
TRANSMETA BREAKS X86 LOW-POWER BARRIER
VLIW Chips Use Hardware-Assisted x86 Emulation

By Tom R. Halfhi l l {2/14/00-01}

Like moths drawn to a flame, semiconductor startups seem to find the bright but dangerous

glow of the x86 market irresistible. Never mind that companies as resourceful as AMD, Cen-

taur, Cyrix, IBM, National Semiconductor, and Rise have all charred their wings in the fires of

REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com
competition with Intel. More than 120 million x86 chips were
sold in the profitable PC market last year, casting off a warmth
that lures newly hatched companies from the darkness.

The latest newcomer to emerge from its cocoon is
Transmeta. After nearly five years of unprecedented secrecy,
the Santa Clara–based startup finally unveiled its pair of
x86-compatible Crusoe processors at a widely covered
media event near Silicon Valley last month. The event
received the same sort of overhyped coverage the U.S. Air
Force might attract by flinging open the gates to Area 51. A
large crowd of mainstream and business journalists were
dazzled by marketing claims about “revolutionary” micro-
processors that are “part hardware, part software” and that
rely on something called “code morphing” to achieve x86
compatibility at amazingly low power levels.

What’s behind the hype? Transmeta announced a pair
of VLIW chips that have special hardware and software for
emulating other instruction sets, and they can also dynam-
ically scale their voltage and core frequencies to conserve
power. Revolutionary may be an overstatement, but they are
definitely different.

A Fresh Approach to the x86
Transmeta could have followed the well-trodden path of
designing chips that clone the devilish x86 architecture
entirely in hardware, but that’s a technically difficult and
legally hazardous endeavor. (Ask AMD and Cyrix.)
Instead, the company created a new VLIW architecture
© M I C R O D E S I G N R E S O U R C E S F E B R U A R
with a software envelope that translates x86 binaries into
native code at run time.

While some companies have used the term “emula-
tion” to describe the binary-translation process, Transmeta
founder Dave Ditzel shuns that term, preferring to describe
his company’s method of converting x86 instructions into
VLIW instructions as “code morphing” or simply “transla-
tion.” Sometimes this process is called dynamic binary
recompilation. Transmeta’s code-morphing software cer-
tainly is more advanced than old-fashioned emulators,
which slowly convert one type of binary executable into
another by translating one instruction at a time. Although
Transmeta’s code-morphing software begins translating a
program that way, it gradually identifies sections of fre-
quently executed code in the nonnative program, dynami-
cally recompiles those sections into optimized native
instructions, and then caches the native code for reuse.
Those techniques greatly improve performance.

Other modern emulation packages use similar tech-
niques, however. Examples include FWB’s SoftWindows for
the Macintosh and for Unix, Connectix’s Virtual PC for the
Mac, FX!32 for Alpha, and Sun’s HotSpot, a Java just-in-time
(JIT) compiler. For the purposes of this article we will some-
times refer to any process of translating one type of binary
executable into another at run time as “emulation,” on the
grounds that optimizing and caching the translated code are
performance-enhancing techniques that do not alter the
fundamental character of what’s going on.
Y 1 4 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

2

One thing that sets Transmeta’s Crusoe processors apart
is special hardware to assist emulation—although this too is
not a completely novel approach. In 1992, International Meta
Systems (IMS) announced the 3250, a microprocessor
designed to emulate the x86, 68K, and 6502 architectures by
using customizable microcode, among other techniques (see
MPR 5/6/92-03, “Microcode Engine Offers Enhanced Emula-
tion”). But the 3250 never reached the market, and IMS went
up in smoke.

For reasons that are perhaps more legal than techni-
cal, Ditzel says the special hardware in Crusoe chips isn’t
specifically for x86 emulation. Strictly speaking, this is true.
The special features should boost the performance of any
nonnative executables that Transmeta targets for transla-
tion, as well as the performance of native VLIW software.
Transmeta has even demonstrated Crusoe processors run-
ning Java programs by translating Java bytecodes into
native VLIW code. As we’ll explain later, though, it’s prob-
ably more than just a coincidence that Crusoe chips have
80-bit-wide floating-point registers, the ability to perform
partial-register writes, and native support for the same data
types and single-instruction multiple-data (SIMD) opera-
tions found in Intel’s MMX extensions. Those features are
eerily reminiscent of the x86 architecture, and they will

Transmeta Breaks x86 Low-Power Barrie

Figure 1. Transmeta’s Crusoe TM3120 processor has special features
(highlighted in purple) that improve software performance, particu-
larly when translating nonnative code into native VLIW instructions.

Debug Registers

Alias Hardware

Translation-Bit Buffer

Floating-Point
Registers
(32 × 80b)

ALU0 ALU1 Load/Store
Unit

Branch Unit FPU/Media
Unit

Gated
Store Buffer

Local Data
 Memory

4KB

D-Cache
32KB

(32B lines)

Data Flow,
D-Cache
Control

I-Cache
Control

Local Program
Memory

8KB

I-Cache
64KB

(64B lines)

Shadow Regs
(16 × 80b)

Shadow Regs
(48 × 32b)

General-
Purpose
Registers
(64 × 32b)

TLB
(256 Entries)

Bus Interface Unit
(North Bridge logic)

PCI
Controller

SDRAM
Controller

32 64

Snoop
© M I C R O D E S I G N R E S O U R C E S F E B R U A R Y
improve Crusoe’s ability to run any x86 code the chips
should happen to encounter.

Transmeta’s most important accomplishment is com-
bining the concept of dynamic binary recompilation with
the inherent efficiency and parallelism of VLIW. The result
is a pair of x86-compatible processors unlike any others on
the market. Beyond that, Crusoe chips appear to achieve
three additional milestones:
• Thanks to a unique hardware/software technology called

LongRun, the higher-end version of Crusoe can dynami-
cally vary its voltage and clock frequency by monitoring
the changing demands of application programs. The
processor can scale its performance and power consump-
tion up or down in small increments to conserve power.
This innovative technique should greatly improve battery
life in mobile systems.

• Crusoe chips appear to set a new standard for low power
consumption among x86-compatible processors. Trans-
meta claims the typical power consumption of its fastest

r

Figure 2. Transmeta’s Crusoe TM5400 has some features not found
in the lower-end TM3120: an on-chip L2 cache, a DDR-SDRAM con-
troller, LongRun power-management hardware, larger caches, and a
slightly different instruction set.

Debug Registers

Alias Hardware

Translation-Bit Buffer

Floating-Point
Registers
(32 × 80b)

ALU0 ALU1 Load/Store
Unit

Branch Unit FPU/Media
Unit

Gated
Store Buffer

Local Data
 Memory

8KB

D-Cache
64KB

(32B lines)

Data Flow,
D-Cache
Control

I-Cache
Control

Local Program
Memory

8KB

I-Cache
64KB

(64B lines)

L2 Instruction/Data Cache
256KB

(128B lines)

Shadow Regs
(16 × 80b)

Shadow Regs
(48 × 32b)

General-
Purpose
Registers
(64 × 32b)

TLB
(256 Entries)

Bus Interface Unit
(North Bridge logic)

LongRun
Power Manager

PCI
Controller

DDR-SDRAM
Controller

SDRAM
Controller

32 64 64

Snoop

5

 1 4 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

3Transmeta Breaks x86 Low-Power Barrier
700-MHz chip is only 1–2 W, which is significantly less
than the 14–21 W consumed by a 650-MHz Mobile
Pentium III. These claims haven’t been independently ver-
ified yet, but if they’re remotely accurate, Transmeta can
exploit a key vulnerability of the hand-me-down desktop
chips that Intel and AMD sell into the mobile market.

• Crusoe processors appear to sacrifice much less perform-
ance to emulation than other software translators.
According to Ditzel there’s actually no translation over-
head at all—Crusoe chips are slower than similarly
clocked x86 chips merely because Transmeta optimized
the cores for low power consumption, not performance.
The company says a 700-MHz Crusoe is about 70% as
fast as a 700-MHz Pentium III. If that claim proves accu-
rate, Crusoe’s unusual approach to x86 compatibility
subtracts less performance than might be expected.

In short, Transmeta doesn’t need revolutionary technol-
ogy or media hype to succeed. Low power consumption and
adequate performance should be enough to secure Transmeta
a profitable future in the competitive x86 market—if the
fledgling company can deliver everything it promises.

Two Chips for Two Markets
Transmeta has announced two versions of Crusoe: the
TM3120, which will be available in speed grades of 333, 366,
and 400 MHz, and the TM5400, which will be available in
speed grades ranging from 500 to 700 MHz. Both chips are
sampling now, and the TM3120 is in production. The
TM5400, a later design that improves on the TM3120, is
scheduled for production in 2Q00. Prices range from $65 to
$89 for the TM3120, and from $119 to $329 for the TM5400.

IBM Microelectronics will manufacture both proces-
sors as part of a foundry arrangement that gives Transmeta
valuable patent protection, because IBM has a comprehen-
sive patent cross-licensing agreement with Intel. IBM is
packaging the chips in 474-contact BGAs. Because the
TM3120 and TM5400 have different bus structures, the
TM3120 has about 80 unused pads in this package, but
Transmeta says the common pinout makes it easier for cus-
tomers to design boards that work with either chip. The
packages can be soldered onto the motherboard or mounted
in a new type of socket from FormFactor/Tyco Electronics.
The socket works with BGA and LGA chips and has a lower
profile than the soldered MBGA (micro-BGA) packages
favored by Intel.

Transmeta designed the two Crusoe chips for quite
different markets. The TM3120 is for mobile Internet
appliances, while the TM5400 is for Windows-compatible
notebook PCs. The latter market is well established, and
OEMs should welcome a new x86-compatible CPU that
consumes only a few watts. The market for mobile Internet
appliances, while nebulous today, is expected to be a fast-
growing market in the future.

The TM3120, seen in Figure 1, is the lower-end chip.
It has 96K of primary cache, divided into a 64K instruction
© M I C R O D E S I G N R E S O U R C E S F E B R U A
cache and a 32K data cache, both eight-way set-associative.
There is no on-chip secondary cache. The TM3120 has an
integrated PCI controller, an SDRAM controller, and other
components of a traditional north bridge; therefore
Transmeta won’t have to rely on other companies to pro-
vide compatible core logic, and the processor gains the
power-consumption and performance efficiencies of an
on-chip memory controller. IBM is building the TM3120
in its 0.22-micron copper CMOS-7S process. This process
allows up to six metal layers, but the TM3120 uses only
five. The chip’s die area is 77 mm2.

The TM5400, seen in Figure 2, is the higher-end model.
It has 128K of primary cache, evenly divided into an 8-way
set-associative instruction cache and a 16-way set-associative
data cache. (The TM5400’s data cache has twice the set-
associativity of the TM3120’s data cache in order to keep each
set at 4K, which matches the page size of the x86.) The
TM5400 also has a four-way set-associative 256K secondary
cache on chip, which should improve performance over the
TM3120. Like its fellow Crusoe chip, the TM5400 integrates
a PCI controller, an SDRAM controller, and north-bridge
functions, but it also supports double-data-rate (DDR)
SDRAM on a separate bus. IBM is building the TM5400 in its
0.18-micron copper CMOS-8S process. This process allows
up to seven metal layers, but the TM5400 uses only five. The
chip’s die area is 73 mm2.

One significant difference between the TM3120 and
the TM5400 is that the latter chip has the LongRun
voltage/frequency-scaling hardware, which allows the
700-MHz TM5400 to consume only a little more power

Figure 3. There are six possible types of VLIW bundles. They vary by
length and by the arrangement of subinstructions within the bundles.

ALU1/FP/MMLoad/StoreC
m

it

ALU0
(with 32b immediate value)

Four-Instruction VLIW Bundles
128 bits

32 bits

ALU0

00A

0B Branch1

Bundle-Length Select Bits

ALU1/FP/MM

Two-Instruction VLIW Bundles

2A

2B

3

Load/StoreswC
m

it

ALU1/FP/MM

32 bits

32 bits32 bits
64 bits

1

ALU1/FP/MMALU0C
m

it
C

m
it

BranchALU0C
m

it

0101

10

10

11

ALU0
(with 32b immediate value)

Commit
Flag

Available
for Software

Instruction Type
Selected By

High 3 Bits of Field

00

00

C
m

it

Load/Storesw

32 bits32 bits
R Y 1 4 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

4

than the 400-MHz TM3120. It’s likely that all future Crusoe
processors will incorporate LongRun.

In most other ways, the two chips are similar. Both are
VLIW machines that execute 64- or 128-bit instruction
bundles, with each bundle containing two or four 32-bit
subinstructions, as shown in Figure 3. Transmeta refers to
the VLIW bundles as “molecules” and to the subinstructions
as “atoms.” If the translation software can’t fill all the subin-
struction slots in a molecule with useful atoms, it pads the
empty slots with NOPs (null operations). By allowing two
types of molecules—one with two atoms and one with four
atoms—Transmeta ensures that no molecule ever has to
carry more than one NOP. This minimizes the space and
fetch bandwidth wasted by NOPs, which are the Achilles’
heel of traditional VLIW architectures.

Both Crusoe chips have two integer ALUs, a load/store
unit, a branch unit, and an FPU/multimedia unit, allowing
them to execute up to four VLIW subinstructions per cycle.
Their execution pipelines are identical, as shown in Figure 4.
Both chips also have 64 general-purpose registers (GPRs)
that are 32 bits wide and 32 floating-point registers (FPRs)
that are 80 bits wide. Although the FPU/multimedia unit can
handle the same data types as Intel’s MMX instructions,
Crusoe chips don’t have the new 128-bit registers defined by
Intel’s SSE (Streaming SIMD Extensions). Transmeta says
Crusoe could emulate SSE-type instructions and registers,
but there’s not enough software support for SSE to justify the
effort at this time. Crusoe doesn’t support AMD’s 3DNow!
extensions, either.

The architectural features of Crusoe chips are of little
importance to software developers, because nobody except
Transmeta writes software for the native architecture. To

Transmeta Breaks x86 Low-Power Barri
Figure 4. Crusoe processors have shorter pipelines than most x86-compatible processors.

Fetch0 Decode ExecuteFetch1 Register Write Commit

Fetch0 Fetch1 Register Write CommitMem0 Mem1

Load/Store Pipeline

Fetch0 Fetch1 Register ExecuteExecute Execute Execute Write Commit

Floating-Point Pipeline

ALU Pipelines

Branch Pipeline

Predict Verify

Register
Fetch

Instruction
Decode

Commit
State

Instruction
Fetch,

First Half

Instruction
Execution

Register
Writeback

Instruction
Fetch,

Second Half

Register
Fetch

Commit
State

Instruction
Fetch,

First Half

Register
Writeback

Instruction
Fetch,

Second Half

Cache0
Access

Cache1
Access

Register
Fetch

Instruction
Fetch,

First Half

Instruction
Fetch,

Second Half

FP Instruction
Execution (A)

FP Instruction
Execution (B)

FP Instruction
Execution (C)

FP Instruction
Execution (D)

Register
Writeback

Commit
State

Predict
Branch

Direction

Verify
Branch

Direction

(Wait) (Wait) (Wait)

Signal
Exceptions

Signal
Exceptions

Signal
Exceptions

Signal
Exceptions
© M I C R O D E S I G N R E S O U R C E S F E B R U A R
operating systems, development tools, and applications, the
chips look like regular x86 processors. Transmeta has no
plans to develop native VLIW applications or to encourage
others to do so. In fact, Transmeta discourages native soft-
ware development, because the company wants the free-
dom to change the architecture from one processor gener-
ation to another, or even from one chip to another in the
same generation.

Indeed, the TM5400’s instruction set has some improve-
ments over that of the earlier TM3120, so their VLIW binaries
are not 100% compatible. Future Crusoe processors may
introduce completely different instruction sets or architec-
tures. It doesn’t matter to users or to software developers,
because the only software that runs natively is Transmeta’s
own code-morphing software, which runs transparently
below the operating system.

The first publicly announced Transmeta customer was
S3, which is working on a “Web pad” appliance based on a
400-MHz TM3120. The prototype has a 10.4-inch color
LCD screen, a hard disk drive, and wireless network con-
nectivity. It weighs 2–3 pounds with a rechargeable battery
and runs Mobile Linux, a special version of Linux designed
by Transmeta. (Interestingly, Transmeta says it hired Linux
creator Linus Torvalds primarily for his programming
prowess and that his work on Mobile Linux was a relatively
minor part of his job.)

S3 plans to introduce the Web pad later this year at a
retail price of $500–$1,000, although it could cost less if
subsidized by an Internet service provider. S3’s chief tech-
nology officer, Andy Wolfe, says his engineers chose the
Crusoe processor over alternative x86 chips because of its
low power consumption, which extends battery life and

er
Y 1 4 , 2 0 0 0 M I C R O
eliminates the need for a cool-
ing fan. Some embedded RISC
chips met the same power and
performance requirements,
but they aren’t x86 compatible,
so they can’t run the growing
number of Web-browser plug-
ins that Wolfe considers vital
for the product.

LongRun Extends Battery
Life
The TM5400’s LongRun feature
is one of the most innovative
technologies introduced by
Transmeta. To our knowledge,
no other microprocessor can
conserve power by scaling its
voltage and clock frequency in
response to the variable
demands of software. Intel’s
SpeedStep—announced the day
before Transmeta’s coming-out
P R O C E S S O R R E P O R T

party—is crude in comparison. It merely steps down the
CPU clock and supply voltage when a user unplugs a mobile
computer from AC power, and it has only one voltage/fre-
quency step (from 650 or 600 MHz to 500 MHz).

LongRun can scale the CPU’s voltage in as many as 32
steps, though in practice 5–7 steps are sufficient to achieve
most of the benefits, according to Transmeta engineers.
There are individually controllable, codependent ranges for
voltage and frequency. In the current version of the
TM5400, voltage can vary from 1.1 V to 1.6 V, and fre-
quency can vary from 200 MHz to 700 MHz in increments
of 33 MHz. Transmeta’s software controls the scaling
through a five-pin interface that adjusts an off-chip voltage
regulator, as seen in Figure 2.

When the LongRun software detects a change in the
CPU load, it signals the chip to adjust the voltage and fre-
quency up or down. (It’s not exactly clear how LongRun
measures CPU loads; even an idle loop can make a CPU
seem very busy. This function may be related to x86 emula-
tion, because Transmeta’s code-morphing software con-
stantly monitors software execution to control binary
recompilation, as explained later in this article.) If the CPU
needs to handle a heavier load, LongRun tells the chip to
start ramping up its voltage. When the voltage stabilizes at
the higher level, the chip scales up its clock frequency.

If the LongRun software determines that the CPU can
save power by running more slowly, the chip starts scaling
down its frequency. When the phase-lock loop (PLL) locks
onto the lower clock rate, LongRun reduces the voltage. By
always keeping the clock frequency within the limits
required by the voltage, LongRun avoids any clock skewing
or other undesirable effects.

LongRun never needs more than one frequency step
to reach a different target. To scale from 600 to 700 MHz,
for instance, LongRun doesn’t have to take three 33-MHz
steps. Instead, it raises the voltage to 1.6 V in multiple
steps, then boosts the frequency to 700 MHz in one big
jump. This avoids the latencies of resetting the frequency
multiple times.

One concern is that LongRun might not react quickly
enough to accommodate the fast-changing demands of
some programs. When the computer is playing MPEG-
compressed video, for example, a transition from a relatively
static frame to an action-filled frame might overwhelm a
CPU that’s comfortably loafing at a low clock speed. MPEG
compression works by saving the differences between
frames, and the frames are only 1/30 of a second apart. The
CPU load would vastly increase after a sudden transition
from an Al Gore speech to a car chase.

Not to worry, says Transmeta. The company claims its
software can detect a change in the CPU load in about half
a microsecond, and LongRun can scale the voltage up or
down in less than 20 microseconds per step. The worst-case
scenario of a full swing from 1.1 V to 1.6 V and from 200 to
700 MHz takes only 280 microseconds.

Tr
© M I C R O D E S I G N R E S O U R C E S F E B R U A R Y
5

Furthermore, Transmeta says, the CPU doesn’t stall
during the swing, as a mobile Pentium III does during a
SpeedStep adjustment. The processor keeps executing
instructions, stalling only while the PLL relocks onto the
new frequency. That doesn’t take longer than 20 microsec-
onds in the worst case, and Transmeta’s engineers say
they’ve never observed a relock taking longer than 10
microseconds.

LongRun isn’t the only reason that Crusoe proces-
sors appear to consume much less power than compara-
ble x86 chips. The TM3120 doesn’t have LongRun, yet its
power consumption is impressive too. The simplicity of
Transmeta’s VLIW architecture is evidently a larger factor.
Some embedded RISC chips are even more efficient—
Intel’s second-generation StrongARM, which will ship in
2H00, is expected to consume only 450 mW (typical) at
600 MHz. But when x86 compatibility matters, Crusoe is
the front-runner, and LongRun is a genuine innovation
that gives Crusoe an extra edge.

Technology Drives Transmeta’s Strategy
Intel and AMD are more vulnerable in the mobile market
because their cores are not primarily designed for low
power consumption. Typically, Intel and AMD repackage
their desktop processors as mobile processors when
shrinking process technology and aggressive power man-
agement reduce power consumption into the range con-
sidered acceptable for notebook PCs. Transmeta’s cores are
better suited for mobile applications because their rela-
tively simple VLIW architectures are more efficient than
the x86 architecture. To counter Transmeta’s claimed
power-consumption advantage, Intel and AMD would
have to introduce new x86 cores specifically designed for
low power—a costly undertaking that probably only Intel
could justify. VIA’s future WinChips might give Crusoe
some competition, but we don’t know enough about their
power consumption to draw any conclusions.

Pursuing mobile PCs instead of the larger desktop
market also relieves some pressure on Transmeta. As other
companies have discovered, performance is paramount in
the desktop segment. An x86 vendor must match or exceed
Intel’s clock frequencies to maintain profitable selling prices,
and Intel has enormous advantages in engineering resources,
fabrication technology, and manufacturing capacity. Even a
company as large as AMD has trouble keeping up.

Transmeta doesn’t rule out introducing future proces-
sors aimed at the desktop or even the server markets. Ditzel
says there’s no inherent penalty for translation, so a future
Transmeta processor with code-morphing software could
compete with native x86 chips on raw performance. If his
claim is true, then Transmeta may indeed have advanced the
art of emulation beyond anything seen before.

Traditionally, the overhead of emulating another CPU
architecture in software is highly variable. In terms of clock
cycles, it’s generally about 10 to 1. By using such techniques

ansmeta Breaks x86 Low-Power Barrier
 1 4 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

6

as caching and optimized recompilation, modern emulators
can reduce that ratio to 4 to 1 in some cases. Transmeta says
its 700-MHz TM5400 delivers about the same performance
as a 500-MHz Pentium III on industry-standard application-
level benchmarks, which is significantly better than 4 to 1.
S3’s Andy Wolfe says a 400-MHz TM3120 runs software on
Mobile Linux about as fast as a 333- or 400-MHz Intel
Celeron runs comparable software on Windows 98—
although he acknowledges that Linux, not just Transmeta’s
code-morphing software, is a major factor.

For reasons explained below, Transmeta’s performance
claims are difficult to verify independently because of the
way modern emulators work. The important point is that
Transmeta’s current processors are better suited to mobile
and embedded applications, where power conservation
matters more than raw performance.

The keys to a low-power design are minimizing the
amount of switching logic and shrinking the die. Transmeta’s
choice of a VLIW-based architecture makes sense, because
VLIW can, theoretically, extract lots of instruction-level par-
allelism from program code without the complex control
logic that burdens superscalar RISC and CISC processors.
Crusoe chips are admirably small; see the die photos in
Figure 5 and Figure 6. (Transmeta hasn’t released transistor
counts for either chip.) The inherent efficiency of VLIW has
made it the darling of CPU architects, superseding RISC as
the design pattern for most new architectures. In recent
years, VLIW variants have been announced by Analog
Devices, Equator, Fujitsu, Hewlett-Packard, Intel, Philips,
StarCore, Sun, and Texas Instruments. All were inspired by
the pioneering work of Cydrome, Culler, and especially Mul-
tiflow in the 1980s (see MPR 2/24/94-05, “VLIW: The Wave
of the Future?”).

Transmeta’s focus on the x86 makes sense, too—at least
for Crusoe chips aimed at the PC market, where x86-based

Transmeta Breaks x86 Low-Power Barrie

Figure 5. The Crusoe TM3120’s die size is 77 mm2. Note the PCI con-
troller and memory controller; the north bridge is also on chip.
© M I C R O D E S I G N R E S O U R C E S F E B R U A R Y
Windows software reigns supreme. In the embedded market,
the x86 has been trampled by RISC architectures, such as
ARM, MIPS, and SuperH. But that’s largely because RISC
chips are more power-efficient than x86 chips with compa-
rable performance, and also because there’s no dominant
x86 software base.

Crusoe could alter that picture. The chips appear to
be competitive with the performance/power-consumption
ratios of many embedded RISC chips. And because they
are x86-compatible, they can run Web-browser plug-ins
and other software that would require more extensive
porting to run on RISC processors. That could be an
important advantage for newfangled information appli-
ances like S3’s Web pad.

In that regard, Transmeta’s strategy is similar to
National Semiconductor’s. Last year, National announced
the x86-compatible Geode SC1400 for the embedded market
and also demonstrated a prototype Web pad (see MPR
8/2/99-03, “National Unveils ‘Appliance On a Chip’”). The
SC1400 is more highly integrated than Crusoe. It incorpo-
rates not only the north-bridge logic, PCI controller, and
SDRAM controller, like Crusoe, but also a VGA-graphics
accelerator, an MPEG audio/video processor, a video-overlay
processor with NTSC and PAL outputs, an IDE interface,
a three-port USB interface, and numerous UARTs and
general-purpose I/O ports.

Transmeta’s TM3120 should be faster than the
SC1400, which is built around an old 486-class Cyrix core
that runs at 233–266 MHz and delivers about the same per-
formance as a fast Pentium. Power-consumption compar-
isons are difficult because National hasn’t publicly released
those figures for the SC1400, and also because Crusoe
processors need additional logic to match the higher inte-
gration of the SC1400. But Crusoe has one big advantage: a
deep-sleep mode that consumes less than 20 mW. The
SC1400 conspicuously lacks a deep-sleep mode. National
needs to upgrade its Geode chips to stay competitive with
upstarts like Transmeta.

Decoding x86 Binaries in Software
Transmeta’s claim that Crusoe is “part hardware, part soft-
ware” isn’t merely hype. The code-morphing software per-
forms the x86-instruction decoding that all other x86
processors implement in hardware. The “decoding,” in this
case, actually involves translating x86 instructions into
native VLIW instructions. Although competitors will prob-
ably attack this unusual approach to x86 compatibility,
there’s no technical reason that it can’t it work as reliably as
traditional approaches.

Current Intel and AMD x86 processors convert x86
instructions into RISC-like micro-ops that are simpler and
easier to handle in a superscalar microarchitecture. (In con-
trast, Cyrix and Centaur cores execute x86 instructions
directly.) The micro-op translation adds at least one pipeline
stage and requires the decoder to call a microcode routine to

r

 1 4 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

Y 1 4 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T
translate some of the most complex x86 instructions. Imple-
menting the equivalent of that front-end translation in soft-
ware saves Transmeta a great deal of control logic and sim-
plifies the design of its chips. It also allows Transmeta to
patch some bugs in software. (The engineers fixed a timing
problem in the TM5400 in this manner.) Some x86 chips,
such as Pentium III, allow some patches to microcode, but
these patches are very limited in comparison.

Transmeta’s software translation is a little more like
the Motorola 68K emulation built into PowerPC-based
Macs since 1994. The Mac OS translates (“decodes”) 68K
instructions into PowerPC native instructions at run time,
allowing Power Macs to transparently run older Mac soft-
ware. This translation works extremely well, and 68K pro-
grams actually run faster under emulation on almost all
Power Macs than they do on the fastest 68K Macs (thanks
to higher clock frequencies). FWB’s SoftWindows and
Connectix’s Virtual PC for the Mac translate x86 binaries
into PowerPC instructions, and those translators work well
too. Software emulation is a proven concept, dating back at
least as far as 1964, when IBM’s new System/360 provided
emulation for IBM’s older 1401 computers.

What’s new about Transmeta’s approach is that trans-
lation isn’t merely an alternative to native execution—it’s
the whole strategy. Crusoe does for microprocessors what
Java does for software: it interposes an abstraction layer that
hides internal details from the outside world. Just as a Java
programmer can write code without needing any knowl-
edge about the underlying operating system or CPU, x86
programmers can continue writing software without need-
ing any knowledge about a Crusoe system’s VLIW architec-
ture or code-morphing software.

x86-Flavored VLIW
Crusoe processors have several features that assist the code-
morphing software, and some of the features are unmistak-
ably x86-specific. One example is the register files, which
have 160 physical registers. These include 64 GPRs with 48
shadow registers and 32 FPRs with 16 shadow registers. The
GPRs are 32 bits wide and support partial-register writes,
just like real x86 registers. The FPRs are 80 bits wide, so
they can directly support x86 extended-precision floating-
point operations. (Compaq’s FX!32 emulator for Alpha
requires extra steps to support 80-bit math in x86 pro-
grams because Alpha’s FPRs, like those in most RISC
processors, are only 64 bits wide.)

The translation software uses the shadow registers to
checkpoint the speculative state of the CPU while pro-
grams alter the contents of the working registers. This
allows Crusoe to execute instructions speculatively and out
of order. If an exception occurs, the processor can roll exe-
cution back to the most recently committed state of the
machine by copying the contents of the shadow registers
into the working registers. This also preserves the precise
exception model of the x86 (such as it is).

© M I C R O D E S I G N R E S O U R C E S F E B R U A R

Tr
 7

VLIW bundles can include a one-bit “commit” flag
that tells the processor to commit the working state of the
GPRs and FPRs by copying their contents to the shadow
registers. Typically, the translation software commits the
results of a block of code before proceeding to the next
block of code. In no case will the processor commit results
until it has resolved all conditions that might trigger an
exception.

One example of a condition that might cause an
exception is a sequence of instructions that contains a
memory load or store operation. The translation software
can reorder loads and stores, moving them higher in the
instruction stream to hide memory latencies. Crusoe
processors have special alias hardware (see Figures 1 and 2)
that watches for subsequent instructions that access mem-
ory locations whose data is already loaded in a register. If
an instruction tries to access one of those memory loca-
tions, the alias hardware raises an exception, and the
processor rolls back to the last committed state. The trans-
lator then continues forward from that point without using
such aggressive optimizations.

The translator can also eliminate redundant loads. If
no instructions alter the contents of a memory location
between loads, the translator detects the redundancy, skips
the unnecessary loads, and uses the data from the first load.
This can happen frequently in architectures with as few
registers as the x86.

ansmeta Breaks x86 Low-Power Barrier

Figure 6. The Crusoe TM5400’s die size is 73 mm2. In addition to a
PCI controller, memory controller, and north bridge, it also has 256K
of on-chip L2 cache.

8

Another mechanism that protects the state of the
machine is a gated store buffer, also shown in Figures 1 and 2.
The processor temporarily holds the results of all store oper-
ations in this 32-entry buffer until an instruction commits
the next block of results. At that point, the gate opens and the
processor writes the results back to memory.

To solve one thorny problem that rankles x86 archi-
tects—self-modifying code—the MMU has a special transla-
tion-bit buffer in the TLB. When the translator converts a
block of nonnative code into native instructions, it write-
protects the memory containing the nonnative code by set-
ting a bit in the translation buffer. If a program tries to over-
write the protected memory, the processor can invalidate the
translated code, allow the program to change the original
code in memory, and then retranslate the modified code.

Crusoe processors also have special caches, independ-
ent of the primary instruction and data caches, to hold crit-
ical pieces of the translation software’s VLIW code and data
structures in fast on-chip SRAM. The TM5400 has 8K of
local program memory and 8K of local data memory; the
TM3120 has 8K of local program memory and 4K of local
data memory. The translation software manages these
caches directly, so they’re not flushed by misses on the reg-
ular primary caches.

Parlez-Vous x86?
In other respects, Transmeta uses techniques similar to
those in other modern emulators and JIT compilers. The
translator dynamically analyzes the run-time behavior of a
program, interprets code that the program executes infre-
quently, recompiles and caches code that the program exe-
cutes often, and applies common compiler optimizations
whenever practical.

When a Crusoe system boots, it immediately reserves
a 16M block of main memory, though Transmeta says 8M is
acceptable for systems with less RAM. Next, the translator
loads from ROM into the reserved memory, occupying
about 512K. The rest of the 16M block is set aside as a trans-
lation cache, where the translator stores recompiled code for
later use. Enlarging this cache beyond 16M contributes little
to performance with the kind of software that users tend to
run on notebook computers and information appliances,
according to Transmeta.

The reserved memory is invisible to the BIOS, the
operating system, and the application programs. From the
user’s point of view, that memory never existed—so a system
with 64M of RAM would appear to have only 48M. OEMs
determine the size of this memory block when they config-
ure a system at the factory, and normally it’s immutable.
Some emulators, such as SoftWindows, allow users to change
the size of the translation cache to tweak performance. But
those emulators run on top of the host operating system, not
beneath it as Transmeta’s does.

In practice, Transmeta’s code-morphing software
works much like a Java JIT compiler, and especially like

Transmeta Breaks x86 Low-Power Barri
© M I C R O D E S I G N R E S O U R C E S F E B R U A R
Sun’s HotSpot JIT compiler. The translator starts out con-
servatively, interpreting x86 instructions one at a time with-
out necessarily storing the converted code in the translation
cache. There’s nothing to gain by caching a program’s ini-
tialization routine, for instance, because that code executes
only once. (An exception might be a large initialization loop
that could benefit from caching.) Straight interpretation
requires at least 12 clock cycles per x86 instruction.

As the x86 program continues to run, the translator
monitors the program’s behavior, noting which code is fre-
quently executed. In effect, the translator performs the same
analysis as the code profilers used by programmers to iden-
tify critical sections in their programs—except the transla-
tor does it at run time, gathering information from real
users, based on their actual working patterns.

When the translator identifies a frequently executed
section of code, it schedules that code for compilation and
perhaps for optimization. There are several degrees of pos-
sible optimization. Like Sun’s HotSpot, the translator esti-
mates how much time it needs to optimize the code and
balances that time against the execution time it’s likely to
save. If the equation makes sense, the translator recompiles
the x86 code into VLIW code and stores it in the translation
cache. One difference between Transmeta’s translator and
Sun’s HotSpot is that Transmeta can optimize one or more
basic blocks of code within subroutines, whereas HotSpot
optimizes only whole subroutines (Java methods).

Many of the possible compiler optimizations the
translator applies are familiar: loop unrolling, common
subexpression elimination, loop-invariant code removal,
and so on. Some are x86-specific: the translator can skip
instructions that redundantly set x86 condition codes. And
some are VLIW-specific: the translator can combine multi-
ple x86 basic blocks into a single VLIW basic block by
removing unnecessary branches.

The Devil in the Details
Some code expansion is inevitable when converting CISC
binaries into VLIW. The code can expand in two ways: by
increasing the number of instructions required to do the
same work and by translating the compact x86 instructions
into longer VLIW equivalents.

Transmeta’s technical white paper on compiler opti-
mization shows an example of 20 x86 instructions collaps-
ing into 10 VLIW instructions. But the 10 VLIW instruc-
tions are really VLIW bundles (molecules) that each contain
two or four RISC-like subinstructions (atoms). Actually, the
translator needs 23 VLIW subinstructions to do the work of
these 20 x86 instructions.

Moreover, the example doesn’t show that some VLIW
bundles contain NOPs wherever the translator couldn’t fill
slots with useful subinstructions. After restoring the missing
NOPs, the translated VLIW code contains a total of 32
subinstructions—50% more than the original x86 code, as
shown in Figure 7.

er
Y 1 4 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

The actual code expansion is worse than that, because
subinstructions are always 32 bits long. In the x86 architec-
ture, instructions can vary in length from 8 to 120 bits, and the
average length is usually estimated at 16–24 bits. So convert-
ing x86 code into VLIW may expand the code 33–100%, even
if the instruction ratio is the same. If the white-paper example
is typical, add another 50% for the extra subinstructions and
NOPs required to do the same work as the x86 code.

Transmeta says the code expansion seems less drastic if
the subinstructions are compared to the RISC-like micro-
ops that Intel and AMD processors use internally, after the
decoders break down x86 instructions into their component
operations. This is true, because most of the time, x86
instructions fracture into multiple micro-ops, just as they
translate into multiple VLIW subinstructions. That’s a fair
comparison for the purpose of explaining instruction execu-
tion, but it doesn’t address the important issues of code
expansion. The Intel and AMD micro-ops exist only inside
the processor’s pipelines; they don’t occupy space in memory
and caches, and they don’t consume I/O bandwidth. In con-
trast, Transmeta’s VLIW subinstructions take up space in
main memory (in the translation cache) and in the instruc-
tion caches, and the processor has to fetch the subinstruc-
tions over the I/O bus, even if they’re do-nothing NOPs.

The degree of code expansion caused by translation is
not a serious flaw, but it does reduce the effective sizes of the

T

caches in comparison with
those of other x86 proces-
sors. A 64K instruction
cache in a Crusoe chip isn’t
quite as large as it seems, and
neither is the 16M transla-
tion cache. If code expansion
causes the processor to flush
the translation cache more
often to make room for
newly recompiled code, it’s
more difficult to amortize
the clock cycles spent on
recompilation and opti-
mization. This depends on
software-usage patterns—
switching among multiple
applications is less efficient
than using one application
at a time. Of course, this
affects the caches of all
CPUs, but it’s even more
true for Crusoe.

Enlarging the transla-
tion cache is one solution,
but this cache is already
pretty large. Subtracting
16M of RAM from main
memory is acceptable for
© M I C R O D E S I G N R E S O U R C E S F E B R U A R
9

notebook PCs with at least 64M, but it could be trouble-
some for low-end information appliances with less mem-
ory. Paging some of the recompiled code to disk is another
possibility, but losing clock cycles to a page fault might be
worse than recompiling the x86 code again. Fortunately,
RAM is getting cheaper all the time. On balance, users will
probably consider the “lost” RAM a worthwhile tradeoff for
additional battery life. Still, it demonstrates once more that
there’s no such thing as a free lunch. Transmeta’s technology
doesn’t rewrite the rules that all CPUs must obey.

Transmeta also faces some of the criticism aimed at
other VLIW architectures, particularly with regard to its
code-morphing software. The performance of VLIW proces-
sors depends heavily on the scheduling efficiency of their
compilers, because they don’t have the dynamic reordering
hardware found in superscalar RISC processors. The com-
piler is responsible for scheduling instructions.

When they designed IA-64, Intel and Hewlett-
Packard started with the back end of Multiflow’s VLIW
compiler, and they have have been refining it for five years.
Transmeta started from scratch, presumably without a
proven back end. Moreover, an IA-64 compiler starts with
source code and works statically—a programmer can let
the compiler churn overnight, if necessary, to extract the
most parallelism. Transmeta’s VLIW compiler must trans-
late and optimize an x86 binary file while the program is

ransmeta Breaks x86 Low-Power Barrier
Figure 7. This example, adapted from a Transmeta white paper, shows how the translation software recom-
piles x86 code into native VLIW code.

addi %r39,%ebp,0x2fc,cmit; NOP;

ld %edx,[%r39]; add %r27,%r38,4; add %r26,%r38,-4; NOP;

br <exit1>; NOP;

addi %r38,%ebp,0x304; NOP;

ld %r31,[%r38]; add %r35,0,1; add %r36,%esp,0x40; NOP;

ldp %esi,[%r27]; add %r33,%esp,0x6c; sub.c %null,%edx,%r31; NOP;

ldp %edi,[%r26]; sel#le %r32,0,%r35;

stam 0,[%r36]; sel#l %r24,%r35,0; add %r25,%esp,0x7c; NOP;

stam %r32,[%r33]; add %ecx,0,3; sub.c %null,%esi,%edi; NOP;

st %r24,[%r25]; or %eax,0,0; brcc#lt,<exit2>; NOP;

movl %ecx,$0x3
jmp lbl1

lbl1:
movl %edx,0x2fc(%ebp)
movl %eax,0x304(%ebp)
movl %esi,$0x0
cmpl %edx,%eax
movl 0x40(%esp,1),$0x0
jle skip1
movl %esi,$0x1

skip1:
movl 0x6c(%esp,1),%esi
cmpl %edx,%eax
movl %eax,$0x1
jl skip2
xorl %eax,%eax

skip2:
movl %esi,0x308(%ebp)
movl %edi,0x300(%ebp)
movl 0x7c(%esp,1),%eax
cmpl %esi,%edi
movl %eax,$0x0
jnl exit1

exit2:

20 original x86 instructions:
= 10 VLIW bundles ("molecules")
= 23 useful instructions ("atoms")
= 32 total instructions (including NOPs)

Translator can convert multiple x86 basic
 blocks into a single VLIW code block

CMIT flag commits the results of the previous
block of instructions (not shown)
Y 1 4 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

10 Transmeta Breaks x86 Low-Power Barrier
running. The x86 code has already been compiled once,
and it may contain optimizations for specific x86 microar-
chitectures that have nothing to do with Crusoe’s micro-
architecture.

One factor in Transmeta’s favor is that the translator
monitors actual usage patterns at run time—dynamic
compilers get better feedback than static compilers. Some
other software emulators and Java JIT compilers use these
same techniques to great effect, so Transmeta hasn’t wan-
dered into unexplored territory. But it’s worth noting that
the quality of Transmeta’s run-time translation will
greatly influence the x86 compatibility and performance
of Crusoe processors. And users will have to be satisfied
with Transmeta’s translation software, because it will be
available only from Transmeta.

Waiting for Real-World Results
It’s difficult to judge Transmeta’s accomplishments, because
after stripping away the hype, many unconfirmed claims
remain. At this writing, there are no independent test results
of Crusoe’s compatibility, performance, software stability,
or power consumption. Indeed, such results will be hard to
come by, because the very nature of Crusoe’s technology
defies conventional benchmarking.

Consider the problem of measuring performance.
Benchmark programs that rely too heavily on repetitive
loops will overestimate the speed of Crusoe’s x86 execution,
because the translator will quickly recognize the program’s
behavior, recompile the loops with optimizations, and exe-
cute native code out of the translation cache. The results will
be accurate only for users who perform the same small set of
repetitive tasks all day. (OK, there are some of you out there.)

Conversely, benchmark programs, such as Winstone,
that drive real applications with automated scripts may
underestimate Crusoe’s performance. The scripts run
through a series of tasks and switch among applications at
much higher speeds than any real user would, so the trans-
lator rarely gets a chance to amortize the cost of compiling
and optimizing the code.

Battery-life tests have similar flaws. Unless they mir-
ror real-world usage very closely, they won’t yield results
that average users can expect from Crusoe-based systems.
© M I C R O D E S I G N R E S O U R C E S F E B R U A R
New benchmark suites must be written to take all these
factors into account, as Transmeta pointed out during its
public announcement.

We’re not too worried about the accuracy of Crusoe’s
x86 emulation. There are companies that do nothing but
test for x86 compatibility, so any bugs should be discovered
and fixed early. Also, emulation isn’t the experimental tech-
nology it used to be. Java JIT compilers and Windows emu-
lators have significantly advanced the art in recent years. A
little searching on the Web will turn up dozens of emula-
tors for all kinds of platforms, including emulators for
some otherwise-dead machines such as the Apple II, Atari
2600, and Commodore 64. If Transmeta had built an x86
processor in the currently fashionable manner—that is,
with hardware decoders that convert x86 instructions into
native micro-ops—the designers would have written simi-
lar translation code, anyway, except they would have writ-
ten it in Verilog instead of in C or assembly language. Even
if Transmeta’s code morphing does have some glitches,
they’re easily patched in software.

One cause for worry is Transmeta’s pricing strategy,
which appears to bet heavily that Crusoe-based notebook
PCs will deliver enough additional battery life to offset a
price/performance gap relative to Intel’s mobile processors.
Currently, a top-of-the-line 650-MHz mobile Pentium III
costs $637—almost twice as much as the 700-MHz TM5400,
which costs $329. But direct comparisons are invalid,
because neither chip is as fast as its clock speeds imply. With
SpeedStep, the 650-MHz mobile Pentium III actually runs at
only 500 MHz on battery power. If we accept Transmeta’s
claim that the 700-MHz TM5400 is as fast as Pentium III at
500 MHz, then Crusoe has a worse price/performance ratio.
A 500-MHz mobile Pentium III without SpeedStep cur-
rently costs only $294, about 10% less than the 700-MHz
TM5400. The 650-MHz Pentium III with SpeedStep costs a
lot more, but it delivers at least 30% more performance on
AC power than the TM5400. These price/performance ratios
are likely to change in Intel’s favor as time goes by, because
Intel will probably cut prices once or twice before Transmeta
ships the TM5400 in 2Q00.

Apparently, Transmeta is betting that Crusoe will
deliver enough extra battery life to offset the price/per-
formance disadvantage and the user’s loss of 16M of sys-
tem memory (for the translation cache). Transmeta
promises to make “all-day computing” a reality. Even if
the TM5400 consumes an order of magnitude less power
than Pentium III, users won’t get an order of magnitude
more battery life, because the CPU in a notebook PC
doesn’t consume 100% of the system’s power. Estimates of
the CPU’s share range from 20% to 75%, with the rest
consumed by the LCD screen, disk drive, and other com-
ponents. (When making these comparisons, remember
that Crusoe integrates a north bridge, whereas Intel and
AMD processors require extra chips for those functions.)
We feel confident that a Crusoe-based notebook PC will
P r i c e & Av a i l a b i l i t y

Transmeta’s Crusoe TM3120 is in production now
and will be available at 333, 366, and 400 MHz. The
Crusoe TM5400 is sampling now and is scheduled for
production in 2Q00; it will be available at speed grades
ranging from 500 to 700 MHz. Prices range from $65 to
$89 for the TM3120 chips, and from $119 to $329 for
the TM5400 chips. For more information, go to
www.transmeta.com.
Y 1 4 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

http://www.transmeta.com

11Transmeta Breaks x86 Low-Power Barrier
run longer on battery power, but if it’s only a couple of
hours longer, it might not be enough to make Transmeta’s
pricing strategy work.

But then, competing against Intel is always a risky
gambit. Previous attempts to find chinks in Intel’s armor—
such as Rise’s low-power processors and Centaur’s simpli-
fied WinChips—have proved time and again that Intel is
a formidable foe. In the embedded market, Crusoe faces

similarly tough competition against RISC chips, but x86
compatibility is a major differentiation that will win some
customers for that reason alone.

As we learn more about Transmeta’s technology and
get samples of the chips for hands-on testing, we’ll follow up
with more detailed analysis. Until then, if Transmeta can ful-
fill all its promises, we think Crusoe chips will find profitable
niches in the PC-notebook and embedded markets.
© M I C R O D E S I G N R E S O U R C E S F E B R U A R Y 1 4 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

To subscribe to Microprocessor Report, phone 408.328.3900 or visit www.MDRonline.com

