® Cahners

M| G 0-P.R 0.6 E3 9.0 F

www.MPRonline.com

< THE INSIDER’S GUIDE TO MICROPROCESSOR HARDWARE <

GGUEST VIEWPOINT: EMBEDDED SYSTEMS
AND THE MICROPROCESSOR

Beginnings of the Long Downhill for the Microprocessor

By Nick Tredennick & Brion Shimamoto {4/24/00-02}

The ascent of microprocessor-based applications emphasized the efficiency of the designer

(e.g., high-level languages, compilers, operating systems, library functions) over the effi-

ciency of the design (e.g., time, size, power, performance). The rapidly increasing market

in compute-intensive portable consumer applications will
require a design method that emphasizes the efficiency of the
design. This is the story of the design methods engineers use
to solve problems: the history of design methods, how they
influence (and are influenced by) real-world applications, and
where we think they are headed in the near future. It is the
story of how our 50-year romance with the computer and
with computer architecture has us on a course that may now
retard our ability to solve emerging problems. Here’s why.

The Way It Is

Computer scientists emphasize the role of microprocessors
as the CPU in a computer system. However, as the number of
personal computers shipped each year exceeds 140 million
units worldwide, the number of embedded microprocessors
shipped may exceed 5 billion units worldwide. That means
that microprocessors used as a CPU are two percent of the
total volume of microprocessors. The market for embedded
microprocessors has long dominated unit volumes, but it has
been a low-margin business. That’s changing with increasing
demand for portable electronic devices and with increasing
computational requirements in the applications. The market
for embedded applications will drive the electronics industry
in the future, and it will take the designers with it.

First, a short history of electronic problem solving.

Problem Solving
The solution to a problem is an algorithm using a set of
hardware resources.

An engineer asks, “How do I solve this problem using
available hardware resources?”

Let’s look at the domain of problems and at the range
of solution types.

The Problem Domain
No affordable solution
Packet modeling
router

Flight

Video control

""" T relay
Designs outside this border
could not be implemented
affordably ~1945

Direct hardware .
implementation

Problem Performance ————»

Problem Size >

Figure 1. Some problems are larger than can be affordably solved
using a direct hardware implementation.

© MICRODESIGN RESOURCES <7

APRIL 24, 2000 <

MICROPROCESSOR REPORT

2 Guest Viewpoint: Embedded Systems and the Microprocessor

Problem Domains and Solution Types
Before the computer, engineers solved problems by map-
ping an algorithm directly into hardware. That is, the result-
ing hardware reflected the solution directly. One could infer
the algorithm from studying the hardware components. So
the resulting solution was a fixed algorithm on a fixed set of
resources. We call this fixed resources and fixed algorithms.
The problem domain looks something like Figure 1,
with the problem size on the horizontal axis and with the
required performance on the vertical axis. In 1945, before
the computer, engineers solved problems by direct hard-
ware implementation. The affordability of hardware lim-
ited the range of problem sizes and the range of perform-
ance needs that could be tackled. It wasn’t possible in 1945,
for example, to build affordable packet routers or elec-
tronic flight-control systems or to solve the real-time
weather-modeling problem. As underlying hardware com-
ponents improved, the range of affordable, direct hardware
solutions expanded.

The Computer—a New Way

The computer was a breakthrough in problem solving. Here
was a way to implement any algorithm using a fixed set of
resources. The computer provided fixed resources in the
form of ALUs, shifters, floating-point units, registers, and
the like. The computer could trade time for resources, in
that an algorithm on the computer could iterate to solve a
problem. The computer solved problems—ones that would
have required unaffordable hardware resources—by provid-
ing limited (affordable), fixed, hardware resources and by
sharing those resources over time.

In addition, the same hardware could solve multiple
problems. Thus, the computer hardware could be amortized
both over time and over a range of problems. The computer
introduced a new type of solution—one with fixed resources
and dynamic algorithms.

The Problem Domain & The Computer
No affordable solution
Designs outside this border

cannot be implemented
affordably

Problem Performance ———»

Problem Size >

Figure 2. The computer solved problems that had been too expensive
to solve.

Figure 2 shows the effect of the computer on the prob-
lem domain. The computer could not solve every problem
in the domain. It could not, for example, meet the perform-
ance needs of problems such as real-time weather forecast-
ing. For small problems, the direct hardware approach was
still cheaper. The computer could, however, solve a problem
of any size—if you could afford to wait for the answer.

Direct hardware implementation carved out an area of
the problem domain. Problems outside that area could not be
solved economically with a direct hardware implementation.
The area staked out by direct hardware implementations,
however, grew as hardware components improved. With its
introduction, the computer staked out its problem domain:
large problems with modest performance requirements. As
hardware components improved, the range of computer-
based solutions grew. When the computer was introduced,
the areas of the problem domain occupied by applications for
the computer and by direct hardware implementation did
not overlap: problems small enough to be solved econom-
ically by direct hardware implementation were too small to
be economically solved on a computer.

Since the algorithms are variable, the computer amor-
tizes the cost of its fixed resources across a range of different
problems, or over time for a single large problem. Problem
solving became programming—the mapping of algorithms
onto a computer’s fixed hardware resources.

Competing Problem-Solving Methods

The computer introduced the engineer to a new way of solv-
ing problems. An engineer could employ either a direct solu-
tion or a computer-based solution. For the direct solution,
the engineer selected hardware resources and mapped the
algorithm directly into hardware by designing the hardware
resources (datapaths) and their controller (state sequencer).
For the computer-based solution, the engineer mapped (i.e.,
programmed or sequenced) an algorithm onto a computer’s
(fixed) resources. The computer provided the hardware re-
sources and state sequencer, and it provided an instruction
set to enable the user to map algorithms onto the hardware
resources. The engineer no longer had to select the appro-
priate hardware resources and also no longer had to design
the state sequencer. Problem solving became programming.

The two problem-solving methods have been in com-
petition with each other. In the problem space, there is an
equal-cost boundary between the two methods, as Figure 3
shows. Over time, the boundary moves as the methods’
underlying components improve.

If the application requires the ultimate in perform-
ance, a direct hardware solution is indicated: fixed resources
and fixed algorithms.

But if the problem is too expensive to solve with a
direct hardware solution, a computer-based solution is in-
dicated: fixed resources and dynamic algorithms.

Direct hardware solutions advanced with the intro-
duction of the transistor (announced by Bell Labs in June

© MICRODESIGN RESOURCES <7

APRIL 24, 2000 <

MICROPROCESSOR REPORT

Guest Viewpoint: Embedded Systems and the Microprocessor 3

1948), but so did computer-based solutions as both types of
solutions became smaller, cheaper, and more reliable.

Direct hardware solutions advanced shortly after the
invention of the integrated circuit with the introduction of
digital “logic families” (see Glushkov [1965], Karp & Miller
[1969], and Claire [1973]). After a brief experimenting and
competitive period, the TTL (transistor-transistor logic) logic
family dominated. TTL manufacturers offered designers a
range of electrically compatible digital logic-macro func-
tions. TTL raised the efficiency of the engineer who was des-
igning and building direct hardware implementations. Engi-
neers worked with building-block logic-macro functions
rather than spending time building low-level functions. TTL
expanded the range of problems amenable to direct hard-
ware implementation, and it soon dominated much of the
problem domain.

Introduction of the Microprocessor

The TTL family of logic-macro functions and its derivatives
grew in scope and in complexity until it included ALU func-
tions and bit-slice components. The growing complexity of
logic-macro functions led to commercial development of
the microprocessor. The microprocessor became commer-
cially available in 1971.

As Figure 4 shows, with the advent of the micro-
processor, the area of the problem domain occupied by
direct hardware implementation began to give way to
microprocessor-based solutions. Building controllers and
mapping algorithms into direct hardware implementations
lost ground to the practice of programming algorithms
onto the microprocessor’s fixed resources.

The embedded microprocessor brought computer-
based problem-solving methods to areas of the problem
domain that had been dominated by logic-macro-function
solutions. (Originally, “embedded microprocessor” would
have been redundant.) Improvements in semiconductor

The Equal-Cost Boundary

No affordable solution

Designs outside these borders
cannot be implemented affordably

Problem Performance

Problem Size

\ 4

Figure 3. The equal-cost boundary between direct hardware imple-
mentation and computer-based solutions.

fabrication expanded the range of affordable applications
for embedded microprocessors, displacing logic-macro-
function solutions. As the microprocessor got faster and
more capable, it was able to solve larger problems more
affordably, and it was able to solve problems needing more
performance. At the same time, improvements in semi-
conductor fabrication decreased the size of older micro-
processors, making them cheaper and driving them into
applications where they were once uneconomical.

Abstraction and Design Efficiency
Moving from discrete components to logic-macro functions
raised the designer’s level of abstraction. The engineer
solved problems with ALUs, registers, and multiplexers
rather than with resistors, capacitors, and transistors. Mov-
ing from logic-macro functions to microprocessor-based
design (solving problems by programming) raised the
designer’s level of abstraction again. The problem changed
from building a direct hardware implementation with logic-
macro functions to programming the microprocessor’s
fixed resources. Abstraction improves design in two ways:

+ The engineer’s efficiency improves as building blocks en-
compass more low-level functions. Families of compatible
logic-macro functions, with their fixed range of input and
output interfaces (supply voltage, fan-out, fan-in, mini-
mum and maximum logic levels, and other parameters),
free the designer from concern about these low-level func-
tions. Designing with families of logic-macro functions
isn’t a perfect solution, because as the engineer moves a
step closer to solving the problem at hand, there is an ac-
companying degradation in efficiency. The solution de-
grades because some logic-macro functions use more
power than they need (some transistors driving only one
load are large enough to drive 10 loads), and they cannot
be used with complete efficiency (the circuit may use only
three of eight units in a packaged component).

Microprocessors Encroach on Logic Macro Functions

No affordable solution

Designs outside these borders
cannot be implemented affordably

: / Computer
Embedded

microprocessor ~

Problem Performance ——

Problem Size >

Figure 4. The microprocessor encroaches on problem domains
belonging to logic-macro functions.

© MICRODESIGN RESOURCES <>

APRIL 24, 2000 <

s

MICROPROCESSOR REPORT

4 Guest Viewpoint: Embedded Systems and the Microprocessor

+ The cost of components decreases. Applying the same
building blocks to a range of problems increases produc-
tion volumes (by amortizing the component design cost
across a larger base).

The designer’s efficiency rises and the cost of compo-
nents falls as the level of abstraction increases. The efficiency
of the design decreases as the level of abstraction rises, how-
ever. The efficiency of a microprocessor-based design suffers
because, for example, mapping the programming language
into the microprocessor’s instruction set isn’t perfect, and
because the microprocessor’s fixed resources are unlikely to
be a perfect match for the requirements of the application.

Embedded microprocessors compete with logic-macro
functions in the problem domain. A logic-macro-function-
based solution is more direct, but it uses a greater diversity of
components. The embedded microprocessor is less direct,
but it uses a few standard components (microprocessor,
ROM, RAM, and peripheral chips) for a wide range of appli-
cations and thereby achieves enormous volumes and low
cost. Logic-macro-function solutions prevail in areas of the
problem domain where an embedded microprocessor can-
not meet the performance requirements, and in areas where
the problem is too small to be solved economically with an
embedded microprocessor.

Logic-macro functions displaced discrete components
because they raised the efficiency of the designer, and
because applications tend to be cost driven and not per-
formance driven. (The lower-cost logic-macro-function-
based solution was cheaper and had adequate perform-
ance.) Now the microprocessor is displacing logic-macro
functions for exactly the same reasons (lower cost and ade-
quate performance). Growing demand for microprocessors
encourages many semiconductor companies to design and
to manufacture microprocessors.

Forty Years of Computer Education

When computers were huge, computer design courses were
taught as an extension of logic design. The first commer-
cially available microprocessors changed that.

The microprocessor was designed to displace logic-
macro functions or ASICs (application-specific integrated
circuits) in direct hardware implementations (see Figure 4),
and in most circumstances it has. As semiconductor fabri-
cation improved, the microprocessor’s performance grew to
intersect the range of computer applications. These were
still the days when computers were not microprocessor
based. In 1974, the microprocessor was offered as the CPU
in a hobbyist’s computer system. Within 10 years, work-
stations and personal computers based on microprocessors
were flooding the market.

The popularity and accessibility of microprocessors
and of computer systems fed the enthusiasm for “computer
architecture” in industry and at universities. The design of
instruction sets and of microprocessors became popular by
the early 1980s.

At universities, computer design courses went from
emphasizing logic design for large machines and minicom-
puters to emphasizing the design and implementation of
instruction sets for microprocessors.

Fads Drive Industrial and Academic Research

As denizens of high-tech, we may fancy ourselves akin to
Star Trek’s Mr. Data, but we are just as driven by fads as the
fashion and toy industries. We see fads, for example, in gen-
erations of computer and microprocessor design.

Electrical engineers designed the first microprocessors
for embedded applications in the problem domain. Lee
Boysel’s AL1 was probably the first microprocessor to be
embedded in a commercial product, appearing in a data ter-
minal that Four-Phase Systems shipped in 1969. Intel’s
4004—introduced in 1971 and credited as the first com-
mercially available microprocessor—was originally designed
to replace the custom chips (ASICs) in a calculator design.
“Computer architects” who designed microprocessors for
CPU applications followed the microprocessor’s pioneers.

The first wave of microprocessor computer architects
(this is the second wave of microprocessor designers and the
n™ wave of computer designers) tried to design instruction
sets matched to a target computer language. These micro-
processors were later dubbed “CISCs” (complex instruction-
set computers).

For example, according to The 8086 Family User’s Man-
ual, “Software for high-performance 8086 and 8088 systems
need not be written in assembly language. The CPUs are
designed to provide direct hardware support for programs
written in high-level languages such as Intel’s PL/M-86.”

The second wave of microprocessor computer archi-
tects tried to design instruction sets that would be easy tar-
gets for compilers. These microprocessors were called RISCs
(reduced instruction-set computers). The RISC fad began
in the early 1980s, calling for simplifying the instruction set
to make the processor faster.

SPARC, a second-wave microprocessor, began as a
research project at U.C. Berkeley and was later adopted by
Sun Microsystems. It is also a good example of a second-
wave microprocessor; according to the article by Dave
Ditzel, “Why RISC Has Won,” in The SPARC Technical
Papers, “CISC systems had tried to convey power through
the instruction set alone, but all too often, these optimiza-
tions merely ended up crippling the hardware and
compiler. ... RISC takes the opposite approach. RISC
instructions make possible the creation of simple, high-
performance hardware implementations. RISC instructions
are simple to decode, are fixed in length, are simple to pipe-
line and have few side effects. These simple instructions give
the compiler more opportunity to apply optimizations that
improve the quality of the code.”

The current generation of microprocessor computer
architects is trying to design instruction sets that exploit par-
allelism in the instruction stream. These microprocessors are

© MICRODESIGN RESOURCES <7

APRIL 24, 2000 <

MICROPROCESSOR REPORT

Guest Viewpoint: Embedded Systems and the Microprocessor 5

called VLIW (very long instruction word) or EPIC (explicitly
parallel instruction-set computing).

Intel’s next-generation microprocessor, the 1A-64,
exemplifies the current generation. According to Linley
Gwennap and Kevin Krewell in their book Intel Micropro-
cessor Forecast 1H00, “EPIC relies on the compiler to create
groups of instructions for parallel execution (hence the
‘explicitly parallel’). By moving the complexity of instruc-
tion scheduling from the hardware into the compiler, this
technique should reduce the amount of hardware needed to
achieve high performance and should decrease pipeline
length by eliminating the stages needed to schedule instruc-
tions. Given a good compiler, an EPIC processor should
achieve better performance than a RISC processor with a
similar transistor budget. Of course, any move away from
the awkwardness of the current x86 architecture (IA-32, in
this nomenclature) would be a positive step.”

Computer Architecture is Folklore

Despite its trappings and status, the field of computer archi-
tecture is weak. It is driven by fads and it is based on folklore.
Application of the scientific method is rare and there is no
rigor in experimentation. Each wave of computer architects
believes that the last generation knew nothing and that the
current generation has the answers. In this way, the com-
puter architecture community is like a perennial teenager: It
never grows up. Here’s an example from a paper by Charles
Church that is as old as the microprocessor. Entitled “Com-
puter instruction repertoire—Time for a change,” the paper
was presented at the Spring Joint Computer Conference in
1970: “There are two major areas that must be attacked if a
job-oriented computer is ever to exist: a) excessive editing,
b) fixed-length instructions Excessive editing largely re-
sults from two basic and common weaknesses in modern
computers: a) inflexible word or character addressing, b) ex-
cessive register orientation.”

Charles Church’s paper presents an analytical case and
concludes that to make progress in instruction-set design,
computers must move away from fixed-length instructions,
inflexible word addressing, and excessive register orienta-
tion. These will be key among many, many principles at the
heart of the RISC fad more than 10 years later. Dave Ditzel,
in “Why RISC Has Won,” expressed the arrogance and
immaturity of this (typical) generation of computer archi-
tects well: “A Reduced Instruction Set Computer (RISC) is
really about good engineering design tradeoffs.”

As if previous generations of engineers had not been
able to make good design tradeoffs.

The computer industry is growing so fast that it isn’t
forced to grow up. Everything we try works. Fundamental
assumptions change with each generation as we learn more
about compilers, languages, decoders, pipelining, and
caches, for example. Improvements in semiconductor fabri-
cation mask (no pun intended) our antics with instruction
sets. Substantive improvements in one area mask the folly in

another. Despite insistence that there’s rigor in the analysis,
the field has a history of opinion based on popular fads.

What's Next? The Embedded Systems Market
The embedded systems market, which includes applications
for embedded microprocessors, includes the high-volume
consumer applications that drive the electronics industry.
Analysis of the embedded-systems market, which is the mar-
ket for all but 2% of microprocessors, will tell us where the
electronics industry is headed. The embedded systems mar-
ket consists of four overlapping segments, defined by their
design requirements. The dominant-characteristic taxonomy
of the embedded systems market is illustrated in Figure 5.

Zero Cost

The zero-cost segment, which, to a first approximation, rep-
resents almost all of the embedded systems market, is the
segment for which low cost is the overriding consideration.
Most microprocessors go into consumer appliances (micro-
wave ovens, electric razors, blenders, toasters, and washing
machines) that generally have minimal processing needs.
These are commodity markets: that means they sell in high
volumes (millions of units to tens of millions of units). These
markets are characterized by intense price competition, so
substantial effort goes into reducing production cost. The
ideal would be zero cost to implement.

Zero Power

The zero-power segment, which, to a first approximation,
represents a small percentage of the embedded systems
market, is the segment for which zero-power dissipation
represents the ideal. These applications are consumer items,
such as smoke detectors, cellular phones, pagers, pace-
makers, hearing aids, MP3 players, and pocket calculators,
which should run forever on a single button-size battery or
on weak ambient light. As with all consumer applications,
minimum product cost remains a concern.

Embedded Systems Market Segments

Zero power

Zero delay

Zero volume

Figure 5. Segments in the embedded systems market.

© MICRODESIGN RESOURCES <7

APRIL 24, 2000 < MICROPROCESSOR REPORT

6 Guest Viewpoint: Embedded Systems and the Microprocessor

Zero Delay

The zero-delay segment, which, to a first approximation, rep-
resents a little more than zero percent of the embedded-
systems market, is the segment for which zero delay from
data in to result out represents the ideal. These applications
are also consumer items, such as high-end printers, scan-
ners, copiers, and fax machines, for which processing power
and throughput are important—at minimum product cost,
of course.

Zero Volume

The zero-volume segment, which, to more than a first ap-
proximation, represents zero percent of the embedded-
systems market, is the segment for which the application
potential is nearly zero. If the application volume is going to
be very close to zero, there must be some other reason to
attempt to capture the application. One motive is public re-
lations. Intel invested considerable money and effort in the
design of the 80960MX processor, for which, at the time of
implementation, the only known application was the YF-22
aircraft. When the only prototype of the YF-22 crashed, the
application volume for the 960MX actually went to zero;
but even if the program had been successful, Intel could not
have expected to sell more than a few thousand processors
for that application. Intel must have made the investment in
the 960MX for reasons other than potential application vol-
ume and eventual profit.

Public relations and a leading-edge image motivate sup-
port for the zero-volume segment. GM’s and Ford’s NASCAR
racing teams support the auto industry’s zero-volume seg-
ment (for the same reason Intel once supported the zero-
volume microprocessor segment). NASCAR.com serves more
pages to sailors in the U.S. fleet than any other Web site.

In the embedded systems market, the zero-volume
segment overlaps with the zero-delay segment, but is com-
pletely disjunct from the zero-cost segment.

Zero power

The Leading-Edge
Wedge

Zero delay

Zero cost Zero volume

Figure 6. The leading-edge wedge is the overlap of the zero-cost, zero-
delay, and zero-power segments of the embedded systems market.

The Leading-Edge Wedge

The taxonomy of embedded applications is important
because it indicates where the electronics industry is
headed. Continued improvement in semiconductor fabrica-
tion, continued proliferation of cellular telephones, and
growing popularity of handheld devices (digital cameras,
GPS receivers, PDAs, etc.) drive more computing into
portable devices. Because they are consumer devices, they
fall into the zero-cost segment. Because they have high com-
puting requirements, they fall into the zero-delay segment.
Because they are portable devices, they fall into the zero-
power segment. We all want cheap, highly capable devices
that give us instant answers and that work on weak ambient
light. The overlap of the zero-cost, zero-delay, and zero-
power segments is the leading-edge wedge. Figure 6 illus-
trates the leading-edge wedge.

As Figures 5 and 6 show, the leading-edge wedge is a
tiny percentage of the embedded systems market, but it is
growing rapidly, and it can have better margins than most
embedded applications. The leading-edge wedge is the
future for embedded systems applications. Tomorrow’s
engineers will have to design applications to meet the
requirements of this wedge. Engineers will struggle with
leading-edge wedge designs unless universities provide their
students with the necessary tools, which they don’t today.
Today’s universities teach two methods for designing appli-
cations: logic design (fixed resources and fixed algorithms)
and microprocessor-based design (fixed resources and
dynamic algorithms). This won’t do for applications in the
leading-edge wedge. A look at programmable logic devices
shows why.

Dynamic Logic

Invention of the programmable logic device (PLD) by Sven
Whalstrom was a conceptual breakthrough (as was the com-
puter). Fortunately for PLD companies, Sven, whose funda-
mental patent (#3,473,160, Electronically Controlled Micro-
electronic Cellular Logic Array) was filed in 1966, was too
early. His conceptual breakthrough came before the semi-
conductor fabrication process made the concept practical. At
about the time Sven’s patent expired, transistors available on
a single die rose to the point of practical application and
companies such as Altera (1983) and Xilinx (1984) began to
develop the market for Sven’s breakthrough.

The PLD is conceptually a two-layer device. The first
layer consists of logic elements and an interconnect struc-
ture. The second layer contains memory. Values in the
memory cells establish connections between the logic ele-
ments and the interconnect structure. These values person-
alize the device. Figure 7 shows the structure of a program-
mable logic device. The programmable logic device allows
the engineer to select both the resources and the algorithm.
Both the resources and the algorithms may vary over time
to solve the problem. This is dynamic logic: dynamic re-
sources and dynamic algorithms.

© MICRODESIGN RESOURCES <7

APRIL 24, 2000 <

MICROPROCESSOR REPORT

Guest Viewpoint: Embedded Systems and the Microprocessor 7

Dynamic resources and dynamic algorithms can be
more efficient than fixed resources and dynamic algorithms,
because the engineer can choose the appropriate resources
for the problem and can build a state sequencer exactly
matched to the algorithm. In a microprocessor, the algo-
rithm is buried in a program that is compiled into an
instruction set. The instruction set drives the microproces-
sor’s state sequencer. The state sequencer manipulates the
microprocessor’s hardware resources to run the pro-
grammed solution. Each translation (algorithm, program,
compiler, instruction set, state sequencer) lowers the effi-
ciency. Efficiency is also sacrificed if the microprocessor’s
resources don’t exactly match the problem’s requirements.

With a dynamic logic solution, the engineer can choose
different resources and different algorithms for subsets of
the problem. The resources and the algorithms can vary over
time to solve the problem. In the past, the difficulty with
PLDs was that they were slow to configure, were limited in
capacity, and had more overhead than the U.S. government
(20 transistors in the device yielded 1 user-level transistor).
Semiconductor fabrication continues to improve, however,
and today’s PLDs are faster to configure and have sufficient
capacity to overcome their overhead, even for leading-edge
applications. This overhead seems to be a big problem. It
isn’t. Power dissipation and performance are important for
leading-edge-wedge applications. Absolute transistor-count
efficiency is not the primary concern. Also, today’s commer-
cial PLDs are designed for general-purpose applications and
for prototyping. Programmable logic designed into leading-
edge-wedge applications can improve transistor-count effi-
ciency by implementing flexibility appropriate to the appli-
cation. For example, a programmable logic device designed
to displace the DSPs and ASICs in 100 million cellular
phones won’t have 95% overhead transistors. Startups such
as QuickSilver, Triscend, Chameleon Systems, and Morphix
are betting that this is so as they enter the market for
dynamic-logic applications.

Isn't This Like...

The computer industry, in the days of batch processing,
experimented with “dynamic microprogramming”—a con-
cept akin to dynamic logic. Dynamic-microprogramming
theory held that it would be more efficient to change the
instruction set of the computer (by downloading custom
microcode) to match the language of the target programs
than to run a single instruction set for all languages. For
programs in Fortran, the computer loaded microcode for a
Fortran-oriented instruction set. For Cobol, the computer
loaded microcode for Cobol. For Algol, the computer
loaded microcode for Algol. The computer’s instruction set
changed to meet the needs of the programming language.
The overhead to load the language-oriented microcode had
to be less than the inefficiency of running a single instruc-
tion set on all languages. The concept may have worked in a
batch-processing environment as memories got faster, but

multitasking killed dynamic microprogramming; there was
no way to load custom microcode efficiently for time slices.

The Battle Between Microprocessors and PLDs
Logic-macro functions have lost the battle for the majority
of applications in the problem domain. Microprocessors
dominate applications in embedded systems and therefore,
in leading-edge wedge applications. In the near future,
microprocessors will fight to hold onto leading-edge-
wedge applications—against encroachment by PLD-based
dynamic-logic implementations.

Microprocessors are in the wrong place, and they are
headed in the wrong direction. Microprocessors are in the
wrong place now, because, as integrated circuits, they are
designed to run an entire instruction set rather than simply
implement in hardware one algorithm for a single ap-
plication. They give up efficiency because they try to meet
the requirements of a range of applications by putting a
general-purpose instruction set between the hardware and
the problem. Microprocessors are headed in the wrong
direction, because they are going down the path of using
arcane, convoluted schemes to process general-purpose in-
structions faster. As they get faster and more complex,
microprocessors use more power (though progress in semi-
conductor fabrication offsets this). The market for micro-
processors will continue to grow, however, because they
gain applications at the high end (zero-delay segment) and
at the low end (zero-cost segment), even as they lose appli-
cations in the leading-edge wedge.

A custom-designed programmable logic device can be
dynamically configured to provide just the right resources at
the right time for its intended application. It can be designed
so that the resources and the algorithm dynamically adjust to
the needs of the application. One issue that will decide
whether it is microprocessors or PLDs that win applications
in the leading-edge wedge is computational power effici-
ency. Computational power efficiency is the product of the

Programmable Logic Device

[| — =
|-] —]] —
]] —]] —
|-] —]] —
[— [— — —

i —— =
=T =T []] l:l[
]] —]] —
|-] —]] —

L] —]] —
[S L — —

= =
[[=]] =
]] —]] —
|-] —]] —

L] —]] —
L [— —
[| S— — =

[TIT]

[N

[N
[T

Personalization " Logic *—— Interconnect
memory structure

Figure 7. The programmable logic device comprises a layer of logic
and interconnect plus a layer of memory.

© MICRODESIGN RESOURCES <7

APRIL 24, 2000 < MICROPROCESSOR REPORT

8 Guest Viewpoint: Embedded Systems and the Microprocessor

References

e Church, Charles C. “Computer instruction repertoire—
Time for a change.” AFIPS Conference Proceedings,
V. 36, Montvale, NJ, 1970, p. 343-349.

e Claire, C. Designing Logic Systems Using State
Machines. McGraw-Hill, New York, NY, 1973.

¢ Ditzel, David R. “Why RISC Has Won." The SPARC
Technical Papers, edited by Ben J. Catanzaro.
Springer-Verlag, New York, NY, 1991, p. 67-70.

e Glushkov, V. “Automata theory and formal micro-
program transformation.” Kibernetika, V. 1, 1965,
p. 1-9.

e Gwennap, Linley, and Kevin Krewell. Intel Micro-
processor Forecast THOO. MicroDesign Resources,
Sunnyvale, CA, 2000.

e The 8086 Family User's Manual. Intel Corp., Santa
Clara, CA, 1979.

e Karp, R., and R. Miller. “Parallel programming
schemata.” S. Computer System Science, V. 3, May
1969, p. 147-195.

¢ Sipper, Moshe, and Eduardo Sanchez. “Configurable
Chips Meld Software and Hardware." Computer, V. 33,
No. 1, January 2000, IEEE, Piscataway, NJ, p. 120-121.

Recommended Reading

e Mackay, Charles. Extraordinary Popular Delusions
and the Madness of Crowds. Richard Bentley, Pub-
lisher in Ordinary to Her Majesty, London, 1841.

e Rand, Ayn. The Fountainhead. International Collec-
tors Library, Garden City, NY, 1943 and 1968.

computing done and the power used. Better computational
power efficiency gets more done for less power.

The cellular telephone, for example, does a variety of
compute-intensive tasks in the course of a call (call setup and
tear down, encoding, decoding, etc.). A microprocessor-
based cellular telephone trades efficiency in each of these
application segments for the ability to deal with all of them.
A PLD could be configured with the proper resources to meet
each task efficiently. Both the PLD and the microprocessor
have the capability to do the application. One issue is whether
reconfiguring the PLD gives up more power than the micro-
processor gives up in lack of efficiency. For most applications,
dynamically reconfiguring the PLD doesn’t use significant

Problem Solving Method

Direct Hardware I Fixed Fixed

Resources Algorithm

Fixed
Dynamic

Microprocessor
Dynamic Logic

Dynamic
Dynamic

Table 1. Next-generation problems will best be solved using
dynamic resources and dynamic algorithms.

power. A custom programmable logic device would be
substantially more efficient than the microprocessor for some
high-volume leading-edge-wedge applications.

However, the computational power efficiency of the
PLD is only one issue involved in whether it overtakes the
microprocessor for leading-edge-wedge applications. A sec-
ond major issue is whether there will be engineers with the
skills to solve problems with dynamic logic.

Universities teach logic-design methods (fixed re-
sources and fixed algorithms), and they teach computer-
based design methods (fixed resources and dynamic algo-
rithms), but they do not teach dynamic logic (dynamic
resources and dynamic algorithms). Courses at many univer-
sities use PLDs. In these courses, the PLDs are a laboratory
aid in teaching logic design methods (fixed resources and
fixed algorithms) or in teaching computer architecture (fixed
resources and dynamic algorithms). Students build logic de-
signs or implement instruction sets using PLDs, but it is
unlikely that students will be taught dynamic logic methods.
There currently are no textbooks, no application notes, and
no instructors—there’s no demand from industry (except for
a few startups) for dynamic logic design skills. It is ironic that
the building block for dynamic logic applications (the PLD)
is an important tool for teaching competing design methods.
Students use PLDs to build prototype direct hardware imple-
mentations and to build prototype CPU designs. In fairness
to the universities, this is also how most practicing engineers
use PLDs today. The PLD’s use as a teaching tool and for
prototyping has created educational and cultural barriers to
its direct use in dynamic logic applications.

Summary
Table 1 shows a summary of problem-solving methods.

In a 40-year infatuation with the computer, universi-
ties have graduated generations of engineers with the skills
to solve computer-based problems. (“Give me a micro-
processor and T'll program it to solve any problem.”) The
rapid growth of applications for microprocessors has rein-
forced computer-based problem-solving methods (fixed
resources and dynamic algorithms) for generations of engi-
neers, and it has left us devoid of skills to meet the future.

A recent article by Sipper and Sanchez in Computer
(“Configurable Chips Meld Software and Hardware”)
points to the need for a change: “Developments in config-
urable computing increasingly blur the line between hard-
ware and software, a trend that represents a major shift in
computing practice. To keep their offerings current and rel-
evant, universities should modify their computer science
curricula to better prepare students for this new era.”

This suggestion may take us in the wrong direction.
The orientation to “configurable computing” ties dynamic
logic to computing. That may be the only practical way to
transition from microprocessor-based design methods to
methods that include some dynamic logic, but it burdens
the solutions with a restrictive computing-oriented legacy.

© MICRODESIGN RESOURCES <7

APRIL 24, 2000 <

MICROPROCESSOR REPORT

Guest Viewpoint: Embedded Systems and the Microprocessor 9

We believe dynamic logic should be taught as an ex-
tension of logic design. To learn logic design, a student must
practice selecting the hardware resources appropriate to the
problem and must map the algorithm and resources to-
gether with a derived state sequencer in a direct hardware
implementation. Dynamic-logic methods extend logic
design to include the element of time. Direct-hardware
solutions are invariant over time. Dynamic-logic solutions
vary with time. A dynamic-logic solution is like a “paged”
direct hardware solution. Each segment of the problem

could be treated as a direct hardware solution, with its own
hardware resources and its own state sequencer, both
designed to meet the unique requirements of a particular
segment of the problem. The solution would be paged into
the hardware at the appropriate time by reconfiguring the
underlying programmable logic devices. Logic design
courses already teach two components of the design
method: selecting the appropriate resources and mapping
algorithms into hardware. Computer courses teach the third

component: dynamic use of resources. <~

To subscribe to Microprocessor Report, phone 408.328.3900 or visit www.MDRonline.com

© MICRODESIGN RESOURCES <7

APRIL 24, 2000 < MICROPROCESSOR REPORT

	Embedded Systems And The Microprocessor
	The Way It Is
	Problem Solving
	Figure 1. Some problems are larger than...
	Problem Domains and Solution Types
	The Computer—a New Way
	Figure 2. The computer solved problems that had been...
	Competing Problem-Solving Methods
	Introduction of the Microprocessor
	Figure 3. The equal-cost boundary between direct...
	Abstraction and Design Efficiency
	Figure 4. The microprocessor encroaches on...
	Forty Years of Computer Education
	Fads Drive Industrial and Academic Research
	Computer Architecture is Folklore
	What’s Next? The Embedded Systems Market
	Zero Cost
	Zero Power
	Figure 5. Segments in the embedded systems market.
	Zero Delay
	Zero Volume
	Figure 6. The leading-edge wedge is the overlap...
	The Leading-Edge Wedge
	Dynamic Logic
	Isn’t This Like…
	The Battle Between Microprocessors and PLDs
	Figure 7. The programmable logic device comprises...
	Table 1. Next-generation problems will best...
	Summary

	R e f e r e n c e s
	Recommended Reading

