
T H E I N S I D E R S ’ G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

MICROPROCESSOR
VOLUME 13, NUMBER 15

NOVEMBER 15, 1999

REPORT

perspeculation for High ILP
by Keith Diefendorff

Disproving the adage that all interesting
microarchitectural techniques have al-
ready been implemented in microproces-

sors, Hal Computer Systems is developing an innovative
1-GHz, eight-issue, out-of-order superscalar design it calls
Sparc64 V. Speaking at last month’s Microprocessor Forum,
Mike Shebanow, vice president and CTO of Hal’s Micro-
processor Division, described the new processor, which is
aimed at the same large-scale enterprise servers that giants
Compaq, HP, IBM, Intel, and Sun all covet. Hal expects to
tape out Sparc64 V by 3Q00 and to place chips into Fujitsu
GranPower SMP servers by late 2001.

Agreeing with Intel Itanium architects, Shebanow—
one of the principal architects of HPS, the High-Perfor-
mance Substrate developed at UC Berkeley under Yale Patt—
is also a believer in instruction-level parallelism (ILP). Not
surprisingly then, Sparc64 V uses its 65 million transistors to
exploit ILP, as opposed to the thread-level parallelism (TLP)
that IBM’s Power4 (see MPR 10/6/99, p. 11) is chasing with
chip multiprocessing and that Compaq’s Alpha EV8 (see
MPR 11/15/99, p. 13) is pursuing with simultaneous multi-
threading.

On the other hand, like Compaq, IBM, and Sun archi-
tects, Shebanow does not believe that changing instructions
sets is necessary, and he believes that dynamic instruction
scheduling can fully exploit the available ILP. Shebanow
admits, however, that coaxing a wide-issue out-of-order
SPARC V9-compatible processor to very high frequency is a
significant challenge.

Sparc64 V uses two advanced techniques not found in
any current mainstream microprocessor: a trace cache, as
Figure 1 shows, and superspeculative execution (execution
past memory data dependencies). It can issue up to six inte-
ger instructions per cycle, and Shebanow expects his 1-GHz
monster to deliver more than 70 SPECint95 (base). On
floating-point code, the chip can issue up to eight instruc-
tions per cycle, two of them floating-point multiply-add

Hal Makes Sparcs Fly
Sparc64 V Employs Trace Cache and Su
(FMA) instructions that Hal added to SPARC V9. Dual-issu-
ing FMA instructions gives Sparc64 V a maximum through-
put of 4 GFLOPS and a SPECfp95 (base) score of more than
130.

These stats are a huge improvement over the 14.7 int/
27.7 fp scores of the current Sparc64 III-300. With Sparc64 V,
Hal is determined not to sacrifice as much frequency for ILP
as it has in previous processors.

Trace Cache Untangles Code
Sparc64 V has its roots in a class of processors computer
architects call trace processors (see “Trace Processors,”
Rotenberg et al., Proc. 13th IEEE/ACM Int’l Symposium on
Write Buf (8 × 128b)

FP0 FP1 FX0 FX1
ST0 ST1
FX2 FX3

Register Files (FP, FX, CC) and ROB (32,32,32)

Reservation
Stations (16)

Reservation
Stations (12)

Reservation
Stations (20)

Reservation
Stations (16)

Alt Path
Buffer

Trace Cache
(1,024 × 550b,

4-Way)

BTAC (1,024, 4-W)
BHT (1,024 × 2b)

Trace-Fill Unit

µI
TL

B
(3

2)

µD
TL

B
(3

2)

256K, 4-Way, L2 Instruction Cache

32K, 4-Way
L1 I-Cache

L3 Cache Interface (2-Way)UPA SMP System Bus I/F

128

250 MHz (8 GB/s) 500 MHz (16 GB/s)

SRAMs (5–9)

Main ITLB
(1,024, 4-W)

Main DTLB
(1,024, 4-W)

8K L1
Data

Cache

64 64

128

LD0 LD1

512K, 4-Way, L2 Data Cache

Figure 1. In the front end of the Sparc64 V pipeline (purple), the
predicted code stream is sliced into eight-instruction trace packets
that are stored in a trace cache and later dispatched to reservation
stations in order. The back end of the pipeline (white) issues and
executes individual instructions out of order. The cache hierarchy
(gray) includes separate on-chip L2 instruction and data caches,
separate TLBs, and an external unified L3.

2 H A L M A K E S S P A R C S F L Y
Microarchitecture, 1997, p. 140). In trace processors, the
instruction-fetch hardware breaks the code stream into seg-
ments called traces that follow the predicted flow of control.
Instructions in traces are predecoded, and knowledge about
data-dependence relationships and hardware resource re-
quirements is kept with the trace. Traces are stored in a trace
cache, one trace per entry, and become the basic unit for
fetching and execution in the machine. By exploiting the pre-
processed instruction-stream information as well as the spa-
tial and temporal locality of traces, trace processors strive to
execute one complete trace per cycle.

By performing much of the work of decoding instruc-
tions, analyzing data dependencies, and routing instructions
to execution units up front, the trace technique can take pres-
sure off the performance-critical front end of the execution
pipeline. In a sense, the trace-creation hardware performs
some of the same functions as the back end of a VLIW or
EPIC compiler. As in an EPIC design, taking these functions
out of line of the execution pipeline allows the machine to
have both a reasonably short pipeline and a fast cycle time.

One Gigahertz, Eight-Issue, and a Short Pipe
As Figure 2 shows, the Sparc64 V pipeline is nine stages,
which compares favorably with Itanium—a six-issue EPIC
design with a ten-stage pipeline (see MPR 10/6/99, p. 1).
Keeping the pipeline short—without compromising speed—
was a key design goal for Sparc64 V; Hal says it has learned
from experience that long pipelines suffer too much from
pipeline inefficiencies.

In Sparc64 V’s implementation, a trace packet can
include up to eight instructions, or at most two basic blocks.
Two block-termination branches can be resolved in a single
cycle. Each of the eight 32-bit instructions in a packet is heav-
ily preprocessed and the resulting information appended to
the trace packet.
© M I C R O D E S I G N R E S O U R C E S N O V E M B E R
Once formed, packets enter the execution pipeline and
are stored in the trace cache, possibly to be fetched again
later. The trace cache holds 1,024 packets and is four-way set-
associative. It is virtually indexed by eight low-order bits of
the program counter (PC2–9) and is physically tagged.

After entering the execution pipeline, traces are dis-
patched to reservation stations and the reorder buffer (ROB)
in program order. From there, individual instructions are
issued to the execution units out of order. Instructions exe-
cute and complete out of order but are reassembled into
packets before results are committed to the register file in
order. One full packet can be committed every cycle.

Recovery from speculative execution past mispredicted
branches is via checkpoints. As packets are dispatched, they
are assigned a checkpoint ID, and a snapshot of the machine
state is recorded. The processor can track 16 checkpoints,
allowing up to 128 instructions to be in flight at one time.

Sparc64 V supplies instructions and data using an
unusual cache hierarchy consisting of separate on-chip L1
and L2 instruction and data caches and a unified off-chip L3.
The unusual aspects are a very small 8K direct-mapped L1
data cache and the separate instruction and data L2s. Most
processors with on-chip L2s, such as Pentium III (see MPR
10/25/99, p. 1), PowerPC G4 (see MPR 10/25/99, p. 10), the
21364 (see MPR 10/26/98, p. 12), and Power4, use a unified
L2. Hal separated the L2s to minimize interference, which
can be excessive in heavy TPC and numeric workloads, and
to improve the chip layout topology.

Much Work Done out of Line
The process of creating traces in the trace-fill unit is a com-
plex one. The fill-unit pipeline must accomplish many tasks
while remaining short enough to prevent trace-cache misses
from appreciably degrading performance. The first cycle
(T$M) of the fill pipeline is required just to detect that a
trace-cache miss has occurred and to determine which block
to fetch from the L1 instruction cache. The second cycle
(L1I$) fetches a 32-byte block from the L1. The L1 is 32K in
size, is four-way set-associative, and has a 64-byte line size.
The L1 I-cache is backed by an on-chip 256K four-way set-
associative L2 instruction cache with a three-cycle latency
from address.

In the third stage of the fill-unit pipeline, FILL0, in-
structions in the L1-cache block are translated from memory
order to packet order. If more instructions are needed to fill a
packet, the fill unit recycles through L1I$. Once enough
instructions have been accumulated, FILL0 packs the newly
fetched instructions into packets of up to eight instructions,
which will be cracked by subsequent stages. The fill unit col-
lects instructions into packets according to their expected
execution order by predicting branches and following the
predicted path.

To predict the path, Hal uses a conventional agrees-
mode-encoded Gshare dynamic branch predictor (see MPR
11/17/97, p. 22). The predictor’s 8-bit global-branch-history
T$M L1I$ FILL0 FILL1 FILL2

FETCH DEC0 DEC1 DISPATCH

EXEC

AGEN

FADD1

FMUL1

FADD2

FMUL2

FADD3

FMUL3 FMUL4

L1D$

WB COMMIT0 COMMIT1 COMMIT2

Possible Delay in
Reservation
Stations

1 2 3 4

5

6 7 8 9

FILL3

Figure 2. By moving the complexities of decoding and depen-
dency analysis out of line into a separate trace-fill pipeline (gray),
Hal was able to keep the performance-critical execution pipeline
(purple) short without sacrificing cycle time.
 1 5 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

3 H A L M A K E S S P A R C S F L Y

TO
n

ch
register is hashed (XORed) with eight low-order bits of the
branch address to create an index into the branch-history
table. The BHT contains 4,096 entries, each a two-bit satu-
rating up-down counter. The most-significant bit of the
selected entry is XORed with the static prediction from the
branch opcode to create the final prediction. SPARC V9
branches have explicit static predictions encoded in the
opcode; for SPARC V8 branches, static predictions are
inferred from the direction of the branch. Shebanow says the
BHT gives a 93% prediction accuracy on the SPECint95
benchmarks.

Branch address are predicted via a 32-entry return
stack and a large 1,024-entry four-way set-associative
branch-target-address cache that is indexed in the same
manner as the trace cache. To communicate prediction
information to later stages and to avoid PC computations at
fetch time, 62 bits of branch-prediction
information are carried forward with the
trace packet, including the taken address,
the not-taken address, and a variety of
other bits of information.

A feature Hal toyed with but rejected
was automatic predication. This technique
assigns predicates to instructions at trace-
formation time rather than branching
around them. Unfortunately, performance
studies showed only a tiny performance
gain, even with unrealistically large hard-
ware configurations.

It is not clear how this finding reflects
on full architectural predication, such as
that in IA-64. A compiler has a far greater
scope and more freedom to rearrange code
than any hardware trace-fill unit. But She-
banow, who was initially enamored of predication, says that
even though their hardware predication covered most of the
common cases that a compiler could exploit, it still failed to
show a performance boost. The problem, Hal discovered,
was that predication is a bet against the branch predictor,
which is all too frequently a bad bet.

Packet Breaks Limit IPC
In FILL1, the fill unit resolves intrapacket dependencies
(RAW, WAR, and WAW) and applies the packet-break rules.
To simplify sequencing, Hal requires all packets in the trace
cache to leave the machine in a conforming state, i.e., a state
in which the next-program-counter (NPC) is equal to the
current-program-counter plus 4 (NPC = PC + 4). A packet
ending with a delayed branch, for example, would be non-
conforming. In such cases, packets are broken to enforce
conformance.

Normally, trace processors would terminate a packet on
a predicted-taken conditional branch (forward or back-
ward). With an innovation introduced by Hal, however, in
many cases two basic blocks can be contained in a single

Mike Shebanow, C
processor Divisio
Sparc64 V trace ca
© M I C R O D E S I G N R E S O U R C E S N O V E M B E R
packet, significantly improving packing efficiency. To imple-
ment this feature, Hal divides branches into two categories:
D and S branches. D branches are simple conditional
branches that can dual-issue. S branches are unconditional
branches, such as long jump (JUMPL) and subroutine call
(CALL), which must be single-issued. S branches must be
executed in the first fixed-point ALU (FX0), which has spe-
cial hardware to handle this type of branch. D branches can
be executed by any of the four fixed-point ALUs.

Two D branches can be allocated in a packet, subject
only to the rule that the first (the internal branch) cannot
jump backward within the packet to anything other than the
first instruction; if it does branch to the first instruction, the
instructions packed up to the first branch must be able to be
replicated in the second half of the packet. This seemingly
odd rule allows important cases, such as the four-instruction

string-copy loop, to be packed two itera-
tions per packet. At the same time, this rule
prevents pollution of the trace cache that
would occur in pathological cases, such as,
for example, a seven-instruction loop pro-
ducing seven separate traces, all containing
the same instructions.

To prevent multiple address transla-
tions for a single fetch, all instructions in a
packet are required to fall within a single
8K virtual page. There is also a restriction
requiring all instructions in a packet to fall
within two consecutive 512-byte memory
blocks. Together, these rules make it feasible
to enforce coherence and inclusion between
the trace cache, which is PC aligned, and
the caches, which are memory-address
aligned. Without this restriction, the entire

contents of the trace cache would have to be flushed every
time a cache block is invalidated from the bus.

Other packet-break rules require certain instructions,
such as SAVE, which alters the SPARC V9 register-window
pointer (CWP), to be the first instruction in a packet. Other
instructions, such as RESTORE, must be the last instruction.
Instructions that are “microcoded” (cracked into multiple
simpler instructions), such as LDD, which loads two integer
registers, must occur in their own packet. FILL1 applies a
total of 29 such packet-break rules.

In the FILL2 stage, register-file ports and execution
slots are allocated for every instruction in the packet. A com-
promise Hal made for frequency was to limit the number of
register-file ports. Theoretically, Sparc64 V could execute
two loads and four three-source-operand fixed-point
instructions per cycle, requiring 16 read ports in the fixed-
point register file (FXRF). Statistically, however, because of
two-source-operand instructions, immediate operands,
instructions that read the same register, and results being
forwarded from other instructions in the packet, 16 ports are
rarely needed. Hal took advantage of this fact to implement

 of Hal’s Micro-
, describes the
e at the Forum.

M
IC

H
A

E
L

M
U

S
TA

C
C

H
I

 1 5 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

4 H A L M A K E S S P A R C S F L Y
only eight FXRF read ports. The floating-point register file
(FPRF) was given six ports, and the condition code register
file (CCRF), which includes the general-status register and
the four floating-point condition registers, was given four.

Similarly, six integer results could theoretically be writ-
ten per packet, but Hal was able to safely limit the FXRF to
four write ports, because neither stores nor branches write
back, and because only one instruction in a packet needs to
write to any given register. The FPRF also has four write
ports, and the CCRF has two.

Because the number of read and write ports is less than
can be required by certain instruction sequences, packets
must sometimes be broken to avoid oversubscribing to the
available ports. Shebanow says, however, that this type of
packet breakage doesn’t occur often enough to significantly
impact performance. More common is breaking the packet
because the instruction mix doesn’t match execution-unit
mix: there are two load, two store, two fixed-point-ALU, and
two floating-point-ALU units; the store units perform dou-
ble duty as auxiliary fixed-point ALUs. But even this struc-
tural hazard doesn’t pose a serious performance problem.

Shebanow says that simulations indicate a packing effi-
ciency, after all packet-break rules have been applied, of
between four and five instructions per packet. The average
number of instructions executed per cycle (IPC), however,
will be fewer due to pipeline stalls.

No Time to Waste on Housekeeping
The tasks of scheduling register ports and operand-forward-
ing paths and aligning instructions onto the appropriate exe-
cution units are completed by the fill unit in stage FILL3.
Removing these tasks from the execution pipeline saves pre-
cious execution-pipeline stages, but it requires a significant
amount of information to be kept, in decoded form, with
each packet, as Figure 3 shows. Each trace packet is a total of
550 bits wide, nearly twice the size of the raw instructions.

Register read-port assignments are made by creating a
read-port identifier for each read port in each of the three
register files. Each identifier indicates which register that
port will read. The source-operand specifiers in each instruc-
tion are then recoded to point to one of the read-port identi-
fiers. This level of indirection allows the registers to be read
quickly in the execution pipeline, with no decoding or shuf-
fling required at that time.

The source-operand specifiers are recoded as a two-bit
type field and a three-bit ID field. The two-bit type field indi-
cates which of four sources will supply the respective source
© M I C R O D E S I G N R E S O U R C E S N O V E M B E R
operand. Operands can come from a register, from the result
of another instruction, from an immediate operand, or from
a short-constant generator. In the case of a register source, ID
indicates the read-port identifier. For a forwarded result, ID
indicates which instruction in the packet will generate the
result. For immediate operands, ID selects one of four possi-
ble 13-bit literals stored separately in the trace packet. And
for short constants, ID encodes one of several frequently
used values, e.g., 1, 4, 8, and –8. The floating-point source-
operand specifiers and condition-register source-operand
specifiers are recoded in a similar manner.

Destination-register operand specifiers are also re-
coded and placed into structures Hal calls reorder-buffer-
issue packets, or RIPs. Each register file has its own RIP,
which contains a specifier for each write port in the file.
These RIP specifiers point to the instruction slot that will
produce the result for the associated write port, as well as
indicating which register will be updated (the RD field)
when the result is committed. In assigning write ports, the
write-after-write (WAW) dependence is honored by letting
only the last write to a given register in a packet actually
update the destination register. Fields in the RIP specifiers
form the basis of ROB entries, one of which is created for
each RIP specifier at the time the packet is dispatched.

Ready, Set, …
With the control-flow-graph of the program straightened
out by the trace-formation process, trace execution begins in
the DEC0 and DEC1 stages of the execution pipeline. Traces
are delivered to DEC0 from one of three sources: the trace
cache, the trace-fill pipe, or the alternate-path buffer (APB).
Initially, traces are dispatched from the trace cache until a
miss occurs. At that point, the dispatcher switches to stream-
ing mode, supplying traces from the fill pipe until another
trace-cache hit is encountered.

Currently, Sparc64 V allocates only the first four pack-
ets of each new stream into the trace cache. This limit ensures
that there are enough traces in the cache to cover the startup
time of the fill pipeline while at the same time preventing a
loop from polluting the cache. For loops, traces are supplied
directly from the fill pipeline; the additional fill stages have
no impact on performance in steady-state loop operation.
Shebanow says that in the final design the restriction on the
number of packets allocated into the trace cache at the
beginning of a stream may be increased or eliminated al-
together, depending on simulation results.

In the case of a trace-cache hit on the predicted path
and a miss on the alternate path, the fill unit is directed to
create the alternate trace, which it stores in the APB. In the
case of a hit on both the predicted path and the alternate
path, the fill unit creates the next sequential trace, again stor-
ing it in the APB. The APB is indexed by the checkpoint ID of
the predicted trace, so the alternate trace can be supplied
immediately from the buffer on a branch misprediction,
reducing the mispredict penalty.
Opcodes Literals Source Op
Specifiers

Reg Read Port
Identifiers

Destination
Specif (RIPS)

Branch
Predict M

is
c

80 52 94 135 92 62
550 bits

Figure 3. The eight instructions in a trace packet are blown apart
and reassembled into like fields, with nearly 300 bits of decode
information added.
 1 5 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

5 H A L M A K E S S P A R C S F L Y
In DEC0, traces are transported from the trace cache,
the fill unit, or the APB, and instructions are decoded. In
DEC1 the processor reads source operands (or tags) from the
register files (or ROB) and renames destination registers. It
also creates new entries in the ROB to hold the results from
each instruction in the packet. As part of the register-renam-
ing process, the five-bit RD destination-register identifiers in
the RIPs are flattened to eight bits, uniquely identifying them
in SPARC’s register-window space of 157 total registers.

The ROB is a content-addressable memory (CAM)
with 32 entries for integer results, 32 for floating-point
results, and 32 for condition register results. The size of the
ROB was limited by cycle-time considerations. In addition to
the information from RIP specifiers, each ROB entry con-
tains a field for result data, a tag that can be supplied in lieu
of data, and an assortment of status bits that track the state
of the entry and its data, e.g., written, speculative, and visible
(most recent). By manipulating these status bits, the instruc-
tion scheduler can perform operations such as flushing
invalid speculative results and replaying instructions.

When operands are read, the register identifiers index
the register file and simultaneously access the ROB. A hit in
the ROB causes the register-file data to be ignored and ROB
data to be supplied, if it is present. If the result is not yet in
the ROB, the tag is supplied instead.

At the end of DEC1, the full packet of instructions with
operands (or tags) is dispatched to the reservation stations.
The tags tell the reservation stations which slots and which
checkpoint IDs to watch for operands that weren’t available
at the time the packet was dispatched.

… Go
In the DISPATCH stage, instructions and operands (or tags)
are distributed to the reservation stations. The two fixed-
point execution slots share 12 reservation stations; the load
slots have 16, as do the floating-point slots; and the store
slots share 12 reservation stations for instructions and 20 for
store data.

Each instruction waits in a reservation station until all
its tags have been resolved, i.e., until all its operands are
either present or are being forwarded from another instruc-
tion. At this point, individual instructions are issued to the
execution units in oldest-ready-first order. If the reservation
stations are empty when an instruction is dispatched, they
are bypassed, and the instruction is issued directly into exe-
cution without a delay cycle.

The execution latency of most simple fixed-point in-
structions is one cycle. Floating-point add latency is three
cycles, and floating-point multiply latency is four. Sparc64 V’s
floating-point slots are symmetric; each of the two FP slots
has a full double-precision adder as well as a full double-
precision multiplier. VIS instructions (SPARC’s SIMD visual
instruction set) use only one of the floating-point slots.

Load latency is dependent on where in the memory
hierarchy the data is found. In the best case of an L1 hit, the
© M I C R O D E S I G N R E S O U R C E S N O V E M B E R
load pipeline requires one stage for address generation and
one stage to access data in the cache. Thus, the minimum
load-use penalty is two cycles.

Results are written to the reorder buffer in the WB
stage. At this point, execution is complete as far as any direct
effect on performance goes, i.e., all results are available to
other instructions. But three more stages, COMMIT0–2, are
required to reassemble results into packets, make the final
decision to commit the results, broadcast the decision, com-
mit results from the ROB to the register files, and retire the
packets and checkpoints from the machine. Results are com-
mitted and instructions retired as a full packet, which occurs
only after a packet is the oldest outstanding packet with no
exceptions pending, i.e., packets are retired in order.

When in Doubt, Superspeculate
Most modern processors speculate on control-flow decisions
so they can make progress, despite uncertainty about the
path through a program. But Sparc64 V takes speculation a
step further, speculating on data as well. This technique, for
which the term superspeculation was coined by Mikko
Lipasti and John Shen, solves two significant performance
problems in Sparc64 V.

First, Hal was able to grease the straight path through
the L1 data cache to be very fast. The L1 is small (8K), direct
mapped, write through, and sum addressed for maximum
speed. (A sum-addressed cache computes the cache index as
part of the cache-address-driver circuits in a way that elimi-
nates the time required to do a full base-plus-index addition.)
It takes considerably longer, however, to prove that the data in
the cache is actually valid: the address must be translated
through the TLB, which could involve a TLB miss, and it must
be tested for memory dependencies before it can be qualified
as valid. In the best case, this validation process takes two
cycles longer in Sparc64 V than accessing L1 data. Super-
speculation permits Sparc64 V to proceed as soon as the data
is available, backing it out later if the data proves invalid.

The second problem solved by superspeculation is that
Solaris, by far the most popular OS used on SPARC proces-
sors, requires the processor to run in TSO (total store order-
ing) mode. In this mode, load operations must be performed
in program order with respect to other loads, to protect
against the outside chance that an address-alias conflict or a
coherency action from another processor may change the
data values of a subsequent memory operation in an unex-
pected way. Superspeculation allows Sparc64 V to proceed as
if these unlikely events will not occur and to run memory
operations in a more performance-favorable order. In effect,
it allows Sparc64 V to operate in SPARC V9’s relaxed-mem-
ory-ordering (RMO) mode while still adhering to the stricter
TSO semantics.

In essence, the processor simultaneously executes two
parallel data-flow graphs, a data data-flow graph and a con-
firmation data-flow graph. The data graph executes at nor-
mal memory latency with relaxed ordering, possibly running
 1 5 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

6 H A L M A K E S S P A R C S F L Y
ahead of confirmation, which is subject to longer latencies.
Once data is confirmed, however, a confirmation data-flow
graph executes in TSO mode, but at a uniformly single-cycle
rate, allowing it to again catch up with data flow.

Implementing superspeculation required that reser-
vation-station valid bits be extended from one bit to two, so
that three states, invalid (I), valid speculative (SV), and valid
nonspeculative (NSV) could be represented. Either SV or
NSV allows an instruction to be scheduled for issue.

SV results are initially generated by load instructions,
and they are propagated by instructions that use SV data.
The load unit (LDU) distributes SV data on its distribution
bus and confirms validity to the central instruction sched-
uler on a separate confirmation bus. For every SV data value
generated, the LDU will eventually either confirm the data
was valid or rebroadcast NSV data on the distribution bus.

When the LDU confirms valid data, the central sched-
uler propagates the confirmation to all instructions that were
either directly or indirectly dependent on the SV data. If the
LDU rebroadcasts NSV data instead, the central scheduler,
replays all instructions that executed with bad data. Since
instructions are not deallocated from the reservation stations
until they are confirmed, and they cannot be confirmed until
they are nonspeculative, the scheduler can easily replay
instructions by making bad results in the ROB invisible and
resetting the reservation-station status bits, causing the
instructions to be rescheduled and reissued.

A feature initially implemented in Sparc64 V but later
removed was load-value prediction (LVP)—the ultimate
form of superspeculation. LVP predicts the result of a load at
dispatch, allowing a zero-cycle load-use penalty when the
© M I C R O D E S I G N R E S O U R C E S N O V E M B E R
prediction is correct. Even though Hal verified that data
could indeed be predicted with high accuracy, it found no
net performance gain. Since the feature cost 5 mm2 of silicon
and had no performance value, it was removed.

Like automatic predication, Hal discovered that LVP
required a bet that often went against the branch predictor.
The primary need for short load latency comes from the
need to reduce control-flow-decision latency (and thereby
mispredict penalties) in, for example, load-compare-branch
sequences. The problem Hal ran into was that it was never
clear which to trust, the LVP or the branch predictor. In the
case where the branch predictor was right and the LVP
was wrong, but the hardware bet on the LVP, a substantial
amount of good work was unnecessarily discarded.

Load/Store Bandwidth Galore
In typical programs, it is common for 25% of the dynamic
instruction mix to be loads and 15% to be stores. The per-
centages can be even higher in certain loops. Therefore a pro-
cessor needs a high load/store bandwidth to keep other
instructions from stalling. Because load/store execution
units are inherently complex beasts, however, it is tempting
for designers to skimp on these resources. Sparc64 V does
not appear to have fallen into this trap: the processor can dis-
patch, issue, execute, and complete two 64-bit loads and two
64-bit stores every cycle.

As Figure 4 shows, the LDU is fronted by 16 load reser-
vation stations (LDRS), 12 store-address reservation stations
(STRS), and 20 store-data reservation stations (SDRS). The
critical path through the unit is from LDRS through the L1 to
the distribution bus. Hal put an enormous effort into making
this path as fast as possible; in the normal case of an L1 hit, it
requires two cycles. Although 8K is small for an L1 cache, She-
banow says that any larger L1 would have required the path to
be three cycles. Simulations proved, however, that the small
two-cycle design was a better performance tradeoff, given the
existence of a large on-chip L2 backing up the L1.

But load accesses don’t always flow smoothly through
the fast path; when something goes wrong it’s the load-
address-table/store-address-table unit (LAT/SAT) that
straightens things out. The LAT/SAT holds all of the primary
control and data structures for the LDU, and it maintains
information on all pending loads that have been dispatched
but not yet committed. A LAT/SAT entry is established when
each load or store is dispatched, and the entry is filled in
when the load or store is issued. There are 20 LAT entries and
20 SAT entries, each 249 bits wide.

The LAT/SAT schedules “check loads” into the pipeline
whenever a load is boosted above another load or store. Check
loads execute in program order with respect to other loads to
verify that the speculative data sent by the boosted load has
not changed in the meantime. If it changes, the LAT/SAT
replays the load and rebroadcasts corrected NSV data.

Check loads, because they access the L1 like normal
loads, can have a deleterious effect on performance. There-
chk

LDRS
Load Reservation

Stations (16)

SDRS
Store-Data Res.

Stations (20)

STRS
Store Reservation

Stations (12)

+ +

L1 Data Cache
(8K,

direct mapped)

Byte Aligner

L2 Data Distribution Bus L2 Write Data Central Scheduler L2 Request

LAT/SAT
(20 × 249b/
20 × 249b)

Commit
Checkpoints

µDTLB

Sp
ec

 V
al

id C
onfirm

ation

Write
Buffers

(8 × 128b)

64
64

128

Figure 4. Sparc64 V’s load unit (LDU) can issue, execute, and
complete two loads and two stores per cycle. The primary load
path (purple) has been tuned to be as fast as possible (two cycles).
The LAT/SAT (load-address table/store-address table) maintains all
data structures and information pertinent to loads and stores that
are in flight (dispatched but not committed).
 1 5 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

7 H A L M A K E S S P A R C S F L Y
fore the LDU aggressively searches for opportunities to
purge unnecessary check loads from the pipeline before they
access the L1. Check loads can be removed whenever the
LAT/SAT determines that, for a given load, all older loads are
committable, i.e., have already accessed the L1, don’t them-
selves require a check load, and have nonspeculative oper-
ands. Check loads need not be generated in RMO mode.

Before the LDU can boost a load above a stalled store,
the load must be checked for dependencies against all older
stores in the store reservation stations. Loads are never
boosted above stores on which they are dependent. Loads
that hit on older stores with their data ready can have that
data forwarded to the distribution bus, assuming the load
request is for data the same size or shorter than the store
data. Data forwarding from the SDRS is scheduled as a load
replay. The age of loads and stores is determined by their
checkpoint ID, which is tracked by the LAT/SAT. The LDU
always commits stores in program order, so no dependency
check is required between stores.

Two of the major things that can go wrong in the fast
path are a microDTLB miss and an L1-cache miss. In the case
of a microDTLB miss, the LAT/SAT unit queues and saves
the virtual address, then schedules a microDTLB update
from the main TLB. After the microDTLB is updated, the
LAT/SAT unit replays the load by reinserting the virtual ad-
dress back into the load path. The microDTLB has 32 entries
and is fully associative, while the main DTLB has 1,024
entries and is four-way set-associative.

Large On-Chip L2 Cache Allows Small L1
In the event of an L1 load miss, the LAT/SAT captures the
physical address and schedules an access to the on-chip L2
data cache. The L2 is 512K, is four-way set-associative, uses a
copyback write policy, and is fully pipelined so one access
can be scheduled every cycle. The L2 has an eight-cycle la-
tency (including the L1 access) and has eight 64-bit-wide
banks. The L2 data path provides a peak bandwidth of
32 GBytes/s at 1 GHz. Cache lines fetched from the L2 are al-
located into the L1 on read misses (but not on write misses),
and critical load data from the L2 is multiplexed directly into
the byte-aligner for broadcast on the distribution bus.

The on-chip L2s are backed by an external 16–64M
two-way set-associative unified L3 cache. The path to the L3
is 128 bits wide and operates at 500 MHz into double-data-
rate (DDR2) SRAMs, yielding 16 GBytes/s of L3 bandwidth.

L3 misses cause a bus transaction to main memory
across Hal’s modified Ultra Port Architecture (UPA) bus,
which can operate at up to 250 MHz double-data-rate and be
up to 128 bits wide, delivering 8 GBytes/s of main-memory
bandwidth. Hal’s modified UPA bus is not electrically com-
patible with Sun’s version, but it preserves enough of the MP
protocol to be 100% compatible with Solaris software.

Stores write their data to an eight-entry write buffer.
The 128-bit write buffers are collapsing buffers and can
gather multiple stores into a single transaction before writing
© M I C R O D E S I G N R E S O U R C E S N O V E M B E R
data into the L2 and, on a hit, into the L1. Data normally
lingers in the write buffers for only a short period of time, so
it is considered transitory and therefore not forwarded from
the write buffers to the distribution bus on a load hit. Instead,
a load hit on a write-buffer entry causes the load to be
replayed after the data has been written into the L2.

Definitely Intended for Big Iron
Sparc64 V provides an unusually robust set of RAS (reliabil-
ity, availability, and serviceability) features, even for a proces-
sor targeting the high-end continuous-availability server
market. The on-chip L2 caches are protected by ECC on both
data and tags. The L3 is protected by ECC on data and by
parity and redundancy on the tags. All of the processor’s
internal data paths are either ECC or parity protected, and all
function-unit operations are checked by dual-rail-logic
inconsistency checks or by redundancy and voting.

Utilizing its checkpoint-recovery mechanism,
Sparc64 V can retry instructions that experience RAS failures
in an attempt to get past transient errors, such as those
caused by inopportune alpha-particle strikes. All RAS errors,
recovered from or not, are logged, and the log can be interro-
gated by either the operating system or, in the case of fatal
errors, the JTAG scan logic.

Hal obviously didn’t put much emphasis on getting the
Sparc64 V chip to fit in a PC chassis. Shebanow projects that
the part will dissipate 100 W at 1 GHz in its target process.
While this is roughly on a par with what we expect from
competing chips, taming this fire-breathing dragon with
conventional air cooling won’t be easy. To achieve this feat,
Hal will use wind-tunnel airflow (800 CFM at 4 m/s) over a
massive copper heat sink with internal heat pipes to effi-
ciently spread the heat load. The part will be delivered in a
2,063-contact glass-ceramic LGA with thin-film copper
wiring layers; only 663 of the contacts carry signals.

Hal estimates the 65-million-transistor Sparc64 V chip
will occupy about 380 mm2 of silicon in Fujitsu’s 1.5-V CS85
process. This process uses a tungsten local interconnect layer
topped by six layers of copper interconnect and C4 array
bumps. The contacted pitch of the first three interconnect
layers is 0.6 micron and the transistors have a 0.12-micron
physical gate length (Lg) and a 0.09-micron Leff. These para-
meters put CS85 slightly ahead of IBM’s 0.18-micron
CMOS-8S (see MPR 9/14/98, p. 1). By 2H01, however, IBM
will have moved on to CMOS-8S2 and SOI wafers, which it is
planning to use in Power4.

Not Seeking an Uncontested Niche
With fuel being tossed on the fire by the Internet, the server
market is heating up. Intel and HP are making a major push
into this space with Itanium; IBM is parrying with Power4;
Compaq is readying EV7 and 8; and Sun is working on Ultra-
Sparc 4 and 5. From a competitive point of view, this is an
elite group with deep pockets and unquestioned commit-
ment. Fujitsu, Hal’s parent company, also has deep pockets,
 1 5 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

8 H A L M A K E S S P A R C S F L Y
but its future is less tightly linked to the server market than
these other companies, making Fujitsu’s commitment less
certain.

Hal and Fujitsu receive some minimal protection from
these competitors by defining their target market as the
Solaris-compatible server market, making Sun their only
serious opponent. To some extent, this makes for easier pick-
ings. In the past, Sun’s UltraSparcs have trailed noticeably
behind other processors in performance. But Sun’s system-
level efforts have managed to compensate for this shortcom-
ing, making the Solaris-compatible subsegment quite large
and financially attractive.

Perhaps Fujitsu sees an opportunity to poach this mar-
ket by offering a higher-performance processor than it
expects Sun to deliver. It is also possible that Sparc64 V is
simply a defensive move. Fujitsu may feel that it can’t trust
Sun to design, or to sell it, processors with sufficient floating-
point performance to stay competitive in high-end technical
servers, where Fujitsu is focused today, or processors with
high enough reliability to penetrate further into the com-
mercial-server space. Although Sun is mum on its plans for
future UltraSparc chips, other than a vague long-range
roadmap (see MPR 10/5/98, p. 15), we doubt the company is
consciously planning to cede the high-performance, high-
reliability segments of the market to Fujitsu.

Ultimately, however, Solaris compatibility does not
define a defensible segment. Fujitsu will eventually have to
do battle with the other heavies: Compaq, HP, IBM, and
Intel. Even though Hal has a top-notch design team, it will be
a challenge for this relatively small, 200-person, team to
match the efforts of these giants—regardless of the amount
of money that Fujitsu is willing to invest in them.

In this broader market, Sparc64 V looks competitive,
but not compellingly superior to the chips these other com-
panies are developing. It will compete most effectively on
technical workloads, where single-thread instruction-level
parallelism is abundant. In this arena, Intel’s McKinley, which
we expect to have single-thread SPECint/fp95 ratings as high
as 90/150, may outperform Hal’s chip, but Sparc64 V will
have the advantage of backward compatibility (at full speed).

For commercial servers, Sparc64 V will find the going
tougher. In these markets, where multithread performance is
more important, approaches like Power4’s chip multiproces-
sing (CMP) and Alpha EV8’s simultaneous multithreading
(SMT) come into play. A Power4 chip, for example, which
will ship at about the same time as Sparc64 V, will be in a
more aggressive process and have about the same die size,
twice the on-chip cache, twice the number of CPUs, and sev-
© M I C R O D E S I G N R E S O U R C E S N O V E M B E R
eral times the memory bandwidth. Shebanow dismisses the
memory-bandwidth advantage of Power4, however, saying
that any more than the 8 GBytes/s provided by Sparc64 V is
nothing but overkill for any processor in this generation.

Shebanow, while a believer in ILP, freely acknowledges
that SMT or CMP is the way of the future. For this genera-
tion, however, he defends Sparc64 V’s single-thread approach
for two reasons. First, Solaris doesn’t currently support mul-
tiple physical (CMP) or virtual (SMT) processors on a single
chip. Sun has not said if or when this deficiency will be reme-
died, but it probably won’t be soon, as OS-kernel modifica-
tions usually take a long time. Second, he is unsure how
rapidly applications will be rewritten to take advantage of
explicit multithreading and shared on-chip caches.

Complexity? What Complexity?
Although Sparc64 V’s competitive position in 2001 may be
questionable, the part will surely be an impressive technical
accomplishment if Hal can pull it off. Although trace proces-
sing and superspeculation are ideas that have been kicking
around in the literature for a few years, they have not yet
been put into practice. Intel has said that Willamette, due late
next near, will use a trace cache, but little else is known about
that design.

A striking characteristic of Sparc64 V is its daunting
complexity. Shebanow shrugs off this criticism, saying that
the overall concepts are actually quite simple and the dataflow
control not really that difficult. Mostly, he says, it is the need
to attain a gigahertz clock rate while issuing eight instructions
per cycle that introduces the complexity. Shebanow says he
fears the kind of complexity in a Pentium III with its convo-
luted x86 instruction set far more than that in Sparc64 V.

Indeed, from an objective point of view, the core does
not seem unmanageably complex. Of Sparc64 V’s 65 million
transistors, only 15 million are logic. This isn’t that much
more than the eight million in a Pentium III core, consider-
ing that Sparc64 V is 64 bits wide and has twice as many exe-
cution units. Still, the complexity is significant and gives one
pause to empathize with the poor Willamette engineers who
may be trying to implement similar techniques on top of the
x86 architecture. Perhaps this explains why Intel is trying
with IA-64 to foist complexity back onto the software. It may
also explain why IBM with Power4 and Compaq with EV8
have switched their attention from ILP to the untapped store
of TLP.

Shebanow insists, however, that for this generation, ILP
is the way to go, especially for Fujitsu’s primary market target
of Unix technical servers. He also says that compatibility is
critical to the server market and does not believe that static
scheduling—à la IA-64—is sufficiently better than dynamic
scheduling to justify switching to a new instruction set. If he
is correct, and if Hal can really achieve 1-GHz speeds with
Sparc64 V, Hal and Fujitsu will be in a good position to make
hay in at least the Solaris-compatible server market, and per-
haps in the broader server market as well.—M
F o r M o r e I n f o r m a t i o n

The Sparc64 V presentation Hal made at Micro-
processor Forum can be found on its Web site at http://
mpd.hal.com/products/index.html.
 1 5 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

http://mpd.hal.com/products/index.html
http://mpd.hal.com/products/index.html

	Hal Makes Sparcs Fly
	Trace Cache Untangles Code
	Figure 1. In the front end of the Sparc64 V pipeline...
	One Gigahertz, Eight-Issue, and a Short Pipe
	Figure 2. By moving the complexities of decoding...
	Much Work Done out of Line
	Packet Breaks Limit IPC
	No Time to Waste on Housekeeping
	Figure 3. The eight instructions in a trace packet...
	Ready, Set, ...
	... Go
	When in Doubt, Superspeculate
	Figure 4. Sparc64 V’s load unit (LDU) can issue...
	Load/Store Bandwidth Galore
	Large On-Chip L2 Cache Allows Small L1
	Definitely Intended for Big Iron
	Not Seeking an Uncontested Niche
	Complexity? What Complexity?

	For More Information

