screen image is ready to be displayed. Ordinarily, the 3D sub-
system will have two frame buffers available, a configuration
known as double buffering. After the scene is fully rendered
into one frame buffer, that buffer is displayed on the monitor
while the other is used for rendering. The buffer being dis-
played is known as the front buffer, while the one being ren-
dered into is called the back buffer.

Double buffering hides the partially rendered scene
from the viewer, but it can cause a pipeline stall if the back
© M I C R O D E S I G N R E S O U R C E S J U N E 2
buffer is fully rendered before the front buffer has been fully
displayed. Additional buffers can be used to reduce the likeli-
hood of this type of stall.

When the back buffer is fully rendered, the front buffer
has been fully displayed, and the display device is ready to
display another page, the functions of the two buffers are
swapped—an operation known as a page flip. Rendering
resumes into the new back buffer while the new front buffer
is displayed. (The same Z buffer is used for each rendering
pass, since the Z buffer is not needed to display the image.)
This sequence is repeated as rapidly as possible. Frame rates
above about 20 frames per second (fps) produce an illusion
of smooth motion; this effect improves with higher frame
rates to a viewer-dependent threshold of about 80 fps.

Today’s 3D chips can already hit 80 fps on 3D scenes
composed of a few thousand polygons when displayed on a
medium-resolution monitor (about 800 × 600 pixels). Future
performance improvements will go to increase polygon
count, monitor resolution, and image quality.

To match the capabilities of the human visual system,
the performance of today’s 3D chips will need to improve by
about seven orders of magnitude—at least 12 years of pro-
gress, even at today’s amazing pace of 4× per year. Today’s 3D
architectures probably can’t be extended that far; new tech-
niques, and a lot of engineering effort, will be needed to
reach this goal.—

This article, with links to relevant books and chip-vendor
Web sites, is online at www.MDRonline.com/3d.

M

1 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

http://www.MDRonline.com/3d

	A Concise Review of 3D Technology
	The 3D Pipeline
	Figure 1. A representative 3D pipeline comprises...
	Figure 2. Polygon strips and meshes can be built...
	Geometry Processing
	Setup Processing
	Culling and Clipping
	Depth Sorting
	Shading
	Figure 3. Two intersecting polygons cannot be drawn...
	Texture Mapping
	Figure 4. Bilinear filtering uses a weighted average...
	Blending
	Figure 5. Anisotropic texture filtering uses all...

