{" TEXAS
INSTRUMENTS

TI486DX2 Microprocessor
SM Mode Programming

Reference Guide

486

TEXAS
INSTRUMENTS

1996 PC System Products

‘5‘ TEXAS
INSTRUMENTS

Printed in U.S.A. SRZUO19A
0196

{" TEXAS
INSTRUMENTS

TI486DX2 Microprocessor
SM Mode Programming

486

TEXAS
INSTRUMENTS

1996 PC System Products

*ﬂ‘ TEXAS
INSTRUMENTS

Printed in U.S.A. SRZUO19A
0196

Reference Guide

T1486DX2
Microprocessor SM Code
Programming

Reference Guide

SRZUO019
February 1996

J@ TeEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI1) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

Tl warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of Tl
products in such applications requires the written approval of an appropriate Tl officer. Questions concerning
potential risk applications should be directed to Tl through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does Tl warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of Tl covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright 00 1996, Texas Instruments Incorporated

Preface

Read This First

About This Manual

This reference guide provides information that is helpful when writing or con-
verting software code to implement System Management (SM) mode control
for the T1486DX2 microprocessor.

How to Use This Manual

This document contains the following chapters:

Chapter 1 Overview

Chapter 1 provides an overview of the special system management (SM)
mode, which can be used to control power management and related functions.
The chapter provides comparisons of different SM techniques used and illus-
trates a typical SM handler.

Chapter 2 SM Hardware Overview

Chapter 2 provides an overview of the hardware used to implement SM mode.
In addition to discussing the SM-related inputs and outputs, cache coherency,
and Configuration Control registers, descriptions of the SM instructions are in-
cluded.

Chapter 3 Software Considerations

Chapter 3 contains information on several topics that are useful when develop-
ing SM software for the TI486DX2 microprocessor. Specific items are ad-
dressed that can simplify the implementation and debugging of system code.
Example code, CPU save routines, instruction usage, and problem worka-
rounds are included.

Related Documentation From Texas Instruments

Chapter 4 Converting Intel SM Code to TI486DX2 SM Code

Chapter 4 contains information necessary to convert SM code originally writ-
ten for Inteld SL-enhanced processors to run on the TI486DX2 microproces-
sor. Major SM strategies are addressed, and specific actions are described
that can ensure system integrity.

Appendix A SM Mode Macros

Appendix A contains macros that are used in the other code examples within
this document.

Related Documentation From Texas Instruments

TI486DX2 Microprocessor Reference Guide (literature number
SRZUO018A) describes the TI486DX2 microprocessor, programmer
interface, bus interface, and instruction set.

T1486DX2 Microprocessor data sheet (literature number SRZSO006A)
specifies terminal assignments, signal descriptions, electrical
connections, electrical and ac characteristics, timing, and mechanical
information for all versions of theTI486DX2 microprocessor.

T1486DX2 Microprocessor — Converting Cyrix [0 and Intel 0 486
Microprocessor Designs Application Report (literature number
SRZUO007). This application report assists the system designer in
converting existing 486DX2 and 486D X4 designs to support use of the
T1486DX2 microprocessor.

T1486DX4 Microprocessor Reference Guide (literature number
SRZUO020A) describes the TI486DX4 microprocessor, programmer
interface, bus interface, and instruction set.

T1486DX4 Microprocessors data sheet (literature number SRZS012A) is a
companion document that specifies terminal assignments, signal
descriptions, electrical connections, electrical and ac characteristics,
timing, and mechanical information for all versions of theTl486DX4
microprocessor.

T1486DX4 Microprocessor SM Mode Programming Reference Guide
(literature number SRZUO021A) contains detailed information on
programming the system management mode of the TI486DX2 and
TI486DXA4.

Trademarks

Trademarks

Intel is a trademark of Intel Corporation.

Microsoft is a trademark of Microsoft Corporation.
QEMM-386 is a trademark of Quarterdeck Office Systems.

Read This First Y,

Vi

Contents

I O 1Y 1= 1-1
1.1 INtrodUCHION ... e 1-2
1.2 SM Mode Comparison Among Different Manufacturers 1-3
1.3 Overviewof a Typical SM Handler, 1-4

2 SM Hardware OVEIVIEWt e e e e e e e e e 2-1
2.1 SM-Related /O PiNS ... o e 2-2

2.0 1 SMIE PIN 2-2
2.1.2 SMADSH PN oo 2-2
2.0.3 RDYH PIN o 2-3
214 A20MH PIN 2-4
2.2 Cache CoherenCy i e 2-5
2.3 Configuration Control RegiStersttt i 2-6
2.3 L ACCESS . ittt 2-6
2.3.2 DESCHPtONS ..ot 2-6
2.4 SMINSIUCHON SUMMAIY . ..ottt e e e e e 2-11
2.4.1 Data Format Used by Many SM Instructions 2-11
2.4.2 Macros for Implementing SM Instructions 2-11
2.4.3 Restore Segment Register and Descriptor (RSDC) 2-12
2.4.4 Restore LDTR and Descriptor (RSLDT) ..., 2-12
2.45 Resume Normal Mode Operation (RSM) 2-12
2.4.6 Restore TR and Descriptor (RSTS) 2-12
2.4.7 Software-Generated SM Interrupt (SMINT)t 2-13
2.4.8 Save Segment Register and Descriptor (SVDC) ..., 2-13
2.49 Save LDTR and Descriptor (SVLDT) oot 2-13
2.4.10 Save TR and Descriptor (SVTS)oii i e 2-13
3 Software Considerationst 3-1
3.1 Determining the Addresses Used for SMMemory ..., 3-2
3.1.1 Determining SM Memory Sizet 3-2
3.1.2 Determining SMBase Address ...t 3-2
3.2 Enabling SM Mode 3-4
3.3 SMHandler Entry Conditionsot e 3-5
34 SM SaAVE SPACE ..ttt 3-6
3.4.1 CurrentIPand Next 1P e 3-7
3.4.2 1/O Trap Information 3-8
343 The S BIt ..ot 3-8
3.4.4 CS,CRO, EFLAGS, and DR7 Registerscoiiiiiiineinennnn.. 3-8
3.5 Maintainingthe CPU State i e 3-9

vii

Contents

3.5.1 Preserving and Restoring Normal CPU Registers 3-10

3.5.2 Preserving and Restoring Segment Registers 3-11

3.5.3 Preserving Other Special Registers 3-12

3.5.4 Preserving the State of the Floating Point Unit 3-13

3.6 Initializing the SM Environment e 3-14

3.7 Accessing Main Memory Coincident with SM Memory 3-15

3.8 O RES AN . .ottt e 3-16

3.9 /O Shadowing and Emulation e 3-18

3.10 The HLT INStrUCtioNn e e ettt 3-19

3.10.1 HLT and Memory Managersuuoeuiinetin i, 3-19

3.10.2 EMM386 Problem OVerviewiiiiiineiiiiiiinann 3-19

3.10.3 EMM386 Problem DiSCUSSIONt 3-20

3.10.4 EMM386 Problem Workaround: SM Handler Returnsto HLT 3-21

3.10.5 EMMS386 Workaround: SM Handler Modifies EMM386 Stack 3-24

3.10.6 EMM386 Workaround: Patching EMM386 3-26

3.11 Exitingthe SMHandler i e e e 3-28

3.12 Debugging SM Codeoiii i 3-29

313 Suspend Mode o 3-30

3.14 SMMode SeleCto e 3-31
4 Converting Intel SM Code to TI486DX2 SM Codeot nn 4-1

4.1 Differences in Tl and Intel SM Implementations, 4-2

4.2 SM Code CONVEISION ..ttt e e e et e e 4-3

4.2.1 SMMemory Locationand Size ... 4-3

4.2.2 SMHandler Entry Point 4-3

4.2.3 AcCCeSSToO SMMEMOIY 4-3

4.2.4 Access to Main Memory at SM Memory Addresses 4-4

425 ReQISter SAVe AlCattt 4-4

426 Registers Saved 4-4

4.2.7 Processor Mode Withinthe SMHandler 4-5

4.2.8 Instruction Restartt 4-6

4.2.9 NMISEIVICING . ..ottt e e e e 4-7

4.2.10 Multiple SMIS ... 4-7

4.2.11 A20MH INPUL ..t t 4-7

4.2.12 SMMode SelecCt 4-8

A SM MOAE MaCIOS ...ttt ettt e e e A-1

SMMode Macro File A-2

B GlOSSarY .. B-1

viii

I
WN PP

WNNNNDN R
N

= O

Figures

A Typical SM Handler for Power Managementiiiiiniinnneennnnnn 1-4
Configuration Control Register 1 (CCRL)ottt 2-7
Configuration Control Register 2 (CCR2) e 2-8
Configuration Control Register 3 (CCR3)t e e 2-9
SM Address Region (SMAR) RegiStersot 2-10
DESCSEL Data Format e 2-11
SMM Memory Space Headert 3-6

Table of Contents ix

Tables

2-1 Effects of SMAC and MMAC on ADS#and SMADS#coi i, 2-3
2-2 CCR1 SMM Bit DEfiNIitioNSt e e e e e e e 2-7
2-3 CCR2 SMM Bit DEfiNitioNSt e e e e e 2-8
2-4 CCR3 BIt DefiNitioNS e e e 2-9
2-5 SMAR Size Fieldo 2-10
2-6 RSDC INStIUCHON ..o et e e 2-12
2—7 RSLDT INStUCHION .« .ttt e e e e e e e e e 2-12
2-8 RSM INStTUCHION . . oo e e e e e e e 2-12
2-9 RSTS INStIUCHION . ..ot e e e e e e e e 2-12
2-10 SMINT INStIUCHION . ..ttt e e e e e et e e 2-13
2-11 SVDC INSITUCHON .. i e e e 2-13
212 SVLDT INSITUCHON . . . e e e e e e e e e 2-13
2-13 SVT S INSIUCHON ... i e e e e e e e e 2-13
3-1 SMM Memory Space Header e e e e 3-7
3-2 I/O Trap Information inthe Save Space ...ttt 3-8
3-3 Stack Contents When EMM386 GPF Handler Executes HLT 3-20
3-4 Registers Restored by the RSM Instruction i i, 3-28
4-1 Differences in Tl and Intel SM Mode Implementationo, 4-2

Chapter 1

Overview

This guide provides information to help you write software that takes
advantage of the TI486DX2 System Management (SM) mode. The
information here supplements that of the T/486DX2 Microprocessor
Reference Guide, and is most useful when used in conjunction with that
reference guide.

Topic Page
L1 INtroduCtion ... 1-2
1.2 SM Mode Comparison Among Different Manufacturers ~ 1-3
1.3 Overview of a Typical SM Handler 1-4

1-1

Introduction

11

1-2

Introduction

SM mode is a special operating mode whose main purpose is to provide a
highly secure method for controlling power management within a system.
Theoretically, SM mode can be transparent to any and all application and oper-
ating system software, including protected mode software. In practice, howev-
er, issues can arise with SM mode since it is not yet a standard part of the PC
architecture.

In this document, SM mode means that the processor is currently servicing a
system management interrupt (SMI), and normal mode means that the pro-
cessor is not currently servicing an SMI. Regardless of whether the processor
is in normal or SM mode, it executes code in either real, protected, or virtu-
al-8086 mode.

When the processor is powered-up, its control registers are set so that SM
mode cannot be entered. Typically, the basic input/output system (BIOS) re-
programs these registers so that SM mode is accessible when one of two spe-
cial events occur. If the BIOS (or some other software) does not enable SM
mode, the processor operates in normal mode.

Atransition from normal mode to SM mode occurs when SM mode is enabled,
and the processor either detects an SM Interrupt or executes the SMINT
instruction. A transition from SM mode back to normal mode occurs when the
SM handler executes a special instruction specifically for that purpose, the
RSM instruction.

SM Mode Comparison Among Different Manufacturers

1.2 SM Mode Comparison Among Different Manufacturers

Certain aspects of SM mode implementation are present in all CPUs that pro-
vide an SM operating mode. For example, all SM-capable CPUs define an
area of memory that is to be used to save certain information about the state
of the processor at the time SM mode was invoked. Other SM-related similari-
ties are:

(1 A memory area is defined that contains the SM handler routine.
[The CPU begins executing the SM handler in real mode.
(1 A method of restarting I/O instructions is provided.

In contrast, some of the differences among the various SM-capable CPUs are:

[The particular registers and other information saved upon entry to SM
mode

[The location and size of the memory area where the data is saved

The location and size of the memory where the SM handler resides

[

[The segment register contents (in particular, the hidden part of the seg-
ment register that holds the descriptor for the segment) at the start of the
SM handler

(1 The instructions (opcodes) that are valid
[The time required to enter and exit SM mode

Section 4 of this document discusses many of these differences from the per-
spective of a programmer who must modify existing SM code written for an
IntelD SL processor to work properly on a T1486DX2.

Overview 1-3

Overview of a Typical SM Handler

1.3 Overview of a Typical SM Handler

SM mode is primarily associated with power management, but it can be used
in some other capacity. This is because entry into SM mode is driven by hard-
ware (a signal is asserted on the SMI# 1/O pin of the TI486DX2) that is at the
discretion of the system designer. Also, the functionality of the SM handler is
unlimited, so the handler may be written to respond to the SM interrupt in any
desired manner. Consequently, there is no typical SM handler. When discus-
sing SM handlers designed for power management use, however, use
Figure 1-1 as an example of a typical SM handler.

Figure 1-1. A Typical SM Handler for Power Management

1-4

SM Address Register
(SMAR)

Entry Point (IP=0)

l

Save state

Initialization

Determine the cause of the SMI

No No
Timer exp>—*éé 110 trav
Yes

Yes

Take the appropriate action

v A] A 4
Reprogram o
the Power on device; Handle unexpected

Reprogram chipset;

Restart I/O SMI condition

chipset to trap
I/0 to a device

A 4

7 N

7 N

{

Restore state

Enter normal mode at the
RSM CS:Next_IP address in the
SM save space

Overview of a Typical SM Handler

When an SMI occurs (or the SMINT instruction is executed), the CPU enters
SM mode. Some of the CPU state information is saved in a special area of
memory called the SM save space. Then code segment (CS) and extended
instruction pointer (EIP) are modified so that execution is passed to the SM
handler. EIP is set to zero, while CS is set to the address programmed into the
SM Address Register (SMAR).

One of the most important parts of the SM handler resides at its beginning —
the save state. Here the handler must save all registers that can potentially be
modified (with a few exceptions) before the handler terminates. Some special
instructions available in SM mode can save the entire contents of a segment
register, including both the programmer-visible 16 bits and the hidden 64 bits
of descriptor information (Section 2.4, SM Instruction Summary on page 2-11,
explains all of the special SM instructions in detail). These instructions, along
with several MOV instructions, are typically used in the save state.

After the pertinent registers are saved, the handler can initialize the SM envi-
ronment as desired. For example, it can create its own stack, set up an IDT
so that interrupts can be serviced while in SM mode, or build the appropriate
data structures and enter protected mode. Again, there are some special SM
instructions that may be useful in initializing the environment for the SM han-
dler.

In the typical routine, once the environment is set up, you can determine the
cause (or source) of the SM Interrupt. The possible causes of the interrupt de-
pend on your specific hardware setup and needs. One cause might be that a
pre-programmed timer has expired, indicating that some device has not been
used for a time and can be powered down. Another cause might be a trapped
I/0O cycle that is destined for a powered off device. Whatever the cause of the
SMI, the next step in the handler is to respond appropriately.

As an example, suppose a timer expires that indicates the hard disk has been
unused for some period of time. The SM handler can reprogram the chipset
to disable the timer and to generate an SMI if any 1/O activity is directed to the
hard disk. Then the handler can power down the disk and resume normal
mode. Later, if an SMI is generated because an 1/O to the hard disk was
trapped, the SM handler can:

1) Power up the drive
2) Reset and re-enable the timer
3) Reprogram the chipset so that hard disk 1/0 no longer causes an SMi

4) Resume normal mode, re-executing the I/O instruction that was originally
trapped

After the SMI is properly serviced, the handler must restore the CPU to the
same state that existed when the handler started. The code needed to do this
is the inverse of the code in the save state. Once again, some special SM
instructions can be used to restore both the visible and hidden parts of the seg-
ment registers.

Once the CPU is restored, the RSM instruction is used to return to normal
mode and to the interrupted program. The CPU restores some of the informa-

Overview 1-5

Overview of a Typical SM Handler

tion that was saved when the SMI occurred and then transfers control to the
instruction pointed to by the CS and Next IP fields in the SM save space.

1-6

Chapter 2

SM Hardware Overview

This chapter contains a basic overview of the TI486DX2 SM mode hardware
implementation and a summary of the special software instructions recog-
nized. The hardware overview is divided into three parts:

[The SM-related pins
[J Cache coherency
[The internal control registers

Topic Page
2.1 SM-Related /O PINSt 2-2
2.2 Cache CONEreNCYt e 2-5
2.3 Configuration Control Registers o, 2:6
2.4 SMINStruction SUMMArYttt 2-11

2-1

SM-Related I/0O Pins

2.1 SM-Related I/O Pins

2.1.1 SMI# Pin

2.1.2 SMADS# Pin

2-2

The following four pins on the T1486DX2 are directly related to SM mode or
exhibit behavior in SM mode that needs further explanation:

SMI#
SMADS#
RDY#
A20M#

Uooo

External hardware generates an SMI by driving the SMI# pin low for at least
one CLK period (two CLK periods if the pin is asserted asynchronously). When
the CPU recognizes SMI# is low and begins to service the SM interrupt, it
drives SMI# low, making it an output signal for the duration of the SM handler
routine. When the handler routine terminates, the CPU drives SMI# high for
one CLK period. After this CLK period, the CPU stops driving the SMI# pin and
begins to monitor it again, waiting for external hardware to drive it low again
(causing another SMI).

Because the CPU drives the SMI# pin low while servicing an SMI, it does not
(and cannot) monitor the SMI# pin for another interrupt during the time the ser-
vice routine executes. The external hardware that interfaces with the SMI# pin
must wait until the CPU drives the SMI# pin high before attempting to generate
a second SMI.

If a system is set up to trap 1/O cycles for analysis/handling within an SM han-
dler, the external hardware must drive the SMI# pin low at least two CLK cycles
before the RDY# signal for the 1/0 cycle is asserted. This timing assures that
the CPU can save information about the 1/0 cycle so that the SMI handler can
restart the I/O instruction if necessary.

The T1486DX2 has two separate address strobes, ADS# and SMADS#. These
two strobes behave identically except that ADS# is the strobe used in normal
mode, while SMADS# is the strobe used in SM mode. By having a separate
address strobe for use in SM mode, the system designer can design and ac-
cess a completely separate physical memory for SM mode use. If the designer
wishes instead to use normal system random access memory (RAM) for the
SM memory space, then the ADS# and SMADS# output pins can be logically
combined (ORed).

Because of the flexibility provided by the SMADS# pin, you should know how
SMADS# is used in the system. For example, if the two address strobes are
simply ORed together, then the SM memory space is part of the main memory,
and there is really no special access to or protection of that memory. At the oth-
er extreme, a separate physical RAM can be tied to the SMADS# pin such that
itis only visible to the processor when SMADS# is in use. In this later case, the
system has two separate memories that can share the same addresses, and
there must be a way of accessing each. You should understand the conditions
under which each of these memories is accessed.

SM-Related I/O Pins

Most of the time you do not need to be concerned about the distinction be-
tween ADS# and SMADS#. For example, the CPU automatically generates
ADS# in normal mode and SMADS# in SM mode so that the correct memory
is accessed. However, what if the SM handler needs to access variablesin nor-
mal memory whose address is coincident with some part of the SM address
space? Also, how can a normal mode program access SM memory (to load
the SM handler in place, for example)? In these two special cases, the three
bits in Configuration Control register 1 (CCR1) generate SMADS# while in nor-
mal mode and ADS# in SM mode. (Section 2.3, on page 2-6, discusses the
configuration control registers and how they are accessed and modified.) The
effect of setting these bits, SMI, SMAC and MMAC, is shown in Table 2—-1.

Table 2—-1. Effects of SMAC and MMAC on ADS# and SMADS#

Mode SMI Address in SM Region? SMAC MMAC Data Strobe Code Strobe
Normal 0 No active region X X ADS ADS
1 No X X ADS ADS
1 Yes 1 0 SMADS SMADS
1 Yes 0 0 ADS ADS
SM 1 No X X ADS ADS
1 Yes 0 1 ADS SMADS
1 Yes 0 0 SMADS SMADS

2.1.3 RDY# Pin

The following points concerning Table 2—1 are important:

(1 SMADS can be generated only when SMI is enabled by setting the SMI
bitin CCR1 to 1. If the SMI bit is not set, SMADS is never generated, and
it is not possible to enter SM mode.

[Innormal mode with the SMI and SMAC bits setto 1, a jump or call to an
address that coincides with SM memory begins executing code from SM
memory. Both of these bits must be set to load the SM handler into SM
memory. Be careful you do not accidentally execute code in the SM
memory space during the loading process.

(1 In SM mode, you cannot execute code from normal memory whose ad-
dress coincides with any part of the SM memory space. Exercise care to
place the SM address space where it does not shadow any normal
memory from which you want to execute code during SM mode.

The T1486DX2 does not have separate RDY# pins for SM and normal modes.
If the T1486DX2 is used with a chipset that has two RDY# outputs, those out-
puts can be logically ORed and connected to the single RDY# pin of the
TI1486DX2.

SM Hardware Overview 2-3

SM-Related I/0O Pins

2.1.4 A20M# Pin

2-4

The A20M# input to the TI486DX2 is ignored whenever SM memory is ac-
cessed (whenever the SMADS# address strobe is used). During SM memory
accesses, the processor behaves as if the A20M# input is not asserted (i.e.,
as ifitis tied high). This behavior allows SM memory above 1M byte to be ac-
cessed correctly regardless of the state of A20M within the system.

Cache Coherency

2.2 Cache Coherency

Regardless of whether the TI486DX2 is in normal or SM mode, accesses to
the SM memory space are never cached. This behavior eliminates any con-
cern for internal cache coherency related to SM accesses. However, SM
memory can be cached by an external cache controller, and the system de-
signer must decide if memory accesses during SMADS# cycles are to be
cached. If they are, the cache controller must maintain a distinction between
normal memory and SM memory.

If the CPU is in write-back mode during SM mode, all write-back cycles are di-
rected to normal memory using the ADS# address strobe. Since SM memory
is never cached, an INVD or WBINVD instruction writes dirty cache data to nor-
mal memory (using ADS#) even if the cache addresses overlap SM memory
space.

SM Hardware Overview 2-5

Configuration Control Registers

2.3 Configuration Control Registers

2.3.1 Access

2.3.2 Descriptions

2-6

This section describes the T1486DX2 configuration control registers. These
registers set and modify certain aspects of SM behavior. Additional informa-
tion on the configuration control registers can be found in T/486DX2 Micropro-
cessor Reference Guide.

All of the configuration control register bits are set to 0 when RESET is as-
serted, but assertion of WM_RST does not modify the settings of these regis-
ters.

The configuration control registers are accessed by writing a register index to
I/O port 22h and then writing or reading 1/0O port 23h. Every read or write of port
23hthatis meantto read or write one of the configuration control registers must
be preceded by writing a valid register index to port 22h. If port 23h is accessed
without a proper register index written to port 22h, the port 23h 1/O is directed
off-chip.

For absolute safety in reading or modifying the configuration control registers,
disable all interrupts (including SMI if the handler does any port 22h or 23h I/O
accesses). If you do not disable interrupts, the following problem can occur.
Suppose a program writes a valid register index to port 22h and is then inter-
rupted. Suppose further that the interrupt service routine accesses port 22h
or port 23h. When control returns to the original program, its access to port 23h
may be to the wrong configuration register, or it might be directed externally.
In that case, the program might read or write incorrect data, or it might not
modify the desired configuration register at all.

The SM interrupt can be disabled in one of the configuration control registers,
but this itself involves a configuration control register modification for which
safety is sought. Accordingly, for safety in accessing configuration control reg-
isters the system designer should provide a means for software to disable the
SM interrupt by forcing the SMI# pin high. The software can use this method
to disable SMI during the short time that configuration registers are read or
written, and then re-enable SMI when access to the configuration registers is
complete.

The portions of the configuration control registers that are applicable to SM
mode and power management are described in the following subsections.

Configuration Control Registers

2.3.2.1 Configuration Control Register 1

The CCRL1 register controls system management mode (SMM) features and
enables SMM and cache-interface pins. CCR1 is illustrated in Figure 2-1, and
the pin functions applicable to SMM are described in Table 2—-2.

Figure 2—1. Configuration Control Register 1 (CCR1)

Register Index = C1h
7 6 5 4 3 2 1 0

NO_LOCK MMAC SMAC SMI RPL

D = Reserved

Table 2-2. CCR1 SMM Bit Definitions

Bit Position Name Description

1 SMI Enable SMM pins:
If 1, enables SMI# I/O pin and SMADS# output pin.
If 0, SMI# input pin ignored and SMADS# output pin floats.

2 SMAC System management memory access:
If 1, accesses to addresses within the SMM memory space cause external
bus cycles to be issued when SMADS# output is active. SMI# input is
ignored.
If 0, access is unaffected.

3 MMAC Main memory access:
If 1, data accesses occurring within an SMI service route (or when SMAC
is 1) cause accesses to main memory instead of SMM memory space.
If 0, access is unaffected.

Note: Bits 4-0 are cleared to O at reset.

SM Hardware Overview 2-7

Configuration Control Registers

2.3.2.2 Configuration Control Register 2

The CCR2register sets up internal cache operation and enables suspend con-
trol pins. CCR2 is illustrated in Figure 2—2, and the pin functions applicable to
SMM are described in Table 2-3.

Figure 2-2. Configuration Control Register 2 (CCR2)

Register Index = C2h
7 6 5 4 3 2 1 0

SUSP BWRT BARB WT1 HALT LOCK_NW WBAK

D = Reserved

Table 2-3. CCR2 SMM Bit Definitions

Bit Position Name Description
3 HALT Suspend on halt:
If 1, the CPU enters suspend mode following execution of a HLT
instruction.

If 0, suspend mode is not entered.

7 SUSP Enable suspend pins:
If 1, enables SUSP# input and SUSPA# output.
If 0, SUSP# input pin is ignored and SUSPA# output pin floats.

Note: All bits are cleared to 0 at reset.

2-8

Configuration Control Registers

2.3.2.3 Configuration Control Register 3

The CCR3 register controls additional SMM features. CCR3 is illustrated in
Figure 2—3, and the pin functions are described in Table 2—4.

Figure 2-3. Configuration Control Register 3 (CCR3)

Register Index = C3h
7 6 5 4 3 2 1 0

SM_MODE NMIEN SMI_LOCK

D = Reserved

Table 2—4. CCR3 Bit Definitions

Bit Position Name Description

0 SMI_LOCK SMM register lock:
If 1, and not operating within a SMI handler, the following SMM control bits
cannot be modified:
CCR1 bits 1, 2, and 3
CCR3 bits 1 and 3
Any SMAR bit

While operating within a SMI handler, these SMM control bits can be
modified.

Once set, the SMI_LOCK bit can be cleared only by asserting the RESET
pin.

1 NMIEN NMI enable:
If 1, enables NMI during SMM.
If 0, NMl is ignored during SMM.

3 SM_MODE SM mode select:
If 0, normal SM mode
If 1, SL-compatible mode (SMI_LOCK must be 0)

Note: Bits 1, 0, and 3 are cleared to O at reset.

SM Hardware Overview 2-9

Configuration Control Registers

2.3.2.4 System Management Address Region Register

The System Management Address register (SMAR), shown in Figure 2—4, de-
fines the location and size of the memory region associated with SMM memory
space. The starting address of the SMM address region must be on a block
size boundary. For example, a 128K-byte block is allowed to have a starting
address of OK bytes, 128K bytes, 256K bytes, etc. The SMM block size, shown
in Table 2-5, must be defined for SMI# to be recognized.

Figure 2—4. SMAR (SMAR) Registers

Register Index = CDh Register Index = CEh Register Index = CFh
A A A
4 N/ A} \
7 07 07 43 0
T T
Starting Address Size SMAR
A3l A24 | A23 A16| Al15 Al12

SM Address Region

Table 2-5. SMAR Size Field

Bits 3—0 Block Size (bytes) Bits 3—0 Block Size (bytes)
Oh Disabled 8h 512K
1h 4K 9h 1M
2h 8K Ah 2M
3h 16K Bh 4M
4h 32K Ch 8M
5h 64K Dh 16M
6h 128K Eh 32M
7h 256K Fh 4K (same as 1h)

2-10

SM Instruction Summary

2.4 SM Instruction Summary

The TI486DX2 recognizes eight instructions that are useful in SM program-
ming situations. These instructions are valid when the following four conditions
are true:

[The current privilege level is 0 (CPL = 0)

[J SMlis enabled by having CCR1 bit1=1

(1 The size field of the SMAR register is nonzero

[The processor is in SM mode or the SMAC bit = 1 (CCRL1 bit 2)

If any of the four conditions is not true and one of the special SM instructions
is executed, an undefined opcode fault is generated.

2.4.1 Data Format Used by Many SM Instructions

Most of the SM instructions provide either read or write portions of CPU regis-
ters that programmers cannot view or modify. By knowing the data format that
SMiinstructions read and write, you can create and use variables within an SM
handler. For convenience, the data format used by SM instructions is referred
to as DESCSEL (DESCriptor-SELector).

The DESCSEL data format, which is shown in Figure 2-5, is ten bytes in size.
The first eight bytes are in the exact format of a descriptor that appears in a
global descriptor table (GDT) or local descriptor table (LDT). These eight bytes
describe the beginning, size, type, and other required attributes for a segment
of memory. The last two bytes of the DESCSEL format are the contents of the
visible and modifiable portion of a special register.

Figure 2-5. DESCSEL Data Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Visible Portion (selector or segment value) +8
Base 31-24 G D 0 Avl Limit 19-16 +6
P DPL DT Type Base 23-16 +4
Base 15-0 +2
Limit 15-0 +0
2.4.2 Macros for Implementing SM Instructions

Since the SM instructions are an addition to the x86 instruction set, a set of
macros is needed to make their use transparent to the SM programmer. Ap-
pendix A contains a set of macros that can be used to simplify SM program-
ming of the T1486DX2. These macros are used in code examples throughout
the remainder of this document.

SM Hardware Overview 2-11

SM Instruction Summary

2.4.3 Restore Segment Register and Descriptor (RSDC)

This instruction loads a variable of the DESCSEL format into one of the seg-
ment registers, modifying both the visible portion and the hidden descriptor
portion. Any segment register except CS can be loaded using this instruction.
An attempt to load CS using this instruction generates an invalid opcode fault.
Table 2—6 provides the opcode, parameters, and core clock count.

Using this instruction, you can modify the limit field of any of the segment regis-
ters except CS without entering protected mode.

Table 2—6. RSDC Instruction

Instruction Opcode Parameters Core Clocks

rsdc OF 79 [mod sreg3 r/m] [16-bit descsel offset] descsel, sreg3 10

2.4.4 Restore LDTR and Descriptor (RSLDT)

This instruction loads a variable of the DESCSEL format into the Local Des-
criptor Table Register (LDTR). Table 2—7 provides the opcode, parameters,
and core clock count.

Table 2—7. RSLDT Instruction

Instruction Opcode Parameters Core Clocks

rsidt OF 7B [mod 000 r/m] [16-bit descsel offset] descsel 10

2.4.5 Resume Normal Mode Operation (RSM)

This instruction causes the SM handler to terminate. The information in the SM
save space (at the top of SM memory) is restored into the CPU. Any registers
other than CS and EIP that the SM handler modified must be restored before
this instruction executes. Table 2—8 provides the opcode, parameters, and
core clock count.

Table 2—-8. RSM Instruction

Instruction Opcode Parameters Core Clocks

rsm OF AA None 76

2.4.6 Restore TR and Descriptor (RSTS)

This instruction loads a variable of the DESCSEL format into the Task register
(TR). Table 2—9 provides the opcode, parameters, and core clock count.

Table 2-9. RSTS Instruction

Instruction Opcode Parameters Core Clocks

rsts OF 7D [mod 000 r/m] [16-bit descsel offset] descsel 10

2-12

SM Instruction Summary

2.4.7 Software-Generated SM Interrupt (SMINT)

This instruction causes the SM handler to begin execution. The CPU operates
as if the SMI# pin was sampled in the active (low) state, except that it does not
drive the SMI# pin as it normally does for a hardware-generated SMI. Note that
this is the only SM-related instruction that functions outside of SM mode, and
only when the SMAC bit in CCR1 is set to 1. If the SMAC bit is not set, the
SMINT instruction generates an invalid opcode fault. Table 2—10 provides the
opcode, parameters, and core clock count.

Table 2—-10. SMINT Instruction

Instruction

Opcode Parameters Core Clocks

smint

OF 7E None 24

2.4.8 Save Segment Register and Descriptor (SVDC)

This instruction writes the contents of both the visible and hidden portions of
a segmentregister to a variable of DESCSEL format. This instruction is typical-
ly used at the start of an SM handler to save the segment registers before any
modification by the handler. The handler can execute the RSDC instruction be-
fore exiting to restore saved information. Table 2—11 provides the opcode, pa-
rameters, and core clock count.

Table 2—-11. SVDC Instruction

Instruction

Opcode Parameters Core Clocks

svdc

OF 78 [mod sreg3 r/m] [16-bit descsel offset] descsel, sreg3 18

2.4.9 Save LDTR and Descriptor (SVLDT)

This instruction writes the contents of both the visible and hidden portions of
the Local Descriptor Table (LDT) register to a variable of DESCSEL format.
Table 2—12 provides the opcode, parameters, and core clock count.

Table 2-12.SVLDT Instruction

Instruction

Opcode Parameters Core Clocks

svldt

OF 7A [mod 000 r/m] [16-bit descsel offset] descsel 18

2.4.10 Save TR and Descriptor (SVTS)

This instruction writes the contents of both the visible and hidden portions of
the Task register (TR) to a variable of DESCSEL format. Table 2—13 provides
the opcode, parameters, and core clock count.

Table 2-13.SVTS Instruction

Instruction

Opcode Parameters Core Clocks

svts

OF 7C [mod 000 r/m] [16-bit descsel offset] descsel 18

SM Hardware Overview 2-13

2-14

Chapter 3

Software Considerations

This chapter discusses SM software development for the TI486DX2 proces-
sor. The applicable topics are determined primarily by the complexity of your
SM handler.

Topic Page
3.1 Determining the Addresses Used for SM Memory — 3-2
3.2 Enabling SMMode oo 3-4
3.3 SMHandler Entry Conditions — 35
34 SM SaAVe SPaCE ...ttt 3-6
3.5 Maintainingthe CPU State i, 3-9
3.6 Initializing the SM Environment 3-14
3.7 Accessing Main Memory Coincident with SM Memory 3-15
3.8 O RESArt ... 3-16
3.9 /O Shadowing and Emulation 3-18
3.10 The HLT INStructiont 3-19
3.11 Exitingthe SM Handler i 3-28
3.12 Debugging SM Codet 3-29
3.13 Suspend Mode 3-30
3.14 SMMode Select 3-31

3-1

Determining the Addresses Used for SM Memory

3.1 Determining the Addresses Used for SM Memory

One of the first decisions you must make is what addresses to use for SM
memory. These addresses are determined by the starting location (or base ad-
dress) and the size of the SM memory.

The base address and size of SM memory are related by the restriction that
the base address must be a multiple of the size. For example, if the SM
memory size is 16K bytes, the SM base can be at address 0, 16K, 32K, 48K,
64K, and so forth.

3.1.1 Determining SM Memory Size

In general, you can locate SM memory at any address within the processor’s
4G byte address space, and the SM size can be from 4K bytes to 32M bytes
in various increments (see Table 2-5 on page 2-10). Practically, the size of
your SM handler determines the minimum size of the SM memory space.

The TI486DX2 CPU sets the limit field of the CS descriptor to 64K bytes upon
entry into SM mode. This new feature allows your SM handler to service inter-
rupts, for example, without entering protected mode first and ignoring CS limit
violations by the interrupt service routines that may get called. Unfortunately,
this feature also introduces the possibility, albeit unlikely, of a CS limit violation
within the SM handler itself. This error occurs only if you define your SM
memory to be larger than 64K bytes, and you then use CS to execute code or
reference data that is more than 64K bytes from the beginning of SM memory.
There is currently no practical reason to have more than 64K bytes of SM code,
so this potential problem should be of little consequence. If you need an SM
memory space of more than 64K bytes, direct the SM handler to enter pro-
tected mode either to access the extra code/data directly or to reload the CS
descriptor with a larger limit field.

3.1.2 Determining SM Base Address

3-2

If your SM handler is self-contained and does not call or jump to code in any
other segment, you can place the SM memory at any base address. There are
no issues to consider in this case. If your SM handler is not self-contained, oth-
er factors can affect your choice of base addresses.

Determining the base address is important when a separate memory is used
for SM mode and is accessed via SMADS#. In that case, while in SM mode
you can never execute code residing at normal memory addresses coincident
with SM memory. For example, suppose your handler expected to execute
some code located in the read-only memory (ROM) BIOS. You would not want
any part of the SM memory space to overlap the memory space of the ROM
BIOS because the handler would not be able to execute ROM BIOS code re-
siding in the overlapping address space.

Determining the base address is also important because the processor
executes the SM handler in real mode (unless the handler is written to enable
protected mode). This can lead to trouble if the SM base address is at or above

Determining the Addresses Used for SM Memory

1M byte and the handler makes a far call to another segment or is interrupted
by an IRQ or NMI. In that case, the visible portion of the CS register that is
pushed onto the stack does not have the correct value, and the eventual return
from the call or interrupt is to the wrong address.

The reasonthe CSregister can be incorrectis that only bits 19-12 of the SMAR
register are placed into the high-order bits of CS upon entry into SM mode (the
low-order 8 bits are set to zero). That s, the visible portion of CS is loaded with
the linear segment address of the SM base, but when the base address is too
large, the information in the high-order bits cannot fit into CS and is lost.

In summary, do not place the SM base address above the 1M byte boundary
if the handler can make far calls or service interrupts unless the handler first
sets up and enters protected mode.

Software Considerations 3-3

Enabling SM Mode

3.2 Enabling SM Mode

3-4

Follow these steps to enable SM mode on the TI486DX2:

1)

2)
3)
4)
5)

6)

Set the SMAR register so that it defines the desired SM memory location
and size.

Set the SMI and SMAC bits.

Point DS:SI to the beginning of the SM handler source (in ROM).
Point ES:DI to the beginning of SM memory.

Use REP MOVS to copy the SM handler into SM memory.

Clear the SMAC bit.

In step 2, the SMI bitis not set to enable the SMI# pin, although it does perform
this function. Instead, setting the SMI bit allows SMADS# to be generated for
the destination addresses of the REP MOVS instruction. SMAC must also be
set to allow SMADS# to be generated and to disable the SMI# pin. Together,
the SMland SMAC bits allow SMADS# to be generated and to prohibitany SMI
from being recognized during the time the handler is copied to SM memory.

After the handler is in place, clearing SMAC (in step 6) causes the SMI# pin
to be enabled (since the SMI bit is still set from step 2). At this point, SM inter-
rupts can occur and be serviced properly by the SM handler.

SM Handler Entry Conditions

3.3 SM Handler Entry Conditions

When the SM handler begins execution, the following conditions are true:

a

[

The CPU is in real mode, but code is fetched from the segment described
by the base address in the CS descriptor, not from the segment in the vis-
ible portion of CS. (As soon as any value is placed into CS, the descriptor
base field ceases to be used and the visible part of CS is used as it normal-
ly is in real mode. The CPU state at SM entry with respect to code fetches
is exactly the same as the state when exiting protected mode—after the
protected mode enable (PE) bit of CRO has been cleared, but before CS
has been reloaded by jumping to real mode code.)

The most significant bit (MSB) of the visible part of the CS register contains
bits A19—A12 of the SM starting address (as contained in the SMAR regis-
ter), while the least significant bit (LSB) contains 0. If the SM starting ad-
dressis below the 1M byte boundary, the value in the visible part of the CS
register is equal to the paragraph address where SM memory begins. If
the SM starting address is at or above the 1M byte boundary, the visible
part of CS has no valid use.

The limit field of the CS descriptor is set to 64K bytes.
The EIP register is set to 0.

The EFLAGS, CRO and DRY registers are set to their reset values (so in-
terrupts are disabled).

The segment registers (except CS) and the general-purpose registers
hold whatever information they had during the interrupted program’s
execution.

Certain information about the CPU'’s state at the time of the SM interrupt
has been saved at the top of the SM memory space (in the SM save
space).

Software Considerations 3-5

SM Save Space

3.4 SM Save Space

Some CPU state information is saved at the top of SM memory before execu-
tion flow passes to the SM handler routine. This portion of the SM memory is
often referred to as the SM save space. The CPU saves the absolute minimum
of information in the save space so that SM entry and exit speed is as fast as

possible.

The information written to the save space is shown in Figure 3-1 and
Table 3—1. As Figure 3—1 shows, of the typically used CPU registers, only CS,
EIP, EFLAGS, and CRO are saved automatically. Other registers that the SM
handler can modify must be saved first at the start of the handler. This process
can be done using SVDC, SVLDT, SVTS, and MOV instructions and is de-
scribed in detail in Section 3.5.

Figure 3—1. SMM Memory Space Header
31

Top of SMM —p
Address Space

DR7

EFLAGS

CRO

Current IP

31

Next IP
16 15 0

CS Selector

CS Descriptor (Bits 63-32)

31

CS Descriptor (Bits 31-0) 3 2 1 ¢

S|P|I

16 15

I/O Write Data Size

1/0 Write Address

/0 Write Data

ESI or EDI

= Reserved

3-6

Table 3-1. SMM Memory Space Header

SM Save Space

Name Description Size
DR7 Contents of Debug register 7 4 bytes
EFLAGS Contents of the extended flag register 4 bytes
CRO Contents of Control register 0 4 bytes
Current IP Address of the instruction executed before servicing the SM interrupt 4 bytes
Next IP Address of the next instruction that is executed after exiting the SM mode 4 bytes
N/A Reserved 2 bytes
CS Selector Code Segment register selector for the current code segment 2 bytes
CS Descriptor ~ Code register descriptor for the current code segment 8 bytes
N/A Reserved 28 bits
S Software SMM Entry Indicator: 1 bit

Sis 1 if current SMM is the result of an SMINT instruction.

S is 0 if current SMM is not the result of an SMINT instruction.
P REP INSx/OUTSxT Indicator: 1 bit

P is 1 if current instruction has a REP prefix.

P is 0 if current instruction does not have REP prefix.
| IN, INSx, OUT, or OUTSx Indicator: 1 bit

I is 1 if current instruction performed is an 1/O WRITE.

I is O if current instruction performed is an I/O READ.
N/A Reserved 1 bit
1/0 Write Data Indicates size of data for the trapped 1/0O write: 2 bytes
Size 01lh = byte

03h = word

OFh = DWord
1/0 Write Address of the trapped I/O write 2 bytes
Address
I/0 Write Data Data associated with the trapped I/O write 4 bytes
ESI or EDI Restored ESI or EDI value. Used when it is necessary to repeat a REP OUTSx or 4 bytes

REP INSx instruction when one of the I/O cycles caused an SMI# trap.

TINSx = INS, INSB, INSW, or INSD instruction. OUTSx = OUTS, OUTSB, OUTSW, or OUTSD instruction.

3.4.1 Current IP and Next IP

The current IP and next IP fields in the save space can be quite useful within
an SM handler. The current IP normally contains the offset of the instruction
that executed before or caused the SM interrupt. The next IP normally holds
the offset of the instruction that is to be executed when the SM handler termi-
nates.

There are three cases when these two fields contain the same value:

[When the interrupted instruction has a REP prefix
[When the interrupted instruction is some form of the LOOP instruction
[J When the last instruction executed before the SMI was a HLT

In the third case, both fields point to the instruction following the HLT.

A trapped I/O instruction that causes an SMI sometimes needs to be restarted
(or re-executed) after the SM handler exits. To restart the instruction, have the
handler use the MOV instruction to copy the value in the current IP field to the
next IP field. When the handler terminates, EIP points to the I/O instruction that
caused the SMI, not the instruction following it.

Software Considerations 3-7

SM Save Space

3.4.2 1/O Trap Information

In the case where a complex I/O operation, a REP OUTSD for example, is the
source of an SMI, information in the low-order 4 dwords of the save space is
needed to restart the instruction properly.

Table 3-2 describes this I/O trap information and how it can be used by the SM
handler. Note that none of the data in Table 3-2 is valid unless the SMI was
caused by a trapped I/O cycle. Further, the three 1/0O write fields are valid only
when the | bit is also set.

Table 3-2.1/0 Trap Information in the Save Space

Bytes below top of

SM memory

Name (in hex) Bit(s) Description Use

P 24 2 REP prefix indicator. If set to When 1, increment ECX
1, the current instruction has a before restarting the 1/0.
REP prefix; if set to 0, it does
not.

24 1 IN/OUT indicator. If set to 1, When 1, copy the ESI/EDI
the current instruction is some field to the ESI register before
form of OUT (an I/O write); if restarting the 1/0; when 0,
setto 0, it is some form of IN. copy ESI/EDI to the EDI
register.

I/O write data 26 15:0 1/O write data size: 01h = byte; To determine which parts of

size 03h = word; OFh = dword. the 1/0O write data field are

valid.

I/O write address 28 15:0 The target address of a As applicable (for emulation
trapped OUT. or shadowing).

I/O write data 2C 31:0 The data that was written As applicable (for emulation
during a trapped OUT. or shadowing).

ESI/EDI 30 31:0 The value of ESI or EDI atthe Reload ESI or EDI
beginning of a trapped I/O (depending on the | bit) with
instruction. this value before restarting

the 1/0.

3.4.3 The S Bit

This bit of information resides in bit 3 of the byte located 24 bytes below the
top of SM memory. When set to 1, this bit indicates that the SMINT instruction
invoked the SM handler. If this bit is 0, the SM handler was invoked because
external hardware drove the SMI# pin low.

3.4.4 CS, CRO, EFLAGS, and DR7 Registers

3-8

These registers are saved so that the interrupted program can be restored
quickly to its pre-SMI state. However, the information contained in these saved
registers can sometimes be useful within the handler. For example, the han-
dler, which runs in real mode, can look at the saved CRO information to see
if the CPU executed in protected mode before it was interrupted. If so, the
saved CRO information also shows whether paging was enabled. The SM han-
dler might also use the saved CS and IP information to examine the code
stream that was executing when the interrupt occurred.

Maintaining the CPU State

3.5 Maintaining the CPU State

As Figure 3—-1 shows, relatively few of the CPU registers are saved in the SM
save space. The SM handler must save any of the registers that are not auto-
matically saved if it modifies them in any way. Also, it must restore the saved
values before executing the RSM instruction.

Ifyour design includes an SMI signaling that the system will be powered off and
later powered on, continuing from its previous state, then the entire machine
state must be saved to nonvolatile memory. This level of power management
requires coupling between the BIOS power-on sequence and the SM handler.
The BIOS could detect at power-on that the machine needed to be restored
(perhaps by checking a bitin CMOS RAM), load the SM handler, and jump to
the proper place in the handler to continue the restoration (or perhaps use the
SMINT instruction).

Software Considerations 3-9

Maintaining the CPU State

3.5.1 Preserving and Restoring Normal CPU Registers

include SM.MAC

The CPU’s general purpose, index, and pointer registers can be saved and re-
stored using simple MOV instructions. The simplest way to perform these
tasks is to reserve some locations within the SM memory space for saving reg-
isters, then use a CS: override when moving data to/from the locations. Their
use is demonstrated in the following code example.

; See Appendix A

; SM handler begins here.

; Save the general purpose, index, and pointer registers.

mov
mov
mov
mov
mov
mov
mov
mov

cs:int_eax, eax
cs:int_ebx, ebx
cs:int_ecx, ecx
cs:int_edx, edx
cs:int_esi, esi

cs:int_edi, edi

cs:int_ebp, ebp
cs:int_esp, esp

; Other processing which can involve modifying the registers ...

; Restore saved register values before exiting.

mov
mov
mov
mov
mov
mov
mov
mov

eax, cs:int_eax
ebx, cs:int_ebx
ecx, cs:int_ecx
edx, cs:int_edx
esi, cs:int_esi

edi, cs:int_edi

ebp, cs:int_ebp
esp, cs:int_esp

; Exit the SM handler and return to interrupted program.

rsm

; exit the SM handler

; Data area within the code segment for saving registers.

int_eax dd ?
int_ebx dd ?
int_ecxdd ?
int_edx dd ?
int_esidd ?

int_edi dd ?

int_ebpdd ?
int_esp dd ?

3-10

Maintaining the CPU State

3.5.2 Preserving and Restoring Segment Registers

include SM.MAC

The handler must be able to save and modify both the visible and the hidden
parts of the segment registers (that is, the selector/segment and the descrip-
tor) because the SM handler runs in real mode and can interrupt a protected
mode program. This capability is not provided in the standard Intel architec-
ture, so the T1486DX2 instruction set has been extended to provide it with two
instructions: SVDC and RSDC (these instructions are described in subsec-
tions 2.4.8 and 2.4.3).

Here is an example showing how macros that use these two instructions can
be used to save and restore segment registers in the SM handler.

; See Appendix A

; SM handler begins here.

; Save all segment registers (except CS which is already preserved
; in the SM save space) to Code Segment variable locations.

svdc
svdc
svdc
svdc
svdc

int_ds, ds ; saves <Reg> to cs:int_<Reg>
int_es, es

int_fs, fs

int_gs, gs

int_ss, ss

; Other processing which can involve modifying of segment registers ...

; Restore saved segment register values before exiting.

rsdc
rsdc
rsdc
rsdc
rsdc

ds, int_ds ; moves cs:int_<Reg> into <Reg>
es, int_es

fs, int_fs

gs, int_gs

ss, int_ss

; Exit the SM handler and return to interrupted program.

rsm

; exit SM handler

; Data area within the code segment for saving registers.

int_ds
int_es
int_fs
int_gs
int_ss

DESCSEL <> ; See section 2.4.1 and Appendix A
DESCSEL <>
DESCSEL <>
DESCSEL <>
DESCSEL <>

Software Considerations 3-11

Maintaining the CPU State

3.5.3 Preserving Other Special Registers

The remainder of the CPU registers except for the LDTR and the TR can be
saved and restored, if needed, using instructions provided in the normal
instruction set. Some examples:

; Assure EAX has already been saved.

mov eax, cr2 ; Save CR2

mov cs:int_CR2, eax

mov eax, dré ; Save DR6

mov cs:int_DR6, eax

mov eax, tré ; Save TR6

mov cs:int_TR6, eax

db 66h : So that SGDT saves all
sgdt cs:iint_GDTR ; Save GDTR

The normal instruction set also contains instructions to save the LDTR (SLDT)
and the TR (STR), but these instructions are valid only when the processor is
operating in protected mode. Once again, the TI486DX2 instruction set has
been enhanced to allow LDTR and TR to be saved and restored while in real
mode within the SM handler. The four added instructions are SVLDT, SVTS,
RSLDT, and RSTS. Their use is demonstrated in the following code example.

include SM.MAC ; See Appendix A
; SM handler begins here.
; Save LDTR and TR to Code Segment variable locations.

svidt int_ldt ; save LDTR to cs:int_|dt
svts int_tr ; save TR to cs:int_tr

; Other processing which can involve modifying LDTR and TR ...
; Restore saved LDTR and TR values before exiting.

rsidt int_Idt ; restore LDTR from cs:int_Idt
rsts int_tr ; restore TR from cs:int_tr

; Exit the SM handler and return to interrupted program.
rsm ; exit SM handler
; Data area within the code segment for saving registers.

int_ldt DESCSEL <> ; See section 2.4.1 and Appendix A
int_ tr DESCSEL <>

3-12

Maintaining the CPU State

3.5.4 Preserving the State of the Floating Point Unit

If the floating point unit (FPU) is to be powered off or if the SM handler executes
FPU instructions, then the state of the FPU must be maintained for the benefit
of the interrupted program. This is accomplished using the FNSAVE and
FRSTOR instructions.

You must use the FNSAVE instruction instead of the FSAVE instruction to save
the FPU state. This is because the FSAVE instruction causes the FPU to check
for any existing error conditions before storing the state. If there is an un-
masked exception pending, FSAVE waits for the exception to be serviced,;
however, this exception should be serviced by the interrupted program and not
the SM handler. When you use FNSAVE, any pending exception is not serv-
iced, and the interrupted program is able to do the servicing after the FPU is
restored and the SM handler terminates.

Finally, you must perform the FPU save and restore in 32-bit protected mode.
The following code example demonstrates the correct procedure.

; Save FPU state to Code Segment variable location.

cli

mov eax, cr0 ; Enter protected mode.

or eax, 1

mov crO, eax

jmp $+2 ; Short jump to clear prefetch queue
db 66h

fnsave cs:int_ FPU

and eax, not 1 ; Leave protected mode.

mov cro, eax

sti

; Other processing which can use the FPU ...
; Restore FPU state before exiting.

cli

mov eax, cr0 ; Enter protected mode.

or eax, 1

mov crO, eax

jmp $+2 ; Short jump to clear prefetch queue.
db 66h

frstor cs:int_FPU ; Restore previously saved state.

and eax, not 1 ; Leave protected mode.

mov cro, eax

sti

; Exit the SM handler and return to interrupted program.
exit_sm ; exit_sm macro uses RSM instruction
; Data area within the code segment for saving registers.

int_FPU db 108 dup (?)

Software Considerations 3-13

Initializing the SM Environment

3.6

Initializing the SM Environment

Once all the registers the SM handler can modify have been saved, the envi-
ronment for the handler’s operation can be set up.

Typically, an SM handler needs to save and initialize the segment registers.
Initialization of the segment registers is especially necessary when the inter-
rupted program is operating in protected mode. In this case, the values in the
limit fields of the segment register descriptors are unknown, and use of the
segment registers could cause segment limit violations. Thus, placing known
values into the segment register descriptors is necessary to create a robust
SM handler.

Recall that the SM handler executes in real mode, where modifying the seg-
ment register descriptors is not normally possible. However, the RSDC
instruction (see subsection 2.4.3) is available for use in SM mode, which lets
you load any desired descriptors into the segment registers (except for CS).
For example, you can load descriptors that have 4G byte limit fields into the
segment registers so the handler never causes a segment limit violation. Of
course, you may want to have segment limit violations reported because they
can highlight errors in your software. In that case, you can load descriptors that
exactly describe the segments you are using.

The following code example shows DS and ES being loaded with 4G byte lim-
its and FS and GS being loaded with 64K byte limits.

; Assumes the current segment register values and descriptors have already
; been saved (using the svdc macro).

rsdc ds, D4G
rsdc es, D4G
rsdc fs, D64K
rsdc gs, D64K

; Other processing which eventually restores the CPU and RSMs ...

; Data area within the code segment for loading segment registers.

D4G

D64K

3-14

DESCSEL {OFFFFh,0,0,92h,8Fh,0,{0}}; See section 2.4.1 and Appendix A
DESCSEL {OFFFFh,0,0,92h,0,0,{0}}

Accessing Main Memory Coincident With SM Memory

3.7 Accessing Main Memory Coincident with SM Memory

If your SM handler resides in a separate memory using SMADS# for access,
use the MMAC bit in CCR1 to access normal memory coincident with SM
memory. Typically, you need to access this portion of main memory to save the
entire machine state, but you may also have some variables residing there that
the SM handler needs to access or modify.

Table 2—-1, on page 2-3, shows how setting MMAC affects the data strobe used
while the CPU is in SM mode. The following example demonstrates the use
of MMAC.

; Need access to variables in main memory that overlap SM memory addresses.
; Set the MMAC bit to enable.

mov al, 0C1h : Read CCR1

out 22h, al

in al, 23h

or al, 008h ; Set MMAC bit

mov ah, al

mov al, 0C1h

out 22h, al

mov al, ah

out 23h, al ; Write CCR1 with MMAC set

; Any data accesses will now use ADS#

; Access no longer needed—disable it by clearing MMAC.

mov al, 0C1h ; Read CCR1

out 22h, al

in al, 23h

and al, not 008h ; Clear MMAC bit

mov ah, al

mov al, 0C1h

out 22h, al

mov al, ah

out 23h, al ; Write CCR1 with MMAC cleared

; Any data accesses to SM addresses will now use SMADS#

Software Considerations 3-15

I/O Restart

3.8

I/0 Restart

One of the primary power management functions that an SM handler can per-
form is to power off unused devices and to power on those peripherals when
the system later tries to access them. Typically, the chipset is programmed to
trap I/O accesses to these devices and to generate an SMI# when any 1/O to
them is detected. The SM handler then interrogates the chipset to determine
the cause of the SMI. When the handler determines the SMI was generated
due to I/O access to a powered-down peripheral, it powers the device on and
returns control to the interrupted program. However, it must do so in a manner
that allows the original I/O instruction to be re-executed. This type of action is
know as an I/O restart. Typically the chipset needs to be reprogrammed before
restarting so that the re-executed 1/O is routed to the peripheral and does not
cause another SMI.

The TI486DX2 places information in the SM save space that makes 1/O restart
a simple task. This information, whose use and location in the save space are
shown in Table 3-2, is:

(1 The I bit, which is set when the trapped 1/O is an OUT and cleared when
itis an IN

(1 The P bit, which is set when the trapped 1/0O was prefixed with a REP and
cleared otherwise

(1 Abyte thatindicates the size of the trapped I/O write (when the | bit is set)

[A word that indicates the target address of a trapped I/O write (when the
| bit is set)

O A dword that contains the data that was to be written (when the | bit is set)

[A dword that contains ESI (when the | bit is set) or EDI (when the | bit is
clear)

The following example shows how /O instructions are restarted.

; Interrogation of the chipset has shown an I/0 to a powered off device was

; trapped. The device has now been powered on, and the chipset reprogrammed
; S0 that the I/O will no longer be trapped. All that is left to do is to

; enable the I/O instruction to be re-executed by the interrupted program.

3-16

mov eax, cs:curr_ip ; Copy current IP in header to next
mov cs:next_ip, eax ; IPin header. Re-executes the I/O

. after the RSM.
mov ecx, int_ecx ; Restore ECX to its interrupted value
bt cs:smibits, 2 ; Move P bit (REP indicator) into carry
adc ecx, 0 . If P was set, then we add 1 to ECX
bt cs:smibits, 1 ; Copy | bit (IN/OUT indicator) to carry
ic out_trap ; If set, then an OUT was trapped.
mov edi, cs:esi_edi : For IN, it holds EDI
mov esi, cs:int_esi
jmp trap_end

I/O Restart

out_trap:
mov esi, cs:esi_edi ; For OUT, it holds ESI
mov edi, cs:int_edi
trap_end:
; Restore EAX and any other necessary registers except for ECX, ESI,
; and EDI which were just restored above ...
rsm : Exit SM mode and re-execute the 1/0

; Data area within the code segment for saving registers.

int_eax dd ?

int_ebx dd ?

ORG SMSIZE-30h ; SMSIZE is the size in bytes of SM mem.

; Variables in the SM save area—placed here by the CPU upon SM mode entry and
; used to restore the CPU state upon normal mode re-entry.

esi_edidd ? ; ESl or EDI

iotrapd dd ? ; I/0O write data

iotrapa dw ? : 1/0 write address

iotraps dw ? ; I/O write size indicator
smibits dd ? 1S, P, and | bits

csdescl dd ? ; CS descriptor (low word)
csdesch dd ? ; CS descriptor (high word)
csselec dw ? ; CS selector/paragraph
smirsvd dw ? : Reserved

next_ip dd ? ; Next user instruction to execute
curr_ipdd ? ; Interrupted user instruction
savecrO dd ? ; Saved CRO value

saveflg dd ? : Saved EFLAGS

savedr7 dd ? : Saved DR7

(end of example)

Software Considerations 3-17

I/O Shadowing and Emulation

3.9 /0O Shadowing and Emulation

The I/O write data, address, and size information saved in the SM save area
make the task of shadowing I/0O writes simple. All that is required is to program
the chipset so that the desired I/O ports are trapped and generate an SMI. The
SM handler can then retrieve the portinformation and a copy of the data written
to the port from the I/O write address and I/O write data fields in the SM save
area. An SM handler can also emulate a device, if desired, since the 1/0 ad-
dress and I/O write data is available in the SM save space.

3-18

The HLT Instruction

3.10 The HLT Instruction

Use ofthe HLT instruction is sometimes desirable in power management code.
Unfortunately, the instruction is privileged and cannot be executed by a virtu-
al-8086 task. As the rest of this section describes, the ramifications of HLT's
privileged status must be fully understood to design functional power manage-
ment-based systems. If you are considering using the HLT instruction in your
power management code, carefully read the remainder of this section; other-
wise, you can skip over it.

3.10.1 HLT and Memory Managers

The privileged status of the HLT instruction is important any time the CPU runs
in virtual-8086 mode, because execution of the HLT instruction in this mode
causes a general protection fault (GPF). A computer generally runs in virtu-
al-8086 mode when a memory manager (like QEMM-3861 or EMM386 from
Microsoft(]) has been loaded during the boot process.

Memory managers typically enter protected mode, taking total control of the
CPU and running all other programs, including DOS, as virtual 8086 applica-
tions. If any one of these other programs, like your power management code,
executes a privileged instruction such as HLT, the resultis dependent upon the
memory manager that was loaded. Some, like EMM386, execute the HLT
instruction themselves (on behalf of the other program), while others, like
QEMM-386, prevent execution of the HLT and pass control to the instruction
following the HLT.

Obviously, your power management strategy does not work if the memory
manager refuses to execute the HLT instruction on your behalf. For this rea-
son, avoid using the HLT instruction in your power management code if pos-
sible. If you must use HLT, be aware that some other software running on the
system could be incompatible with your power management software.

3.10.2 EMM386 Problem Overview

When EMM386 detects that you have tried to execute the HLT instruction, it
executes the HLT for you. Unfortunately, a problem can occur that eventually
causes a fatal GPF and system shutdown. This problem can occur only when
the following conditions are met:

1 EMMS386 is active.
[d Your power management code includes the HLT instruction.

[Interrupts are enabled when the power management code’s HLT instruc-
tion is executed.

(1 An SM Interrupt occurs while the CPU is in the halt state.

Software Considerations 3-19

The HLT Instruction

Texas Instruments is currently working with MicrosoftC to modify EMM386 to
avoid this fatal problem. Until the software is modified, avoid the problem as
follows:

(1 Prohibit use of EMM386 on the system.

[Rewrite your power management code to eliminate use of the HLT instruc-
tion.

1 Modify your SM handler to detect if the interrupted instruction was HLT
and, if so, to return control to the HLT instruction and not the following one.

[Modify your SM handler to modify the EMM386 stack.
(O Patch EMM386 to avoid the problem when interrupts are enabled.

Some of these alternatives may not be feasible for any given power manage-
ment strategy. Of those that are, weigh the pros and cons carefully before mak-
ing a decision. The first two options are self-explanatory. The last three, how-
ever, require more discussion to help you make an evaluation.

3.10.3 EMM386 Problem Discussion

This section describes the nature of the problem with EMM386, the HLT
instruction, and SM mode.

When EMMS386 is active and your power management code attempts to
execute a HLT instruction, the CPU generates a general protection fault
(GPF). This happens because your code is running as a virtual-8086 task,
which cannot execute HLT.

EMMS38E6 installs its own interrupt handlers when loaded into memory, includ-
ing the one that deals with the GPF case. So, when your code executes HLT,
the EMM386 GPF handler gets invoked. This handler eventually determines
that the cause of the GPF was your attempt to execute HLT, and it executes
the HLT on your behalf. However, before executing HLT, the handler checks
to see ifinterrupts were enabled while your code was running. If they were, the
handler pops three 32-bit registers off the stack; if they were not, the three reg-
isters are left on the stack. Thus, the stack contents at the time EMM386’s GPF
handler executes HLT is dependent on the interrupt status at the time your
code attempted to execute HLT (see Table 3-2).

Table 3-3. Stack Contents When EMM386 GPF Handler Executes HLT

3-20

Interrupts Were Enabled Interrupts Were Disabled
EBP ESI
<GPF Stack Frame> EBX

EBP

EBP

<GPF Stack Frame>

The HLT Instruction

The instructions in the EMM386 GPF handler that follow the HLT instruction
(i.e. the ones that get executed if the halt state is exited due to an SM Interrupt)
unconditionally pop the three 32-bit registers (ESI, EBX, and EBP) from the
stack. Ifinterrupts were enabled when your code executed the HLT instruction,
then these three registers are no longer on the stack. They were popped be-
fore the handler executed the HLT instruction. This action corrupts the stack,
and eventually another (this time fatal) GPF is generated and reported by
EMM386.

Ifinterrupts are disabled when your code attempts to execute HLT, the handler
does not pop the three registers before it executes HLT on your behalf. When
your SM handler exits, the GPF handler pops the three registers and continues

properly.

The problem occurs only when an SMI causes the CPU to exit from the HLT
state. That is, if interrupts are enabled and a timer tick interrupt, for example,
wakens the CPU from the halt state, no fatal GPF is generated.

Without intimate knowledge of the EMM386 source code, no explanations of
the actions described here can be provided. However, the following discussion
explains three ways to avoid the EMM386 problem.

3.10.4 EMM386 Problem Workaround: SM Handler Returns to HLT

The EMM386 problem does not occur when an interrupt other than an SMI
wakens the CPU from the halt state. You can modify your SM handler to avoid
the problem as long as your power management strategy does not require that
an SMI get the CPU out of the halt state.

This workaround functions by preventing the EMM386 GPF handler from
executing the instructions following the HLT (the unconditional POP instruc-
tions) after the SM handler completes. The workaround requires the SM han-
dler to determine if the instruction that executed before the SMI occurred was
HLT. If it was, then the next IP field in the SM save space is decremented so
that the EMM386 HLT instruction is re-executed when the SM handler termi-
nates. The sequence of events is:

1) Your code attempts to execute HLT.

2) EMMS386’s GPF handler executes HLT for you (CPU enters halt state).
3) SMI occurs (CPU exits halt state and enters SM mode).

4) SM handler runs.

5) SM handler determines thatthe EMM GPF handler’'s HLT was the instruc-
tion prior to the SMI.

6) SM handler decrements the Next IP field so it points to the EMM386 GPF
handler’s HLT.

7) SM handler executes RSM (CPU exits SM mode).

8) EMM386’s GPF handler re-executes HLT (CPU re-enters halt state)

Software Considerations 3-21

The HLT Instruction

9) Some interrupt other than an SMI occurs (CPU exits the halt state).
10) The interrupt in the last step is serviced.

11) Upon completion of the service routine, the instruction following your
code’s attempted HLT instruction executes.

Steps 3-8 above may never occur or may repeat many times before step 9 is
reached.

The downside effects of this workaround are:

[You cannot use SMI# as a signal to exit the halt state.
[You must add code, and therefore execution time, to your SM handler.
1 The code you must add is not fool proofT.

On the positive side, this workaround requires no changes to EMM386.

The following code attempts to detect whether the instruction before the SMI
was a HLT that might have been generated by EMM386 and modifies the Next
IP field if it was:

; Determine if the instruction prior to the SMI could have been an EMM386 HLT.

rsdc fs, D4G ; Load FS with a 4Gbyte limit descriptor
; and base of 0 (so it can access any
; linear address).

; Quick check: Current and Next IP fields are equal if prior instruction was
; HLT or LOOP or had a REP prefix. If they aren’t equal, then wasn’t HLT.

mov eax, Ccs:curr_ip
cmp eax, cs:next_ip
jne normal_smi_exit ; Wasn't HLT. Go to normal exit point.

; Quick check 2: If the program that was interrupted by the SMI wasn’t running in
; protected mode, it could not be EMM386.

mov eax, cs:savcr0
and al, 1 : PE bit set?
je normal_smi_exit ; No. EMM386 was not interrupted.

; Place into EDX the linear address of the byte of code prior to the one that
; will be executed after the handler executes RSM. See if that byte is F4h (the
; opcode for HLT).

mov eax, cs:csdesch ; Get high 16 bits of CS base field

rol eax, 8

exch al,ah

rol eax, 16

mov ax, word ptr csdescl+2 ; Get low 16 bits of CS base field

add eax, cs:next_ip ; EAX == Linear addr of next instruction
dec eax

mov edx, eax ; Save linear addr of possible HLT instr.

T The code attempts to determine if the instruction before the SMI was a HLT. To do this, the code checks the byte before the one
pointed to by the CS:EIP information that is saved in the SM save space. If that byte is F4h, the opcode for HLT, the handler
assumes the prior instruction was in fact HLT. However, it is possible the F4h is actually the last byte of a multi-byte LOOP or
REP-prefixed instruction and nota HLT instruction. The F4h could not, however, be part of any other instruction sequence, since
the current IP and next IP fields are equal, and that guarantees the prior instruction was a HLT, a LOOP, or a REP-prefixed.

3-22

The HLT Instruction

(continued from preceding page)

; Set MMAC in case the possible HLT instruction or the page tables are at
; addresses coincident with SM memory

mov
out
in
mov
or
mov
mov
out
mov
out

al, 0C1h
22h, al
al, 23h
cl, al ; Save CCR1 value in CL
al, 008h ; Set MMAC
ah, al
al, 0C1h
22h, al
al, ah
23h, al

; See if paging was on in the interrupted program. If so, convert the linear
; address into the proper physical address.

bt
jnc

mov
and
mov
shr
mov

and
mov
shr
and
mov

and
and
add

paging_off:
mov

; Reset MMAC.
mov
out
mov
out
cmp
jne
dec

normal_smi_exit:

cs:savecr0, 31 ; Put PG bit into carry.
paging_off ; EDX == Physical address
eax, cr3 ; Compute pysical address from linear
eax, OFFFFF000h
ebx, edx ; Linear address
ebx, 22 ; Shift to directory offset field

eax, fs:[eax+ebx*4]

eax, OFFFFFO00h

ebx, edx ; Linear address
ebx, 12 : Shift to table offset field
ebx, 03FFh ; Zero out directory offset

eax, fs:[eax+ebx*4]

eax, OFFFFF000h

edx, OFFFh ; Zero out directory and table offsets
edx, eax ; EDX == Physical address

bl, fs:[edx] ; BL == possible HLT opcode

al, 0C1h
22h, al

al, cl ; Saved CCR1 value
23h, al

bl, OF4h ; HLT opcode
normal_smi_exit ; Wasn't HLT. Go to normal exit point.
cs:next_ip ; Re-execute HLT after RSM

; Restore all CPU registers the handler has used.
; <code to restore the registers is not shown>

rsm

; Exit the SM handler

Software Considerations 3-23

The HLT Instruction

(continued from preceding page)

; Data area within the code segment for saving registers.

int_eax dd ?

int_ebx dd ?

int_ecxdd ?

; Descriptor and visible segment value for a 4G byte data segment.

D4G DESCSEL {OFFFFh,0,0,92h,8Fh,{0,0}}; See section 2.4.1 and Appendix A

ORG SMSIZE-30h ; SMSIZE is the size in bytes of SM mem.

; Variables in the SM save area—yplaced here by the CPU upon SM mode entry and
; used to restore the CPU state upon normal mode re-entry.

esi_edidd ? : ESl or EDI

iotrapd dd ? : 110 write data

iotrapa dw ? ; 1/0O write address

iotraps dw ? ; /0O write size indicator
smibits dd ? ;' S, P, and | bits

csdescl dd ? ; CS descriptor (low word)
csdesch dd ? ; CS descriptor (high word)
csselec dw ? ; CS selector/paragraph
smirsvd dw ? ; Reserved

next_ip dd ? ; Next user instruction to execute
curr_ipdd ? ; Interrupted user instruction
savecrO dd ? : Saved CRO value

saveflg dd ? ; Saved EFLAGS

savedr7 dd ? ; Saved DR7

(End of example)

3.10.5 EMM386 Workaround: SM Handler Modifies EMM386 Stack

This workaround functions by having the SM handler place the data onto the
EMMS386 stack that EMM386 incorrectly pops off after the SM handler com-
pletes. Thatis, when the handler completes, this workaround makes the stack
look the same as if interrupts had been disabled at the time HLT was executed
(see subsection 3.10.3 on page 3-20). The fatal GPF does not occur when in-
terrupts are disabled, so they do not occur when this workaround is implement-
ed.

The sequence of events for this workaround is:

1) Your code attempts to execute HLT.

2) EMM386’s GPF handler executes HLT for you (CPU enters halt state).
3) SMI occurs (CPU exits halt state and enters SM mode).

4) SM handler runs.

5) SM handler determines thatthe EMM GPF handler’s HLT was the instruc-
tion before the SMI.

6) SM handler places EBP, EBX, and ESI on the stack.

7) SM handler executes RSM (CPU exits SM mode).

3-24

The HLT Instruction

8) EMM386's GPF handler pops the registers and returns from the GPF.
9) The instruction following your code’s attempted HLT instruction executes.
The downside effects of this workaround are:

(1 You must add code, and therefore execution time, to your SM handler.
[The code you must add is not fool proof (same as before).

[A failure occurs if interrupts are ever disabled when your code executes
HLT.

1 IfEMM386 is modified to correct the original problem, use of that version-
causes this workaround to fail.

The advantages of this workaround are:

[Your power management strategy can use an SMI to exit the halt state.
(J EMMS386 needs no changes.

The following code contains the workaround.

; Determine if the instruction prior to the SMI could have been an EMM386 HLT.

1

; <Code here is exactly the same as the example in section 3.10.4 (approximately
; 90 lines worth) ...>

; Reset MMAC.
mov al, 0C1h
out 22h, al
mov al, cl ; Saved CCR1 value
out 23h, al
mov al, bl ; Move possible HLT opcode into AL

; Restore all CPU registers the handler has used EXCEPT EAX!
; <code to restore the registers is not shown>

cmp al, OF4h ; HLT opcode
jne normal_smi_exit ; Wasn't HLT. Go to normal exit point.

; It seems that the instruction prior to the SMI was a HLT executed by EMM386.
; Push 3 registers that EMM386 is going to (incorrectly) pop when it regains
; control after the RSM instruction.

push ebp

push ebx

push esi

normal_smi_exit:

mov eax, cs:int_eax : Restore EAX

rsm ; Exit the SM handler

; Data area within the code segment for saving registers.
; <The data section is identical to the one in the section 3.10.4 example>

(End of example)

Software Considerations 3-25

The HLT Instruction

3.10.6 EMM386 Workaround: Patching EMM386

3-26

This workaround functions by patching EMM386 so that it does not pop the
three 32-bit registers from the stack after it regains control from the SM han-
dler.

The downside effects of this workaround are:

[You mustdistribute a patched version of EMM386 (or the means by which
your customers can patch it).

(1 The patch is not approved by Microsoft.

[The patch causes a failure if interrupts are ever disabled when your code
executes HLT.

The advantages of this workaround are:

[d Your power management strategy can use an SMI to exit the halt state.
[You do not have to add any code to your SM handler (so it runs faster).

Since the patch may depend on the specific version of EMM386, only a general
description of itis included here. This patch simply modifies the target of arela-
tive jJump instruction that EMM386 executes after the SM handler returns con-
trol. The EMM386 code involved is:

SMI_return_target:

pop esi ; 2 bytes
pop ebx ; 2 bytes
pop ebp ; 2 bytes

Patch_return_target:

add sp,4
iretd

; Lots of other code is in here ...

pop ds

pop esi

pop ebx

pop ebp

add sp,4

push ebp

sti

hit ; The EMM386 HLT!
cli

jmp SMI_return_target ; 16-bit offset

The modification that needs to occur is the JMP destination: This needs to
change from SMI_return_target to Patch_return_target. That way, the three
registers are no longer incorrectly popped from the stack when the SM handler
terminates.This patch appears to have no effect on interrupts other than an
SMI, because the CLI and JMP instructions following the HLT are not executed
after a normal interrupt takes the CPU out of the halt state.

The HLT Instruction

To make the change, locate the JMP and add six to the current 16-bit relative
offset. This causes the JMP target to move six bytes forward in memory from
its previous location, so that the three 32-bit pops are no longer executed after
the SM handler completes. For example, if the JMP opcodes are:

E9 03 FF
Then they would need to change to:

E9 09 FF

Software Considerations 3-27

Exiting the SM Handler

3.11 Exiting the SM Handler

In SM mode, execution of the RSM instruction causes the CPU to return to nor-
mal mode. Some of the information in the SM save space is restored into CPU
registers as shown in Table 3—4.

Table 3—4. Registers Restored by the RSM Instruction

Restored From

Register Name Code Variable Name At Offset SMISIZE
CRO savecr0 0Ch
DR7 savedr? 04h
EFLAGS saveflg 08h
EIP next_ip 14h
CS hidden (descriptor) csdescl:csdesch 20h
CS visible (selector/paragraph) csselec 18h

You can control which instruction of the interrupted program executes when
the handler terminates by modifying the value in the next_ip field in the save
space (as some of the examples have shown). This is the only field in the SM
save space that you should ever attempt to modify.

RSM restores few of the CPU registers. Be careful to restore any of the regis-
ters the handler has modified before executing the RSM instruction. If you do
not, the handler corrupts the interrupted program’s registers and the CPU’s re-
sulting behavior is unpredictable.

3-28

Debugging SM Code

3.12 Debugging SM Code

You can debug your SM handler using standard DOS debuggers as long as
the debugger runs in real mode, the SM handler is loaded below the 1M byte
boundary, and the SM handler remains in real mode.

You must place an INT 3 instruction in your SM handler to pass control to the
debugger. Typically, you start the debugger, then trigger an SMI while the SM
handler containing the INT 3 is loaded into the programmed SM memory. Be
sure to have the handler save the complete CPU state before loading the INT
3, and then restore the complete CPU state before the RSM. Also, ensure that
the segment registers contain 64K byte (or larger) limit fields before executing
the INT 3 instruction.

If you use a debugger to set local or global breakpoints via the debug registers,
the CPU cannot be interrupted once it enters SM mode. The reasonisthat DR7
is saved in the SM save space and then reloaded with its reset value. All of the
local and global breakpoint enable bits are cleared. After an INT 3 is executed
within the SM handler to pass control to the debugger, the debug registers per-
form as expected.

Software Considerations 3-29

Suspend Mode

3.13 Suspend Mode

3-30

The T1486DX2 can enter a power-saving suspend mode using software and
hardware. In the suspend mode with the clock still operating, the CPU current
usage is reduced to approximately 40% of normal. If the input clock is stopped
while the CPU is in suspend mode, current usage drops to about 1% of normal.

On power-up, the CPU is programmed so that suspend mode cannot be en-
tered. The SUSP bit (bit 7) of CCR2 must be set to 1 to enable suspend mode.
Once it has been set, the CPU enters suspend mode when the SUSP# input
is asserted The CPU remains in suspend mode until SUSP# is deasserted.
When the CPU enters suspend mode, it asserts a suspend acknowledge sig-
nal, SUSPA#. You can stop the input clock to save even more power at any
time after the processor asserts SUSPA#. You can resume from the stopped
clock state by restarting the clock and then negating SUSP#.

The HLT instruction can also place the T1486DX2 into suspend mode if the
HALT bit (bit 3) of CCR2 is set (it is cleared at power-up). The CPU asserts the
SUSPA# signal upon entry to suspend mode via HLT. As with the assertion of
SUSP#, you can also stop the input clock.

Due to the virtual-8086 mode and software-related problems discussed
throughout Section 3.10, The HLT Instruction, avoid using the HLT instruction
if possible. Your system is more reliable if you use the hardware method,
SUSP#, to enter suspend mode.

SM Mode Select

3.14 SM Mode Select

Bit 3 of CCR3, the SM_MODE bit, selects an SM-compatible hardware mode.
When this bit is set, the SMI# and SMADS# pins behave like the SMI# and
SMACT# pins of an SL-enhanced CPU (see subsection 2.8.7 of the TI486DX2
Microprocessor Reference Guide, on page 2-57). If you intend to set the
SM_MODE bit, the chipset you use should support the SL hardware protocol
for the SMI# and SMIACT# pins.

Additionally, you may have to reprogram the chipset when you set the
SM_MODE bhit. If the chipset contains a register that the BIOS programs with
information about the type of CPU in use, this register may need to be modified
to a value that the chipset interprets as an SL-protocol in the system. This re-
programming is necessary when the chipset uses the BIOS-programmed
CPU information that determines only one hardware protocol per CPU type
value for SMI (the SIS496/497 is an example of a chipset that operates in this
manner). Failure to reprogram such a chipset can cause the system to hang
according to the following steps:

(] BIOS detects T1486DX2 and programs chipset accordingly.(See Proces-
sor Initialization in the TI486DX2 Microprocessor Reference Guide, on
page 2-2.)

SM handler is loaded.
SM_MODE bit is set.
SMI# is sampled active.

SMADSH# is asserted and remains so until RSM is executed.

[Ny Ay I

Chipset expects SMI protocol asif SM_MODE were not set, so the (contin-
uously) asserted SMADS# signal is interpreted as an ever-starting
memory cycle into the SM address space.

[J System hangs.
Setting the SM_MODE bit affects SM software in two ways:

1) The SMINT instruction is not recognized and an undefined opcode fault
is generated.

2) The SMAC and MMAC bits do not affect memory accesses. In systems
where the SM handler needs to access normal memory that is shadowed
by SM memory, the designer must provide some software method for the
access.

Software Considerations 3-31

3-32

Chapter 4

Converting
Intel SM Code to T1486DX2 SM Code

This chapter contains information necessary to convert SM code originally
written for the Inteld SL-enhanced processors to run on the TI486DX2
microprocessor. The SM programming model for the TI1486DX2 is different
from the Intel SL and DX4 models. This chapter describes the differences
between the TI486DX2 and Intel's SL and DX4 CPUs and the actions you must
take to achieve the conversion.

Topic Page

4.1 Differencesin Tl and Intel SM Implementations — 4-2
4.2 SM Code Conversion

4-1

Differences in Tl and Intel SM Implementations

4.1 Differences in Tl and Intel SM Implementations

Table 4-1 compares SM mode on Tl and Intel CPUs. Each area is discussed
in more detail in the remainder of this section.

Table 4-1. Differences in Tl and Intel SM Mode Implementation

Area of Difference

Tl Feature/Method

Intel SL Feature/Method

Intel DX4 Feature/Method

SM Memory Location

SM Memory Size
Handler Entry Point

Access to SM
Memory

Access to main
Memory at SM
Memory Addresses

Register Save Area

Registers Saved

Processor Mode
Within the SM
Handler

Instruction Restart

NMI Servicing

Back-to-back Multiple
SMis

A20M# Input

Programmable

Programmable

programmed_segment:0

Programmable via
SMAC bit

Programmable via
MMAC bit

Top of programmed
location

DR7, EFLAGS, CRO,
current IP, next IP, and
CSs

Real mode with CS limit
of 64K and other
segment limits of
unspecified sizes

Copy current IP to next
P

Disabled by default, but
can be serviced

Not possible

Ignored during SM mode

Fixed (30000h or 38000h)

Fixed (64K bytes or 32K
bytes)

3000:8000

Programmable via bit 3 of
OMDCR; no access
provided.

Access via EMS capability

3FFA:0008 — 3FFA:005F

CRO, CR3, EFLAGS,
extended instruction pointer
(EIP), DR6, DR7, TR,
LDTR, and all general
purpose and segment
registers

Real mode with 4G byte
segment limits

Subtract system manage-
ment last instruction length
register contents from old
EIP

Cannot be serviced

Possible

Not an issue due to fixed
SM memory location below
1M byte.

Programmable

At the discretion of the sys-
tem designer

SMBASE:3000

No access method
provided. The system
designer must provide a
method to handle this task.

No method provided. The
system designer must
provide a method to handle
this task.

Top of programmed location

CRO, CR3, EFLAGS, ex-
tended instruction pointer
(EIP), DR6, DR7, TR,
LDTR, and all general pur-
pose and segment registers

Real mode with 4G byte
segment limits

Various methods

Disabled by default, but can
be serviced by executing
an IRET within the SM
handler.

Possible

Must be handled by the
system desginer if SM
memory is relocated above
1M byte.

4-2

SM Code Conversion

4.2 SM Code Conversion

The SM code differences described in Table 4-1 require that you implement
conversions to provide comparable or other desired functionality. The follow-
ing subsections provide some specific actions you can take to achieve your
goals.

4.2.1 SM Memory Location and Size

The first major difference in the SM implementations is the address space of
the SM memory. In the Intel SL architecture, the SM address space is required
to be a 32K-byte space at 38000h or a 64K-byte space at 30000h. The Intel
DX4 CPU allows the SM memory space to be relocated by setting the
SMBASE relocation slot, but this can be done only when servicing an SMI. This
means that the SM memory location is also fixed on the Intel DX4 for at least
the first occurrence of an SMI. You can program SMAR on the T1486DX2 to
define an SM region that resides at any boundary that is a multiple of 4K bytes
(4K, 8K, 16K, and so forth) in memory. This SM region can have various sizes
ranging from 4K bytes to 32M bytes depending on the starting address (see
Table 2-5 on page 2-10).

You must program the T1486DX2 to reflect your desired SM memory space be-
cause it has no default SM memory space defined. If you want to mimic the
space used by the Intel SL and DX4 CPUs, you can program SMAR as follows:

32K at 38000: SMAR = 000384h
64K at 30000: SMAR = 000305h

You must add the code for programming the SM memory space to the BIOS.

4.2.2 SM Handler Entry Point

In the Intel SL architecture, the SM handler always starts at 3000:8000
(CS = 3000 and IP =8000), while the Intel DX4 starts at offset 8000 (IP=8000)
from the contents of the SMBASE register. In the Tl architecture, the SM han-
dler starts at offset 0 of the SM address space (IP =0). This difference is impor-
tant if you have or write SM handler code that references locations that are rel-
ative to the current code segment.

Determine if the difference in IP addresses affects your SM code and make
any changes that are necessary. This might be as simple as changing an ORG
8000 to ORG 0, or it may be more complex.

4.2.3 Access to SM Memory

Before an SMI can be serviced, the SM handler must be copied from the ROM
into the SM memory space. Access to the SM space (when not in SM mode)
is controlled on both Tl and Intel SL processors by modifying certain register
settings, but the registers involved are different. On the TI486DX2, you must
first define the SM memory space via SMAR and then modify certain bits of
CCRL1. The required steps are detailed in section 3.2, Enabling SM Mode on

Converting Intel SM Code to TI486DX2 SM Code 4-3

SM Code Conversion

page 3-4. On the Intel SL CPU, you must set bit 3 of the OMDCR register. On
the Intel DX4 CPU, no method is provided to access SM memory in normal
mode. The system designer must provide a method of access, and that meth-
od will vary depending on the design.

Modify the software that loads your SMI handler to use the method provided
by the T1486DX2 (the SMAC bit). This software is typically located in the BIOS.

4.2.4 Access to Main Memory at SM Memory Addresses

Tl and Intel provide different methods to access main memory that is coinci-
dentally located with SM memory space. On the Tl processor, set the MMAC
bit of CCR1 to perform noncode-segment prefixed data accesses to main
memory that resides at the same address as SM memory. If your SM code
must access main memory that is coincidentally located with SM memory
space, modify any references in your handler that access main memory resid-
ing with SM memory to use the MMAC bit (see section 3.7, Accessing Main
Memory Coincident with SM Memory on page 3-15).

In the code written for the Intel SL processor, the EMS functions access non-
code-segment prefixed data access The code written for an Intel DX4 design
is unpredictable because in an Intel DX4 design this responsibility is also given
to the system designer and can vary.

4.2.5 Register Save Area

Both the Tl and Intel processors save processor state information at the top
of the SM memory space. In the Intel processor, the location of the save space
is fixed since the location of the SM memory is fixed. In the TI processor, the
location of the save space is determined by the location and size of the SM
memory.

The uppermost 12 double words (dwords) (48 bytes) of the SM memory are
used for the register save area. So, for example, if you define SM memory to
be an 8K byte areathat begins at AO0O0O, A1FDO0 to ALFFF becomes the regis-
ter save area.

4.2.6 Registers Saved

4-4

The Tl and Intel processors differ greatly in the information that is placed into
the register save area when an SMI begins. The Intel processor saves all CPU
registers, so you need not be concerned with modifying registers in the SM
handler.

To accelerate entry into the SM handler, the TI CPU saves a minimal amount
of information in the register save area. In exchange for quicker access to the
SM handler, the TI processor places the responsibility for saving register in-
formation upon you, the SM programmer. The TI CPU recognizes several op-
codes (described in section 2.4, SMM Instruction Summary on page 2-11) you
can use to save and restore register information. Use these opcodes to save
and restore the segment registers your handler uses. In addition, if your

SM Code Conversion

handler enters protected mode, opcodes are provided to save and restore the
Task State Register and Local Descriptor Table Register. These opcodes save
and restore both the visible and hidden portions of the segment, TS, and LDT
registers.

Figure 3—1 shows the exact structure of the register save area. Note that none
of the general purpose registers and none of the segment registers (except
CS) are saved. You must modify the code at the beginning of your handler to
save any of the segment and general purpose registers used by the handler.
Section 3.5, Maintaining the CPU State on page 3-9, contains many code ex-
amples that demonstrate saving and restoring various CPU registers.

4.2.7 Processor Mode Within the SM Handler

Although both the Tl and Intel CPUs are in real mode when the SM handler
begins execution, they may be in different states. The Intel CPUs can place
other, known values into the segment registers before passing control to the
SM handler because the CPUs save all the segmentregisters in the save area.
The TI CPUs do not save segment registers in the save area, and therefore
do not modify the contents of any of the segment registers except CS.

This means the values in all of the segment registers except CS are generally
useless to the handler until they are saved and modified. In addition, the CS
register has a limit of 64K bytes.

If the TI486DX2 is operating in protected mode when an SMI occurs, the limits
of the segment registers are those of the interrupted program, which may be
larger or smaller than 64K bytes. An error occurs if the segment limits are
smaller than 64K bytes and you try to access information above that limit. In
that case, a segment limit violation occurs, even though the SM handler is
executing in real mode. For this reason, you must load known values into any
segment registers the handler uses before you attempt to use the registers.

One way you can place known values into the segment registers is to have the
handler contain a GDT that it uses to enter protected mode. Once the CPU is
in protected mode, the handler can load the appropriate selectors into the seg-
ment registers. Normally, this is your only choice, because the hidden portion
of a segment register (its descriptor) is modified only when the segment regis-
ter is loaded while the CPU is in protected mode.

On the TI486DX2, you can use one of the special opcodes, RSDC (Restore
Segment register and Descriptor), to modify the hidden part of the descriptor,
even though the SM routine is executing in real mode. Subsection NO TAG,
on page NO TAG, describes the RSDC instruction.

Here is a short example of handler code that sets up DS and ES so they can
be used to access any linear address.

Converting Intel SM Code to TI486DX2 SM Code 4-5

SM Code Conversion

include SM.MAC ; See Appendix A
; SM handler begins here.
smi_start:
mov cs:int_eax, eax ; Save EAX .. EDX
mov cs:int_ebx, ebx
mov cs:int_ecx, ecx
mov cs:int_edx, edx
svdc int_ds, ds : Save DS and ES
svdc int_es, es
rsdc ds, D4G ; Make DS and ES able to access any
rsdc es, D4G ; linear address.
mov ebx,00400000h ; Read dword at 4Mb boundary into
mov eax,[ebx] ; EAX.
rsdc ds, int_ds ; Restore DS and ES to entry values
rsdc es, int_es
mov eax, cs:int_eax ; Restore EAX .. EDX
mov ebx, cs:int_ebx
mov ecx, cs:int_ecx
mov edx, cs:int_edx
exit_sm ; Leave SM mode

; Data area within the code segment for saving registers.

int_eax
int_ebx
int_ecx
int_edx
int_ds
int_es

DAG

4.2.8

4-6

dd ?
dd ?
dd ?
dd ?
DESCSEL <> ; See Section 2.4.1 and Appendix A
DESCSEL <>
Lim = FFFFF, Base = 0, Gran = 4K, Type=R/W Data
DESCSEL {OFFFFh, 0, 0, 92h, 8Fh, 0, {O}}
If your handler uses any of the segment registers other than CS, if it makes any
assumptions about any segment register contents, or if it enables interrupts,
you must modify the code to:
1) Savethe current segmentregister values (except for CS) using SVDC and
RSDC
2) Load the segment registers with proper values, including the descriptor
portion
3) Restore the old segment register values (except for CS) before exiting the
handler
Instruction Restart

Two of the items the TI486DX2 saves upon entry to SM mode are the offset
of the instruction that executed (or was executing) before the start of the SMI
(the current IP) and the offset of the instruction to be executed when the SMI
handler exits (the next IP).

4.2.9 NMI Servicing

4.2.10 Multiple SMIs

4.2.11 A20M# Input

SM Code Conversion

If you need to restart the instruction that was executing before the SMI, you
can copy the contents of the current IP field to the next IP field. This action
causes the processor to resume execution at the prior instruction instead of
the following one. This is most useful when an 1/O trap is the source of an SMI
(see section 3.8 on page 3-16).

Modify any parts of your handler that deal with instruction restart to use the cur-
rent and next IP fields in the save area.

When the T1486DX2 enters the SM handler, NMIs are not enabled unless the
NMIEN bit (bit 1) of CCR3 is set. The Intel CPU operates the same way. This
bit should always be clear during normal mode.

If you want to service NMIs during SM mode, you can set up the proper envi-
ronment in the handler, then set the NMIEN bit. You should clear it before exit-
ing SM mode. Although the TI486DX2 and the Intel DX4 are similar in their
handling of NMIs during SM mode (NMIs can be enabled if desired), they differ
on how the NMls are enabled. On the Tl CPU you set NMIEN, but on the Intel
DX4 CPU you must set up and execute an IRET.

On Intel CPUs, multiple SMls can be invoked without ever executing any oper-
ating system or application code. That is, while the Intel CPU is in SM mode
it can store the fact that another SMI is being requested, and it can re-enter
the SM handler immediately after exiting it from the first SMI.

The hardware SM implementation on the TI486DX2 is such that a single oper-
ating system or application code instruction can be executed between multiple
SMinterrupts. That is, the TI CPU does not acknowledge the second SMI until
one clock cycle after the SM handler has terminated.

Evaluate your SM strategy to determine if this minor difference in TI SM imple-
mentation requires any changes to your SM handler.

Because the Intel SL CPU requires SM memory to be fixed at a location below
the 1M byte boundary, there is no conflict associated with the A20M# input and
SM mode. However, both the TI486DX2 and the Intel DX4 CPUs allow the SM
memory space to reside above the 1M byte boundary; thus, the A20M# input
becomes a problem. The TI CPU handles the problem by ignoring the A20M#
input while accessing SM memory. The Intel DX4 CPU makes no provision in
this regard; the system designer must provide some method of handling this
problem. The solution for any given Intel DX4—based system may require spe-
cific code inthe SM handler. Such code is notrequired in a TI 486DX2 SM han-
dler.

Converting Intel SM Code to TI486DX2 SM Code 4-7

SM Code Conversion

4.2.12 SM Mode Select

4-8

Bit 3 of CCR3 selects an Intel compatible hardware mode. When this bit is set,
the SMI# and SMADS# pins behave like the SMI# and SMIACT# pins on the
Intel CPU. (See subsection 2.8.7 of the TI486DX2 Microprocessor Reference
Guide, on page 2-57). The setting of this bit affects SM software only, in that,
the SMAC and MMAC bits do not function. The system designer will have to
provide methods for the SM programmer to use for making these special types
of memory accesses.

Appendix A

SM Mode Macros

This appendix shows the contents of a file named SM.MAC. It contains macros
used in the other code examples within this document. You can use these
macros or create others as you desire.

A-1

SM Mode Macros

COMMENT #

Copyright (c) 1994, 1995 Texas Instruments, Incorporated

This file, SM.MAC, defines a set of macros for generating System Management (SM)
mode instruction opcodes, since no assembler directly supports these SM
instructions.

There are six SM instructions that are used to save and restore registers which

are not automatically saved when SM mode is entered, one instruction to enter

SM mode, and one instruction to exit SM mode. These instructions support many
addressing modes, but the macros in this file only implement one mode—a 16-bit
memory reference (within the code segment as a CS: override is also used).

These macros could be made much more complex to allow other addressing modes,
but the additional complexity wouldn't provide much useful benefit.

Each of the macros that implements a register save or restore takes as a
parameter an offset in the code segment where the register should be saved to
or restored from. The two macros that save and restore segment registers also
take the name of a segment register as a parameter.

NOTE: The variable "addr” must be type DESCSEL, and it must reside within
the code segment.

svdc MACRO addr, reg ; Save one of the segment registers
SMMac svdc, addr, reg, 78h
ENDM

rsdc MACRO reg, addr ; Restore one of the segment registers
SMMac rsdc, addr, reg, 79h
ENDM

svidt MACRO addr ; Save the LDT register
SMMac svldt, addr, Idt, 7Ah
ENDM

rsldt MACRO addr ; Restore the LDT register
SMMac rsldt, addr, Idt, 7Bh
ENDM

svts MACRO addr ; Save the Task register
SMMac svts, addr, ts, 7Ch
ENDM

rsts MACRO addr ; Restore the Task register
SMMac rsts, addr, ts, 7Dh
ENDM

smint MACRO ; Software SM Interrupt
DB 00Fh, 07Eh
ENDM

rsm MACRO ; Exit from SM mode
DB 00Fh, 0AAh
ENDM

(continued on the following page)

A-2

(continued from the previous page)

SMMac MACRO

; CS: override and SM instruction opcode

db 2Eh
db OFh, op
; [mod sreg3 r/m] byte
ifidni <reg>, <cs>
db OEh
elseifidni <reg>, <ds>
db 1Eh
elseifidni <reg>, <fs>
db 26h
elseifidni <reg>, <gs>
db 2Eh
elseifidni <reg>, <ss>
db 16h
elseifidni <reg>, <es>
db 06h
elseifidni <reg>, <ts>
db 06h
elseifidni <reg>, <ldt>
db 06h
else
ECHO.
ECHO.
ECHO. SS, TS, orLDT
ERR
endif

mname, addr, reg, op

SM Mode Macros

ECHO ERROR in macro <mname>:

; 16—bit displacement
offset addr

dw

ENDM

Register parameter unknown: <reg>
Register parameter must be either CS, DS, ES, FS, GS,

; The following structure can be used to reserve space for use with the svdc
: macro, and it can be used to declare variables for use with the rsdc macro.
; The initialized values create a 64Kbyte limit data segment at paragraph address

; 0. You may want to modify the initialized values.

)

DESCSEL STRUCT
LimitLo
BaselLo
BaseMid
DType
LimitHi
BaseHi
UNION
Selector
ParaAddr
ENDS

DESCSEL ENDS

(End of SM.MAC)

dw

db
db
db
db

dw

OFFFFh

0

0

0
0
92h

0

0

; Limit = 64K
; Linear base addr=0

; Application, present, data seg
; Limit = 64K

; For use in protected mode
: For use in real mode

SM Mode Macros

A-3

A4

Appendix B

Glossary

assert: To apply a signal. An asserted signal is logically true.

BARB: A bitin CCR2 that enables or disables write-back of dirty cache data
when a hold state is entered.

base: Afieldina GDT or LDT entry that specifies the starting address of a
segment

BIOS: Basic Input Output System. A set of routines that contain detailed
instructions for activating computer and peripheral devices. The BIOS is
normally implemented in nonvolatile memory.

bit: The fundamental unit of computer memory. A bitcanbe a1l ora0. A byte
is made up of eight bits.

breakpoint: A pointin a program at which to stop execution so that machine
status may be determined.

byte: A sequence of eight bits. Represents one character of information.

cache: Asmall, high-speed memory that provides atemporary storage loca-
tion for data most likely to be requested by the CPU. This allows for quick
access of data and improved CPU performance (i.e., zero wait states).

cache (data) coherency: A consistent relationship between data in cache
memory and data in other memories. Data coherence is necessary when
a system has multiple memories. If several memories contain the same
data word, modifying that data word in one memory causes the data to
be inconsistent with the data stored in the other memories. Therefore,
the other memories that have a copy of that same data word must either
update or invalidate their copy.

B-1

Glossary

B-2

cache flush: A memory operation that maintains cache consistency. In a
cache flush, all locations with dirty bits are written to main memory. Then
the cache contents are cleared (flushed).

CCR1,CCR2,CCR3: Configuration Control registers 1, 2, and 3. Configura-
tion Control register 1 controls SMM features and enables SMM and
cache interface pins. Configuration Control register 2 sets up internal
cache operation and enables suspend control pins. Configuration Con-
trol register 3 controls the SMI lock, NMI enable, and SM mode features.

CPU: Central Processing Unit. The execution unit of the microprocessor.
The CPU consists of control, shift, adder, multiplier, and limit units and
a register file.

descriptor: A data structure that defines a segment’s base, limit, and attrib-
utes.

EAX: Extended or 32-bit version of register AX. A register used by many
mathematical and logical instructions.

EBP: Extended or 32-bit version of register BP. A register used as a pointer
to the base of stack frames.

EBX: Extended or 32-bit version of register BX. A register used for indirect
memory references.

ECX: Extended or 32-bit version of register CX. A register used as a counter
by REP and LOOP instructions.

EDI: Extended or 32-bit version of register DI. A register used as a destina-
tion offset for string operations.

EDX: Extended or 32-bit version of register DX. A register used by many
mathematical instructions.

EFLAG: Extended or 32-bit version of the Flag register. A register that con-
tains status information and controls certain operations on the micropro-
cessor.

EIP: Extendedor 32-bit version of the Instruction Pointerregister. A register
that contains the offset into the current code segment of the next instruc-
tion to be executed.

ES: Extra Segment register. A register used as the destination segment of
string instructions. Special segment override prefix ES allows the use of
this additional Segment register.

ESIl: Extended or 32-bit version of register Sl. A register used as a source
offset for string operations.

Glossary

ESP: Extended or 32-bit version of register SP. A register used to locate the
top of the stack.

far jump: A jump whose destination is in another code segment.
flush: Invalidate the entire contents of cache memory.

FPU: Floating Point Unit. A part of the microprocessor that accelerates the
computation of floating-point arithmetic.

FS: Additional Data Segment register. This Segment register is used when
the special segment override prefix FS is present.

GDT: Global Descriptor Table. Part of the selector mechanism that contains
segment descriptors used when the Tl bit in the Segment Selector regis-
ter is set to zero.

GDTR: Global Descriptor Table register. A register that holds a 32-bit base
address and 16-bit limit for the global-descriptor table.

GS: Additional Data Segmentregister. This Segment register is used when
the special segment override prefix GS is present.

IDT: Interrupt Descriptor Table. An array of up to 256 8-byte interrupt descrip-
tors, each of which points to an interrupt service routine.

IDTR: Interrupt Descriptor Table register. A register that holds a 32-bit base
address and 16-bit limit for the interrupt-descriptor table.

IF: Interrupt Flag. A flag that, when set, enables the CPU to acknowledge
and service maskable interrupts (INTR input pin).

INTR: Interrupt. A signal generated by external hardware that changes the
normal sequential flow of a program by transferring program control to
a selected service routine.

LDT: Local Descriptor Table. Part of the selector mechanism that contains
segment descriptors used when the Tl bit in the Segment Selector regis-
ter is set to one.

LDTR: Local Descriptor Table register. A register that holds a 16-bit selector
for the local-descriptor table.

limit: Afieldina GDT or LDT entry that specifies the maximum allowable off-
set within a segment.

Glossary B-3

Glossary

linearaddress: Anaddress formed by combining the contents of a segment
register and another register, the offset. The way these 2 registers are
combined depends on the processor’s operating mode. When the pro-
cessor is in real or virtual-8086 mode, the segment register contents are
multiplied by 16 and added to the offset. In protected mode, the segment
register contents select an entry from the GDT or LDT. The base field of
this entry is then added to the offset. See GDT, LDT.

MMAC: Main Memory Access. Storing data in or retrieving data from main
memory, from within an SM handler.

NMI: NonMaskable Interrupt. A rising-edge-sensitive input that, when as-
serted, causes the processor to suspend execution of the currentinstruc-
tion stream and begin execution of an NMI interrupt service routine.

normalmode: The processing mode when the CPU is not handling an SMI.

paging: A memory management technique that allows logical addresses
within a program (i.e., linear addresses) to access physical memory at
(possibly) totally different physical addresses.

physical address: The address driven by the CPU onto the address pins.
In real mode and in protected mode with paging disabled, the physical
address is identical to the linear address. In protected mode with paging
enabled, the physical address is formed by processing the linear address
through the paging mechanism.

power management: Software designed to shut down unused parts of the
computer to save power.

prefix: Bytes placed in front of an instruction to override segment defaults,
change operand, address-size attributes, assert LOCK#, and repeat
string instructions.

protected mode: The microprocessor’s operating mode when the PE bit of
Control register 0 is set. In protected mode, the enhanced memory man-
agement capabilities, which include segmentation and paging, are avail-
able. Code has one of four privilege levels, with some processor instruc-
tions restricted to the most-privileged code.

realmode: A processing mode designed to make the microprocessor func-
tion similar to an 8086 microprocessor. The TI486DX2 powers up or re-
sets to real mode.

B-4

Glossary

ROM: Read Only Memory. A permanent, unchangeable memory used in the
PC to accomplish system startup. ROM stores the BIOS programs need-
ed to perform diagnostics and instruct the computer in various opera-
tions. When using DOS, the contents of the ROM are placed in reserved
memory.

SMAR: System Management Address Region. Defines the location and size
of the memory region associated with SMM memory space.

SMAC: System Management Memory Access. Storing data in and retrieving
data from SMM memory space while in normal mode. See SMAR.

SMI. System Management Interrupt. An interrupt that causes the micropro-
cessor to enter the system management mode. The system-manage-
ment interrupt has a higher priority than any other interrupt, including
NMI.

SMM: System Management Mode. A power management feature that al-
lows various subsystems of the computer to be powered down when not
in use to conserve power. The CPU is in SM mode when it is processing
an SMI.

SS: Stack Segmentregister. Aregister containing segment selectors that in-
dex into tables located in memory. These tables hold the base address
for each segment and other information related to memory addressing.

SUS: SUSpend bit. A bit in Configuration Control register 2 that enables or
disables the SUSP# and SUSPA# pins, which control entry into the sus-
pend mode.

TR: Task register. A register that holds a 16-bit selector for the current task-
state segment (TSS) table. The TR is loaded and stored using the LTR
and STR instructions, respectively.

TR3 through TR7: Test registers 3 through 7.

TSR: Task State registers. Registers that are saved and restored using the
SVTS and RSTC instructions, respectively.

V86: Virtual 8086. See virtual-8086 mode.

virtual-8086 mode: An operating mode that allows multiple programs writ-
ten for an 8086 CPU to execute concurrently.

visible: Contents (data, address components, and current states) of regis-
ters and stored data that the programmer can access, trap, or retrieve.

Glossary B-5

Glossary

write back: An approach used to update the main memory. The CPU writes
data into the cache and sets a dirty bit indicating that a word has been
written into the cache but not into the main memory. The cache data is
written back into the main memory later and the dirty bitis cleared. Write-
back accesses memory less than a write-through cache, but its cache
control logic is more complex.

write-through cache: A type of cache used in updating the main memory.
Data is written to the main memory while it is written to cache, or immedi-
ately afterwards. The main memory always contains valid data, and
blocks in cache can be overwritten without data loss. The hardware im-
plementation remains relatively simple.

B-6

A20M#
input 4-7
pin 2-4
access

to main memory at SM memory addresses 4-4
to SM memory 4-3
accessing main memory 3-15
address
linear
defined B-3
physical
defined B-4
SM memory (determining) 3-2
ADS#
effects of SMAC and MMAC on 2-3
assert
defined B-1
asserted signal B-1

BARB
defined B-1
basic input output system (BIOS) 1-2
BIOS 1-2,3-10
defined B-1
bit
defined B-1
bit definitions
CCR1 2-7
CCR2 2-8
CCR3 29
block size SMAR 2-10
block sizes
address-region registers 2-10
breakpoint
defined B-1

Index

burst write cycles
enabling 2-8
byte
defined B-1

cache
coherency 2-5
defined B-1
enabling 2-7
defined B-1
flush
defined B-2
write-through
defined B-6

cache coherency
defined B-1
enabling 2-8
cache write mode locking 2-8
cache write-back mode enabling 2-8
cache write-through mode enabling 2-8
CCR1
defined B-2
CCR2
defined B-2
CCR3
defined B-2
coherency
cache 2-5,2-7,2-8
defined B-1
comparison
SM mode 1-3

configuration control registers 2-6
access 2-6
bit definitions 2-7 to 2-12
defined B-2
descriptions 2-6

conversion of SM code 4-3

Index-1

Index

CPU enabling
defined B-2 burst write cycles 2-8
maintaining state of 3-9 cache coherency 2-7, 2-8
programming 3-30 cache write-back mode 2-8
restoring 1-5 cache write-through mode 2-8
current IP field 3-7 main memory access during SMM 2-7
NMI 2-9
RPL pins 2-7
E SL-compatible mode 2-9
SM mode 3-4
data coherency steps required 3-4
defined B-1 SMI# pin 2-7
debugging SM code 3-29 SMM pins 2-7
o suspend mode on halt 2-8
definitions

suspend pins 2-8
system management memory access 2-7

entry into SM handler 4-3

SM address region block size 2-10
SMM address region block size 2-10

descriptor
defined B-2 ES
DESCSEL data format 2-11 defined B-2
disabling ESI
NMI 2-9 defined B-2
RPL pins 2-7 ESP
SL-compatible mode 2-9 defined B-3

suspend pins 2-8

exiting the SM handler 3-28
system management memory access 2-7

extended flag

defined B-2
extended general purpose registers
defined B-3
EAX . . .
defined B-2 extended instruction pointer (EIP)
defined B-2
EBP
defined B-2 extra segment (ES)
EBX defined B-2
defined B-2
ECX
defined B-2
EDI
defined B-2 far jump
EDX defined B-3
defined B-2 fields
EFLAG current IP 3-7
defined B-2 nextIP 3-7
EIP floating point unit
defined B-2 preserving state of 3-14
EMM386 problem floating point unit (FPU)
causes 3-19 defined B-3
details 3-20
workaround flush)
detection code 3-22 defined B-3
EMM386 stack modification 3-24 FPU
patching EMM386 3-26 defined B-3
return to HLT 3-21 preserving state of 3-13
sequence 3-21 save and restore procedure 3-13
workaround sequence 3-21 FS
EMM386 problem workaround 3-24 defined B-3

Index-2

GDT
defined B-3

GDTR
defined B-3

global descriptor table (GDT)
defined B-3

global descriptor table register (GDTR)

defined B-3

GS
defined B-3

halt 2-8

HLT
and memory managers 3-19
instruction 3-19, 3-30
use of 3-19

1/0 pins
SM-related 2-2
I/O restart 3-16
simplification of 3-16
1/0 shadowing and emulation 3-18
1/O trap information 3-8
in save space 3-8
IDT
defined B-3

IDTR

defined B-3
IF

defined B-3

initializing SM environment 3-14

instructions
HLT 3-19, 3-30
MOV 1-5, 3-10
restart 4-6
RSDC 2-12
RSLDT 2-12
RSM 1-2,1-5, 2-12
RSTS 2-12
SM 15
data format used by 2-11

macros for implementing 2-11

summary 2-11
validity 2-11
SMINT 1-2,1-5, 2-13, 3-19
SvDC 2-13
SVLDT 2-13
SVTS 2-13

Index

Intel and TI
differences in SM implementations 4-2
interrupt (INTR)
defined B-3
interrupt descriptor table (IDT)
defined B-3
interrupt descriptor table register (IDTR)
defined B-3
interrupt flag (IF)
defined B-3
interrupts
nonmaskable
defined B-4
software-generated SM 2-13
system management
causes 1-5
defined B-5
INTR
defined B-3

LDT 2-13
defined B-3

LDTR 2-12
defined B-3
restore 2-12
save 2-13

limit
defined B-3

linear address
defined B-4

local descriptor table (LDT) 2-13
defined B-3

local descriptor table register (LDTR)
defined B-3

LOCK# negate 2-7

locking
cache write mode 2-8
SMM 2-9

macros for implementing SM instructions 2-11

main memory
access to at SM memory addresses 4-4

main memory access (MMAC)
defined B-4
during SMM 2-7
maintaining CPU state 3-9

memory
read only
defined B-5

memory managers and HLT 3-19

Index-3

Index

memory space header
system-management mode 3-7
MMAC
defined B-4
during SMM 2-7

effects of on ADS# and SMADS# 2-3

use of 3-15
modes
normal 1-2
defined B-4
resume 2-12

processor within SM handler 4-5

protected
defined B-4
real
defined B-4
SM 1-2

comparison among manufacturers 1-3

SM comparison 1-3

SM macro file A-2

SM select 3-31

suspend 3-30

system management
defined B-5

virtual-8086 3-19, 3-30
defined B-5

write-back cache 2-8

write-through cache 2-8

MOV
instructions 1-5, 3-10

multiple SMiIs 4-7

negate LOCK# 2-7
next IP field 3-7
NMI
defined B-4
disabling 2-9
enabling 2-9
servicing 4-7
nonmaskable interrupt (NMI)
defined B-4
servicing 4-7
normal mode 1-2
defined B-4
resume 2-12

OMDCR register 4-4

operating modes
normal 1-2
SM 1-2

Index-4

paging
defined B-4
patching EMM386 3-26
physical address
defined B-4
pins
A20M# 2-4
ADS#

effects of SMAC and MMAC on 2-3

RDY# 2-3
SMADS# 2-2

effects of SMAC and MMAC on 2-3

SMI# 2-2

SM-related /10 2-2
power management

and the SM mode 1-4

controlling 1-2

defined B-4

SM handler for 1-4
prefix

defined B-4

preserving and restoring registers 3-12

normal CPU 3-10
segment 3-11

preserving floating point unit (FPU)
processor mode within SM handler
programming CPU 3-30
protected mode

defined B-4

RDY# pin 2-3

read only memory (ROM)
defined B-5

real mode
defined B-4

registers
CCR1 bit definitions 2-7

3-13
4-5

configuration control 2-6, 2-7 to 2-9

access 2-6
descriptions 2-6
extended general purpose
defined B-3
OMDCR 4-4
preserving and restoring 3-12
normal CPU 3-10
segment 3-11

restored by RSM instruction 3-28

save area 4-4
saved 4-4

SM address-region register 2-10

SMAR address region 2-10
SMBASE 4-3

registers (continued)
stack segment
defined B-5
task
defined B-5
task state
defined B-5

restart instruction 4-6

restore
LDTR and descriptor (RSLDT) 2-12
normal mode 2-12
RSLDT 2-12
RSTS 2-12
segment register and descriptor (RSDC) 2-12
TR and descriptor 2-12

resume (RSM) 2-12

return to HLT
EMM386 problem workaround 3-21

ROM
defined B-5

RPL pins
disabling 2-7
enabling 2-7

RSDC 2-12
instruction 2-12
restore 2-12

RSLDT
instruction 2-12
restore 2-12

RSM
instruction 1-2, 1-5, 2-12
resume 2-12

RSM instruction
registers restored 3-28

RSTS
instruction 2-12
restore 2-12

save
LDTR and descriptor 2-13
local descriptor table register (LDTR) and

descriptor (SVLDT) 2-13

registers 4-4
segment register and descriptor 2-13
SVTS 2-13
TR and descriptor (SVTS) 2-13

save and restore procedure
floating point unit (FPU) 3-13

save area
register 4-4

setting SMM address region block size 2-10

SL-compatible mode

disabling 2-9
enabling 2-9
SM

address register 1-5
address-region register 2-10
handler
overview 1-4
responses to SMI 1-5
instruction
summary 2-11
validity 2-11
instructions 1-5
data format used by 2-11
macros for implementing 2-11
interrupt
software-generated (SMINT) 2-13
interrupt (SMI) 1-5
causes 1-5
responses to 1-5
mode 1-3
comparison among manufacturers 1-3
introduction 1-2
related I/0 pins 2-2

SM address register
block size 2-10

SM base address
determining 3-2

SM code
conversion 4-3
debugging 3-29

SM environment
initializing 3-14
SM handler
EMM386 problem workaround 3-24
entry conditions 3-5
entry point 4-3
exiting 3-28
processor mode within 4-5
returns to HLT 3-21

SM Interrupt (SMI) 1-2

SM memory
accessto 4-3
addresses
access to main memory 4-4
addresses used for
determining 3-2
location 4-3
size 4-3

SM memory size
determining 3-2

Index

Index-5

Index

SM mode
comparison
among different manufacturers 1-3
enabling 3-4
steps required 3-4
implementation
differences between T| and Intel SL 4-2
macro file A-2
purpose 1-2
select 3-31
SM save space 3-6

SMAC

defined B-5

effects of

on ADS# and SMADS# 2-3

SMADS# pin 2-2

disabling 2-7

effects of SMAC and MMAC on 2-3
SMAR

defined B-5

see SM address register 1-5
SMBASE register 4-3
SMI

defined B-5

effects on ADS# and SMADS# 2-3

multiple 4-7
SMI# pin 2-2

disabling 2-7

enabling 2-7
SMINT instruction 1-2, 1-5, 2-13, 3-9
SMM

clearing lock 2-9

defined B-5

locking 2-9

pins (enabling) 2-7
SS defined B-5
stack contents

when EMM386 GPF executes HLT 3-20

stack segment (SS)

defined B-5
SUS defined B-5
suspend

enter on halt 2-8, 3-30

suspend bit (SUS)
defined B-5

suspend mode 3-30
suspend pins

disabling 2-8

enabling 2-8
SVvDC 2-13

instruction 2-13
SVLDT

instruction 2-13

save 2-13

Index-6

SVTS
instruction 2-13
save 2-13
system management address region (SMAR)
defined B-5
system management interrupt (SMI)
defined B-5
system management memory access (SMAC)
defined B-5
disabling 2-7
enabling 2-7
system management mode (SMM)
defined B-5
see SM mode
system registers
address-region registers block sizes 2-10
configuration registers
CCR1 bit definitions 2-7
CCR?2 bit definitions 2-8
CCR3 bit definitions 2-9
SM address-region register 2-10

task register
defined B-5

task state register (TSR)
defined B-5

Tl and Intel
SM implementation differences 4-2

Tl and Intel SM mode implementation
differences 4-2

T1486DX4 1-1,1-3,1-4,2-1to 2-6, 2-11
information in SM save to restart I/Os 3-16

T1486DX4 Microprocessor Reference Guide 1-1,

2-6
TR

defined B-5

restore 2-12

save 2-13
TR3

defined B-5
TR7

defined B-5
TSR

defined B-5

V86
defined B-5

virtual-8086 mode 3-19, 3-30
defined B-5

visible
defined B-5

write back
cache 2-8
defined B-6

Index

write mode
cache locking 2-8

write-through cache
defined B-6

write-through mode
cache 2-8

Index-7

Index

Index-8

IMPORTANT NOTICE

Texas Instruments (TI1) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

Tl warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of Tl
products in such applications requires the written approval of an appropriate Tl officer. Questions concerning
potential risk applications should be directed to Tl through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does Tl warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of Tl covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright 00 1996, Texas Instruments Incorporated

