
Sun Makes MAJC With Mirrors
Dual On-Chip Mirror-Image Processor Cores Cooperate for High Performance

E
M

B
E
D

D
E
D

by Brian Case

At Microprocessor Forum this month,
Marc Tremblay of Sun described the first
implementation of its new MAJC archi-

tecture (see MPR 8/23/99, p. 13 and MPR 9/13/99, p. 12).
With two identical and independent but cooperative proces-
sor cores, the MAJC-5200 is one of the first microprocessors
to implement chip multiprocessing (CMP), though Sun
prefers to classify the chip as a multiprocessor system on a
chip (MPSOC). This first chip will offer a relatively high
clock rate, eight powerful function units, a unique geometry
decompression engine, and copious amounts of off-chip
data bandwidth. While this chip has two CPUs, the MAJC
architecture will allow future MAJC chips to incorporate
hundreds of MAJC processor cores on the same die.

Compared with the Java-specific picoJava and microJava
cores, MAJC takes a different and far more sensible approach
to supporting Java. In contrast to these previous Java cores,
MAJC is not wedded to the Java bytecode, allowing Sun to
pull a non-Java application out of its MAJC hat. In most
applications, MAJC chips will execute Java bytecode through
a dynamic-compiler JVM (Java virtual machine), such as
Sun’s HotSpot, rendering bytecode the intermediate language.

Sun plans to tape out the MAJC-5200 design by early
December and begin sampling chips in the second quarter of
next year. At 200 mm2 in a 0.22-micron six-layer-copper
process, the chip will not be an inexpensive embedded con-
troller, but it could offer an excellent price-performance
ratio. Sun says more than one committed internal customer
is ready and waiting for the chip. As Table 1 shows, however,
the follow-on MAJC-5200+ (Sun says this is only a working
name) will have a much smaller die size. The later chip can
be used as either a cost- and power-reduced version of the
initial chip—keeping performance roughly the same at
500 MHz—or a cheaper and faster version of the initial chip.
While still not an inexpensive embedded controller chip, the
MAJC-5200+ should make the architecture appropriate for a
much broader range of products.
© M I C R O D E S I G N R E S O U R C E S O C T O B E R
Copy-and-Paste Reduces Design Time
Figure 1 shows a block diagram of the MAJC-5200. The two
identical processor cores occupy most of the chip, and each
core consists of three identical instruction pipelines (FU1,
FU2, and FU3) plus a fourth, slightly different, pipeline
(FU0). The FU0 pipes can execute only one-quarter of the
MAJC instructions, because two of the opcode bits in
instruction 0 are used to indicate the packet length.

Each processor core has its own 16K two-way set-
associative instruction cache. The I-caches use 32-byte
lines and LRU replacement. The single 16K four-way set-
associative data cache uses 32-byte lines and not-most-
recently-used (NMRU) replacement. The data cache is shared
by the two processor cores and is the primary communica-
tion path between them. The D-cache is a true dual-ported
design, so both processors can access any part of the cache at
the same time. In most other “dual-ported” caches, such as
those found in most x86 chips, simultaneous access is allowed
only when two accesses hit in different banks.

The FU0 pipes are geographically near the shared data
cache, because these pipelines are the only ones that execute
memory operations in the MAJC-5200 implementation.
This restriction is an implementation choice, not an archi-
tectural requirement, but it does mean that a MAJC-5200
2 GB/s (64 bits, 250 MHz) 1.6 GB/s (400 MHz) 32 bits, 66 MHz

2 GB/s (64 bits, 250 MHz)

Graphics Preprocessor
(GPP)

Switch

16K/4-way Shared
Data Cache

South UPA
(SUPA)

FU0 FU1 FU2 FU3

16K/2-way
I-Cache

4K Branch Predict

16K/2-way
I-Cache

4K Branch Predict

FU3 FU2 FU1 FU0

PCI
North UPA
(NUPA),

4K Buffer

Rambus
Direct RDRAM

 Interface

Figure 1. MAJC-5200 block diagram. Sun has not yet released a
die plot, but this block diagram corresponds roughly to the layout
of the chip. The processor cores are mirrored, with the FU0 instruc-
tion pipes located near the data cache, which they share. The cen-
tral Switch block connects the three I/O blocks, the GPP, and the
Rambus interface to the data cache.
CMOS Process
Die Size
Operating Voltage
Frequency
Power Dissipation

0.22µ, 6-metal copper
220 mm2

1.8 V
500 MHz

15 W

0.18µ, 7-metal copper
130 mm2

1.5 V
500 MHz 700 MHz

10 W 15 W

MAJC-5200 MAJC-5200+

Table 1. Characteristics of the first and second MAJC chips from
Sun. The second chip uses a process shrink to reduce die size and
either increase performance or reduce power.
2 5 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

2 S U N M A K E S M A J C W I T H M I R R O R S E
M

B
E
D

D
E
D

binary might not be optimal for a later MAJC implementa-
tion that can allow loads and stores in any pipe. It also means
that code might not be backward compatible from later to
earlier chips. Since most applications of MAJC chips will use
a dynamic-compiler JVM that is written to take best ad-
vantage of the particular MAJC implementation on which it
runs, exposed implementation constraints should not have
any ill effects on performance efficiency of migrated Java
bytecode; the dynamic JVM will generate optimal, imple-
mentation-specific code sequences in real time.

Pipeline FU0 is also the only one that can execute in-
structions such as branches, divides, reciprocal square roots,
cache flushes, memory barriers, and software traps.

The processor pipeline is effectively nine stages deep, as
Figure 2 shows. The instruction cache and branch-predic-
tion logic are accessed in the Fetch stage. The branch predic-
tor is a modern but modest two-level Gshare design with
4,096 two-bit entries and global 12-bit history register. The
Align stage is needed because instruction packets can begin
on arbitrary four-byte boundaries.

Each of the four distinct instruction pipelines has a sin-
gle decode and four execution stages; no predecode is needed,
because an instruction’s position within the packet deter-
mines the target pipeline. The decode stage handles the regis-
ter file access. Each FU has a 128-register file with three read
and five write ports. Three read ports are needed to handle
the four-operand instructions, and five write ports are re-
quired to handle writes from each pipeline plus writes from
the data cache.

Memory operations are started in stage E2, where the
data cache and load/store buffers are accessed. Since the chip
has no L2 cache—and no option to provide one—either there
will be a hit in the L1 cache or the DRAM will be accessed.
With the disparity between cache and DRAM latency, perfor-
mance could suffer greatly when 16K provides too little cache,
but Sun counters that an L2 wouldn’t help MAJC’s data-
streaming applications anyway. To help improve perfor-
mance, the data cache is nonblocking and supports out-of-
order data return, and streamed data can bypass the cache
entirely. As with any modern high-performance processor, the
compiler must try to schedule loads in advance of data use.

To implement the nonblocking cache and out-of-order
data return, each FU0 pipe implements a load buffer with
space for five outstanding 32-byte loads and a store buffer
with space for eight outstanding 8-byte stores. When mem-
ory operations hit, the data cache can provide up to
4 GBytes/s of data to each CPU.

MAJC specifies precise exceptions, which are imple-
mented in the 5200 chip by recording a bit vector of excep-
tions during the execute stages and then recognizing any
event in the Trap pipeline stage. The software trap handler
uses the bit vector to prioritize events and determine which
of potentially many exceptions to service.

In the MAJC architecture, all instructions with-
in a packet must complete together. In the MAJC-5200
© M I C R O D E S I G N R E S O U R C E S O C T O B E R
implementation, this requirement is met, but while a packet’s
instructions are in the decode stage, there is some elasticity.
One or more instructions can stall in their decode stage
while the others proceed to E1. All FUs then wait until the
decode stage(s) can proceed; all instructions move from E1
together. Nonblocking loads provide another form of elas-
ticity, allowing a packet of instructions to complete, even
though the load is many cycles from completion.

Fast I/O for Interchip Cooperation
The chip has four I/O blocks that communicate with the on-
chip caches through the switch block, shown in the middle of
Figure 1. The north and south UPA blocks are general-
purpose off-chip communication paths and implement a
scaled-down version of the UltraSparc’s 128-bit UPA inter-
face. Both the NUPA and SUPA are 64 bits wide, support
seven outstanding reads and seven writes, and provide up to
2 GBytes/s of bandwidth, but they are not identical. With a
4K data buffer, the NUPA is intended for use as an input
channel, while the SUPA provides only a small buffer and is
thus better suited to sending data off the chip. For compute-
intensive applications that can’t be tackled by a single MAJC
chip, Sun envisions chains of MAJC chips connected through
the UPA interfaces.

The Rambus interface connects to Direct RDRAM at
400 MHz, which results in a potential 1.6 GBytes/s of mem-
ory bandwidth. In the real world, Sun expects to reap a max-
imum of about 1.4 GBytes/s in data-streaming applications,
such as graphics and multimedia.

The PCI interface, which is Sun’s third-generation
implementation, provides another way to get data to and
from the chip. The 66-MHz 32-bit interface is capable of up
to 220 MBytes/s.
Decode DecodeDecodeDecode

E1 E1E1E1

E2 E2E2E2

E3 E3E3E3

E4 E4E4E4

Trap

Write Back

Branch Predict
& I-Cache

Register
File

D-Cache &
Load/Store
Buffers

Precise Exceptions
Recognized

Fetch

Align

Figure 2. All instructions flow through the four execution stages of
the MAJC-5200 pipeline, and each pipe is somewhat elastic rela-
tive to the others, which allows one pipe to get ahead of another.
All instructions in a packet complete at the same time, however.
2 5 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

3 S U N M A K E S M A J C W I T H M I R R O R S E
M

B
E
D

D
E
D

Graphics Unit Speeds Triangle Transmission
Most of the blocks in the MAJC-5200 are general purpose in
nature, but the graphics preprocessor (GPP) has a specific
purpose: to dramatically speed up the receipt of triangles
from an external geometry engine. The GPP implements a
vertex compression scheme that is part of the Java3D speci-
fication and is readily licensable. Part of the idea is to trans-
mit to the MAJC chip only unique vertices in a patch of
triangles and then use various compression techniques on
the coordinates, normals, and color characteristics of the
vertices. The result is a compression ratio of between 6 and
20. The GPP can also retrieve and process uncompressed
vertex data for compatibility with applications that don’t
adhere to Java3D.

The GPP retrieves this compressed vertex stream with
its own DMA engine, which can transfer data between any
two of the chip’s I/O ports. The GPP then parses the stream,
decompresses it, sorts the vertex data, and distributes the
data to two output buffers, one for each CPU core. The GPP
attempts to balance the vertex processing load to keep the
two CPUs equally busy.

When real code is run and the communication channel
is fast, the effect of the compression on performance is much
less than a factor of six, as Table 2 shows, but the effect can
still be significant, depending on other bottlenecks in the
graphics pipeline. In each of the three cases shown in Table 2,
the GPP compression prevents triangle communication
from limiting performance. When the communication chan-
nel is bandwidth constrained, the vertex compression pays a
much bigger dividend.

Speculation Speeds Single Thread
Given the game of leapfrog in CPU performance claims, the
raw speed of the MAJC-5200 is impressive. At 500 MHz the
chip achieves 6.2 GFLOPS for single-precision data, 1.5
GFLOPS for double-precision data, 7 GOPS for 32-bit inte-
ger data, and 13 GOPS for 16-bit integer data. The chip can
execute up to six operations per cycle from a grab bag of bit
extract, byte shuffle, shift, move/pick conditional, convert,
and compare instructions, which yields 3 GOPS for these
© M I C R O D E S I G N R E S O U R C E S O C T O B E R
operations. For the standard bcopy loop (a useful primitive
Unix function), the chip achieves 1 GByte/s.

Table 2 shows some of the graphics-processing perfor-
mance the MAJC-5200 can achieve. At tens of millions of
fully processed triangles per second, this chip would form
part of a world-beating workstation 3D graphics system
today. By the time the MAJC-5200 is available, however,
some 3D graphics chips may surpass this performance level,
perhaps approaching 100 Mtriangles/s.

Performance for multimedia applications should also
be impressive. Sun claims, for example, the chip will be capa-
ble of decoding six simultaneous 128-Kbits/s video streams
while encoding a single stream at 15 frames per second in the
H.263 format for video conferencing.

Perhaps the most interesting performance metric,
however, is a measure of how much benefit can be reaped
from the second on-chip processor for common, single-
threaded applications. For multithreaded Java applications,
the benefit of the second CPU is clear and easy to exploit:
simply find two ready threads and start them on separate
CPUs. To get a sense of what is possible, Sun simulated six
benchmarks from the SpecJVM suite, both on a single pro-
cessor and using the two processors. Figure 3 shows the
measured speedup.

The performance improvement was gained from specu-
lative method execution, which is implemented through a
combination of hardware and software. The hardware compo-
nents comprise high-speed data transfers, lock exchanges, and
interrupts between CPUs, while the software component is the
ability of the JVM to select a method and then ask the second
CPU to run it in a protected memory and register context. In
hardware, a data transfer or lock exchange between CPUs can
be completed in eight cycles, while an inter-CPU interrupt
takes 10 cycles. For this dual-processor configuration, there are
the usual synchronization issues but no cache-coherence lim-
itation, since both CPUs share a single data cache. The result is
fast communication between CPUs that makes it feasible to
Note: MTRT speedup about 1.7x

1.
51

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.
56

1.
62 1.

67

1.
64

1.
55 1.

59

co
m

pr
es

s

je
ss

db ja
va

c

ja
ck

m
pe

ga
ud

io

ge
om

et
ri

c
m

ea
n

R
el

at
iv

e
Pe

rf
or

m
an

ce

Figure 3. The benefit of speculative method execution for single-
threaded code on two CPUs can be significant. Six unmodified
single-threaded programs from the SpecJVM suite show an aggre-
gate speedup of 1.59. (Source: Sun)
Transforms
XYZ,
UV

Transforms+light
XYZ,
NxNyNz

Transforms+light
XYZ,
NxNyNz,
RGB

Compressed UncompressedProcess Limits

GPP limit
CPUs limit
Output limit
Chip limit
GPP limit
CPUs limit
Output limit
Chip limit
GPP limit
CPUs limit
Output limit
Chip limit

92
113
107
92

110
83

107
83
66
83

107
66

71
113
93
71
77
83
93
77
62
83
93
62

Table 2. This table shows the 5200’s graphics performance limits.
Numbers are in millions of triangles per second. (Source: Sun)
2 5 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

4 S U N M A K E S M A J C W I T H M I R R O R S

c
’
ro

E
M

B
E
D

D
E
D

ask the second CPU to take a “shot in the dark” on an upcom-
ing method. If there are dependencies between the method
running on the first CPU and the speculative method on the
second CPU, they can be detected quickly and either resolved
or used to cancel the speculative method.

Aside from fast data and control communication be-
tween the two processor cores, speculative method execu-
tion is implemented mostly in software. The JVM scans
ahead in the Java bytecode stream, locates what it deter-
mines is likely to be an independent method, then asks the
second CPU to run the method in a separate address space.
If the speculation succeeds, the two memory spaces are
merged to create a single space. If the speculation fails, the
speculative method is canceled and its space is garbage-
collected. There is no overhead for canceling the speculative
method, but some overhead is suffered to start the indepen-
dent thread.

What is especially impressive here is that a “simple” CPU
replication and some hardware and software
cleverness results in a speedup that would be
difficult to achieve by extending today’s out-
of-order superscalar microprocessor orga-
nizations. These results were achieved using
Java on an architecture and implementation
somewhat tailored for Java, but the larger
reality is that the results may bode well for
chip multiprocessing implementations of
other architectures. Even if it is true that
MAJC has better support for collaborative
use of dual processors, other architectures
can adopt the technique too, just as many
old ISAs have been augmented with some
form of predicated execution and SIMD
operations. Sun’s MAJC results seem to say
that chip multiprocessing can be generally
beneficial, given the right software support.

Of course, the two CPUs on the MAJC-5200, and all the
CPUs on future MAJC chips, need not be used only for spec-
ulative method execution. For applications that are already
multithreaded, it makes sense to simply distribute the threads
to independent CPUs. And in an environment where there
are independent system tasks or other parallel processes, it
makes sense to simply distribute the processes to indepen-
dent CPUs.

Good Start, Uphill Battle
As impressive as the MAJC-5200 chip is, it is also the victim of
compromise. While MAJC is nominally a 64-bit architecture,
the first chip isn’t. First, the register files, data paths, and
memory pointers are all 32 bits. This means that double-
precision FP and long-integer operands will occupy two adja-
cent register file locations. This won’t be true, however, for
64-bit MAJC implementations, so there will be an issue of bi-
nary compatibility for statically compiled code. As mentioned
before, this shouldn’t be much of an issue for Java bytecode

MAJC chief archite
describes the 5200
structure at Microp
© M I C R O D E S I G N R E S O U R C E S O C T O B E R
binaries since the final code executed by the MAJC chip will
be generated on the fly by a dynamic compiler JVM.

Second, the caches are relatively small at 16K each, and
even though the Rambus memory system will provide high
bandwidth, it has long latency relative to the cache. Many
multimedia applications will be able to stream data in from
memory or I/O interfaces and keep the streams from pollut-
ing the cache, however, 16K is still quite small, especially
given that the data cache is shared by two processors that are

ostensibly executing independent threads.
Additionally, the caches may be too small to
run the dynamic compiler at top speed,
although the code it generates for inner
loops will perform well and may dominate
program run time.

Thus, while it is impressive that Sun
designed two processors on a single chip, it
is nonetheless likely the engineers could
have built a higher-performance single-
CPU chip. With one CPU, the caches could
have been bigger, the limitation of only FU0
executing memory ops could have been
relaxed, and the chip could have imple-
mented the full 64-bit MAJC architecture.
The chip might even have been smaller. Sun
counters that Java isn’t helped by issuing
more than four instructions, that two four-

issue CPUs deliver more performance than a single eight-
issue CPU; that cycle time is better for two simple CPUs; and
that design time is greatly reduced versus a complex out-of-
order implementation.

The innovation in MAJC is the Java-centric architec-
ture and implementation combined with attention to chip
multiprocessing. Java is perhaps the best current software
vehicle for threaded programming, and threads may be the
best way to surpass the limits of performance improvement
through ILP. As Java use rises, a Java-centric microprocessor
might find significant volume in purpose-built devices.

As with any new architecture, however, MAJC faces a
steep uphill climb to achieving a state of profitability suffi-
cient to sustain its development. To its credit, Sun has hitched
MAJC to a couple of sturdy new performance bandwagons—
chip multiprocessing and speculative method execution—
and the MAJC-5200 has proved, at least in simulations, these
techniques are one way to keep improving the performance
of single-threaded applications.—M

t Marc Tremblay
s dual-processor
cessor Forum.

M
IC

H
A

E
L

M
U

S
TA

C
C

H
I

P r i c e & Av a i l a b i l i t y

Sun Microelectronics expects a December tapeout for
the 5200 with internal samples in 2Q00. The 5200+
should sample in 3Q00. For more information, go to
www.sun.com/microelectronics/MAJC/.
2 5 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

http://www.sun.com/microelectronics/MAJC/

	Sun Makes MAJC With Mirrors
	Table 1. Characteristics of the first and second...
	Copy-and-Paste Reduces Design Time
	Figure 1. MAJC-5200 block diagram...
	Fast I/O for Interchip Cooperation
	Figure 2. All instructions flow through the four...
	Graphics Unit Speeds Triangle Transmission
	Speculation Speeds Single Thread
	Table 2. This table shows the 5200’s graphics...
	Figure 3. The benefit of speculative method execution...
	Good Start, Uphill Battle

	Price & Availability

