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Abstrac t  

This paper discusses the design and implementation of an operating system indepen- 
dent tracing tool for storage subsystem workload in personal computers. This tool mea- 
sures the workload at the storage subsystem level, and due to hardware assistance it has 
very little overhead. The workload traces are collected in real-time on a data collection 
station executing a special data collection program. We use the tool to collect workload 
traces in real-life Netware-based personal computer environments. We then develop a 
scheme to analyze and characterize the traced workload. © 1998 Elsevier Science 
Inc. All rights reserved. 

I .  I n t r o d u c t i o n  

Personal computers are becoming significantly powerful. The environment 
in which they are used has been changing dramatically in the last few years. 
With the availability of  multitasking operating systems, current generation 
PCs are now used to process multiuser operations. To meet the demand for 
high performance, the processing speed of  these PCs has been substantially im- 
proved, which also increases the demand on the storage subsystems. In an at- 
tempt to improve the performance of  storage subsystem, on one end, R A I D  
technology is becoming more popular in PC systems [1]. On the other end, 
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designers are developing intelligent storage subsystem controllers [2] and hard- 
ware cached storage devices [3] to further help the storage subsystem perfor- 
mance keep up with the ever increasing speed of CPUs. Clearly, the storage 
subsystem performance is a critical factor in the overall system performance. 

In order to evaluate and improve the performance of existing and future 
storage subsystems for an environment, one needs to understand and charac- 
terize the workload as seen by the storage subsystem in that environment. 
The performance evaluation procedures [4-6] may use simulation, analytical 
modeling, or measurements of existing storage subsystems. For all these eval- 
uation methods there is a need for a drive workload which reasonably repre- 
sents the actual workload, but in reduced form, e.g. less execution time or 
fewer I/O requests. 

Storage subsystem workload is defined as collection of I/O requests that are 
serviced by the storage subsystem in a specified period of time. The term work- 
load characteristics refers to demand placed on the various components of the 
subsystems. Example of these components include subsystem data transfer 
channel, drive head assembly, look-ahead buffer in drive. 

For valid conclusions to be drawn from performance evaluations, based on 
simulation, the drive workload must be representative of the actual workload. 
Many of subsystem modelling and analysis techniques use estimated workload 
or measure the workload at the file system level [4,7,8]. Most of the above men- 
tioned workload measurement is done at filesystem of MVS operating system. 
Tools have been developed to measure workload at the file system of Unix [9] 
and OS/2 [10]. The workload measured at file system is independent of the de- 
vice driver and the underlying physical storage subsystem. This workload is very 
helpful for performance evaluation at the operating system level. But of lesser 
help for physical (hardware) storage subsystem performance evaluation. Devel- 
opment of such tools requires detailed knowledge and source code of the oper- 
ating system as software hooks have to be inserted in the operating system. The 
added hooks introduce significant overhead and a separate tool has to be devel- 
oped for each operating system of interest available for a particular platform. 
Fig. 1 shows a simplistic view of access path to the storage subsystem from 
an application. It can be noted that a different implementation of a device driver 
can affect the workload as seen by the storage subsystem. Since, device drivers 
are considered to be part of the personal computer operating system, therefore 
workload measured at the storage subsystem would be more operating system 
independent and more helpful for storage subsystem hardware designers. 

There is a very little work done to characterize the workload at the physical 
storage subsystem in Personal Computer environment. In [8], Houtekamer has 
traced the workload at the MVS operating system in Systeard370 and then 
mapped it to physical storage subsystem. This indirect technique can be used 
to approximately characterize the workload at storage subsystem, but being 
operating system dependent, it would require knowledge of all operating 
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Fig. 1. A simplistic view of access path to the storage subsystem in personal computer. 

systems of interest for a storage subsystem. An operating system independent 
tool that can characterize the storage subsystem workload is desired by storage 
subsystem designers. Such a tool can be used under different operating systems 
for a specific PC platform, instead of developing separate tools for each oper- 
ating system that is available for a particular platform. 

Lack of an existing operating independent tool for characterization of work- 
load at the (hardware) storage subsystem level motivated this research. This 
paper discusses the design and implementation of an operating system indepen- 
dent tracing tool for the storage subsystem workload in personal computers. 
This tool measure the workload at the storage subsystem level. Due to hard- 
ware assistance, this tool has very little overhead. This is achieved by incorpo- 
rating the tracing routine in the firmware of an IBM PS/2 SCSI adapter. The 
workload traces are collected in real-time, on a PS/2, executing a special data 
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collection program, connected to the modified SCSI adapter via an asynchro- 
nous link. We also discuss a storage subsystem workload characterization 
scheme by studying the parameters of the traced workload. These parameters 
include LBA distribution, interarrival time distribution, request size distribu- 
tion, ratios between read requests and write requests, adapter's cache perfor- 
mance. This tool was used to trace the storage subsystem of Novell Netware 
fileserver in a real-life environment. The paper also presents characterization 
of this workload. Section 2 describes the tools developed for workload tracing 
and post processing. Workload characterization is presented in Section 3. Fi- 
nally, conclusions are included in Section 4. 

2. Description of tools developed 

In this section, we discuss the design and implementation of a real time, op- 
erating system (OS) independent, tracing tool for storage subsystems in person- 
al computers (PCs). We then present tools developed to post process the traced 
workload. Tracing storage subsystems involves measuring the workload as 
seen by the storage subsystem. One way to achieve this is to incorporate soft- 
ware hooks in the OS [10]. This enables the monitoring of I/O requests submit- 
ted to the storage subsystem as well as collection and storage of information 
about these requests for later analysis. This requires detailed knowledge of 
the operating system, and the added hooks increase the OS kernel overhead. 
Moreover, different sets of code have to be developed to support these hooks 
in different operating systems. Undoubtedly, this can be tedious, expensive, 
and time-consuming process. Another way of collecting same information is 
to trace the workload at the storage subsystem level. The advantages of this ap- 
proach over the previous one are that the tool becomes operating system inde- 
pendent and due to hardware assistance it introduces minimal overhead. 

The proposed tracing tools design is based on the later approach. In this de- 
sign, we modify the storage subsystem controller such that for each I/O request 
it receives from the host system, a packet of a few bytes of information (trace) 
about that request is sent to a Data Collection Station (DCS). In our imple- 
mentation of this design, we have modified an existing SCSI Host Adapter. 
The design and implementation of this tool is discussed in Section 2.1. Descrip- 
tion of tools developed for post processing is included in Section 2.2 

2.1. Storage subsystem tracing tool 

The Storage subsystem tracing tool (SSTT) consists of a modified storage 
subsystem controller and a data collection station (DCS). The DCS is essential- 
ly a PS/2 running a data collection and storage program. 
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Fig. 2. Block diagram of the micro channel SCSI adapter with cache. 

2.1.1. Modified storage subsystem controller 
At this time, almost all storage subsystem controllers have a microprocessor 

on board. Tracing of workload at the storage subsystem level can be achieved 
by modifying the firmware (micro-code) of a controller and incorporating a 
port, or a separate I/O channel, on the controller. For each I/O request submit- 
ted by the host PC to the storage subsystem, the following information can be 
collected 
• Type of request (i.e., read, write) 
• Logical Block Address (LBA) 
• Request size (in blocks) 
• ID of the target Direct Access Storage Device (DASD) 
• Time when this request arrived at the controller and 
• Status of controller cache (hit/miss). 
Firmware modification should be such that, while processing a request, the 
controller's processor would store the desired information bytes at an address 
that is not being used during its regular activities. This address could be map- 
ped as an input port of a peripheral I/O (PIO) chip. The stored bytes could then 
be sent by the PIO chip to the DCS. Time stamping of the traces could be done, 
if possible, by the PIO circuitry, otherwise it could be done at the DCS. 
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In our implementation of this design, we have modified an existing 32-bit 
IBM PSI2 MicroChannel SCSI Host Adapter with 512KB cache [11]. Fig. 2 
shows a simplified block diagram of such a card. 

This card has built-in serial port, normally used for diagnostic purposes. In 
the presence of this serial port we did not have to make any hardware modifi- 
cations on the card; rather firmware of the card was modified. The modified 
code stores 5 bytes of information, in controller's RAM, about the request 
while processing it. One byte sync mark is appended to these 5 bytes and this 
6 byte packet of information is transmitted through the port. 

Fig. 3 shows a Generalized Stochastic Petri Net (GSPN) Model [12,13] of 
the card's firmware, and Table 1 has a brief description of the GSPN. All 
the points marked by an asterisk (*) show places where code is modified/added. 
This modified/added code sends a 6-byte packet of information through the di- 
agnostic serial port at 38 400 baud, 8 data bits, 1 start bit and no parity bit. 
Fig. 4 shows the structure of this information packet. The packet consists of 
the following fields. 
• Sync Mark  (1 byte): Declaring beginning of a new packet. 

-2' - -  
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Fig. 3. GSPN model o f  IBM SCSI at tachment controller. 
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Table 1 
Description of the GSPN model in Fig. 3 

245 

pl Arrival of a job 
p2 Select read or write 
p3 Select read hit, read miss or bypass 
p4 Read hit 
p5 Job done 
p6 Read cache bypass 
p7 Read cache miss 
p7a No op 
p8 Get drive, SCSI bus and send msg & cmd 
p9 Select data xfer length 
pl0  Select prefetch length 
pl 1 SCSI bus available 
p12 Drive available 
p13 No op 
p14 Select write cache bypass delete update 
p 15 Write cache bypass 
pl6 Write cache delete 
p 17 Write cache update 
pl7a No op 
p18 Get drive, SCSI bus and send write cmd 
p 19 Select xfer length 
p20 Write data xfer ready 
p21 Write data xfer waiting for cmd complete 
p22 No op 
p23 Start drive (seek, latency and xfer) 
p24 Drive complete 
p25 House-keeping (no op) 
p26 House-keeping (no op) 
p26a No op 
p26b No op 
p27 Start read data xfer 
p28 Read data xfer complete 
pa Send trace packet 
pb Send trace packet 
tl Inter-arrival time 
t2 Preprocessing 
t3 Overhead read hit 
t4 Post processing 
t5 Overhead read cache bypass 
t6 Overhead read miss 
t7 Read cmd and msg time 
t8 Write cache bypass overhead 
t9 Write cache delete overhead 
tl0 Write cache update overhead 
tl 1 Write cmd time 
t12 Write data xfer time 
t 13 Drive time 
t14 Read data transfer time 
ta Trace packet xfer time 
tb Trace packet xfer time 
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Fig. 4. Structure of a workload trace packet. 

• Logical Block Address (3 bytes): Showing beginning LBA of the request. The 
LBA field is big enough to represent an address space of 16 Mega Blocks. 
For a 512 byte block this translates to 8GB of storage capacity. 

• Request Length (1 byte): Showing length or size of the request in blocks. 
• Miscellaneous Information (1 byte): This byte has 1 bit (bit7) indicating 

adapter cache hit/miss (H/M), next bit (bit6) is always zero. 3 bits (bit5- 
bit3) represent the SCSI device ID and the last 3 bits (bit2-bit0) show the 
request opcode. 

For each byte of data 10 bits (1 start bit, 8 data bits and 1 stop bit) are trans- 
mitted. Therefore, the transmission time of a packet (containing N bytes) at the 
rate of R baud (bits/second) can be given as follows: 

Transmission time per packet -- ION/R. 

From above, the transmission time for a 6 byte packet at 38 000 baud is 
1.56 ms. In all cases, except read hit in the controller cache, transmission time 
of the packet is overlapped by the SCSI device request service time (see Fig. 3). 
Therefore, in a worstcase situation (i.e., read hit in controller cache) the mod- 
ified/added code introduces a maximum 1.56 ms overhead. Depending upon 
SCSI bus contention and DASD response, other scenarios introduce overhead 
values of much less than 1.56 ms. 

The extra code introduced above causes some tracing overhead, which can 
increase the service time of the storage subsystem. We estimated the increase 
in the service time using PC Magazine Laboratory Benchmark Series (Release 
5.6). We used IBM PS/2 Model 95 (80486 25 MHz) with two different types of 
hard drives (C and D) to run the Disk Performance Tests of the benchmark 
with and without the modified microcode. The benchmark basically, 
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• Computes an average time for a DOS access. This average is computed for 
accesses to different sectors of  the drive. 

• Then it performs DOS file access operations involving reading/writing re- 
cords in sequential and random patterns. It reports results for both sequen- 
tial and random access operations. The DOS file access test is performed for 
different sizes of  records. The results shown are average time in seconds to 
perform each part of  the test (the average is taken for five iterations). 
Table 2 shows computed results for drive 'C' and Table 3 shows results for 

drive 'D' as reported by benchmark. The following are few observations based 
on the PC Magazine Benchmark results. 
• The maximum overhead of  the additional code for DOS disk access is less 

than 3%. 
• For  DOS files access operations involving 512 byte records, the overhead of  

the added code is very significant (37.86~4.63%) for both sequential and 
random read operations. For  random write operations the overhead is less 
than 9% and around only 2% for sequential write operations. Apparently, 
for 512 byte read requests we have a higher rate of cache hit and as explained 
earlier, for a read cache hit, the added code introduces a maximum over- 
head. 

• For  DOS file access operations involving 4KB records, the overhead for se- 
quential read and random read operations is less than or equal to 9% and 
20%, respectively. For  other operations the overhead is very minimal and 
strangely on drive D the overhead for random writer operations is a little 
negative (-0.83%). This may be due to randomness or due to rounding real 
numbers in computations of delay and resolution of clock used by the 
benchmark. The benchmark reports results only up to 2 digits after the dec- 
imal and the difference in this case is 0.01. 

• For  DOS file access operations, involving 16KB and 32KB, the overhead of 
added code is very minimal (3%) except for sequential read operations where 
it is up to 4.17%. Here, again, we see some negative overheads which may be 
explained as discussed previously. 

The PC Magazine Laboratory Benchmark used in performing the tests is pri- 
marily for measuring the performance index in a DOS environment and can be 
influenced by the OS characteristics. Therefore, we wanted to use some tool 
that would provide a similar performance index without being influenced by 
the OS. The SCSI Exerciser program, developed by IBM engineers for IBM in- 
ternal use, works at the BIOS level and gives full control of the SCSI device 
under test. Results obtained using the SCSI Exerciser on a third hard disk drive 
(drive E) in the same IBM PS/2 model 95, are shown in Table 4. 

From the numbers and figures obtained using PC Magazine Benchmark and 
the SCSI Exerciser, it can be concluded that: 
• Any time there is a SCSI device access the impact of  the additional code is 

almost invisible (<0.33 ms or 1.7%). 
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Table 2 
Disk 'C' performance as reported by the benchmark 

Disk performance tests, for drive 'C' 

With modified Without modified % of 
code (s) code (s) overhead 

DOS disk access 27.29 26.85 1.64 

DOS file access (small records) 
512 Records / 512 bytes each 

File create 8.97 8.97 0.00 
Sequential write 9.98 9.82 1.63 
Sequential read 2.57 1.80 42.78 
Random write 13.26 12.49 6.16 
Random read 2.65 1.86 42.47 

Total (512 * 512) 37.43 34.94 7.13 
64 Records / 4096 bytes each 

File create 1.67 1.65 1.21 
Sequential write 1.49 1.49 0.00 
Sequential read 0.50 0.46 8.7 
Random write 1.85 1.81 2.21 
Random read 0.38 0.33 15.15 

Total (64 * 4096) 5.89 5.74 2.61 
Total (small records) 43.32 40.68 6.49 

DOS file access (large records) 
16 Records I 16384 bytes each 

File create 0.84 0.79 6.33 
Sequential write 0.70 0.70 0.00 
Sequential read 0.43 0.43 0.00 
Random write 0.80 0.79 1.27 
Random read 0.76 0.77 -1.30 

Total (16/16 384) 3.53 3.48 1.44 
8 Records 1 32768 bytes each 

File create 0.77 0.75 2.67 
Sequential write 0.56 0.56 0.00 
Sequential read 0.44 0.43 2.33 
Random write 0.63 0.62 1.61 
Random read 0.58 0.59 - 1.69 

Total (8/32768) 2.98 2.95 1.02 
Total (large records) 6.51 6.43 1.24 

Total (small and large records) 49.83 47.11 5.77 

F o r  s m a l l  r e a d  r e q u e s t s  t h a t  a r e  s e r v e d  f r o m  t h e  c o n t r o l l e r ' s  c a c h e  o n e  sees a 

m a x i m u m  i m p a c t .  T h i s  is in  a g r e e m e n t  w i t h  t h e  i n t u i t i v e  e s t i m a t e s  o b t a i n e d  

b y  i n s p e c t i n g  t h e  G S P N  m o d e l  o f  t h e  c o n t r o l l e r  c a r d .  
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Table 3 
Disk 'D'  performance as reported by the benchmark 
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Disk performance tests for drive 'D'  

With modified Without modified % of over- 
code (s) code (s) head 

DOS disk access 22.96 22.31 2.91 

DOS file access (small records) 
512 Records / 512 bytes each 

File create 7.35 7.33 0.41 
Sequential write 7.77 7.60 2.19 
Sequential read 2.56 1.77 44.63 
Random write 10.66 9.79 8.89 
Random read 2.84 2.06 37.86 

Total (512 * 512) 31.18 28.54 8.47 
64 Records / 4096 bytes each 

File create 1.13 1.13 0.00 
Sequential write 1.04 1.04 0.00 
Sequential read 0.54 0.50 8.00 
Random write 1.19 1.20 -0.83 
Random read 0.37 0.31 19.35 

Total (64 * 4096) 4.27 4.18 2.15 
Total (small records) 35.45 32.72 7.70 

DOS file access (large records) 
16 Records / 16384 bytes each 

File create 0.46 0.46 0.00 
Sequential write 0.38 0.38 0.00 
Sequential read 0.34 0.33 3.03 
Random write 0.44 0.44 0.00 
Random read 0.45 0.45 0.00 

Total (16/16 384) 2.07 2.06 0.48 
8 Records / 32768 bytes each 

File create 0.39 0.38 2.63 
Sequential write 0.28 0.28 0.00 
Sequential read 0.25 0.24 4.17 
Random write 0.32 0.33 -3.03 
Random read 0.30 0.31 -3.23 

Total (8/32768) 1.54 1.54 0.00 
Total (large records) 3.61 3.60 0.28 

Total (small and large records) 39.06 36.32 7.54 

I t  s h o u l d  b e  n o t e d  t h a t  in  m o s t  o f  t h e  s y s t e m s  t h e  d e m a n d  o n  t h e  c o n t r o l l e r  is 

m u c h  b e l o w  i ts  t h r o u g h p u t  c a p a c i t y ,  a n d  a r ea l i s t i c  w o r k l o a d  d o e s  n o t  c o n s i s t  

o f  a h i g h  p e r c e n t a g e  o f  r e a d  h i t s  a t  t h e  c o n t r o l l e r  c a c h e  level .  T h e r e f o r e ,  m o s t  
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Table 4 
Disk performance as reported by the SCSI Exerciser 

With modified Without modified % of 
code (ms) code (ms) overhead 

No cache bypass (small requests) 
Read same location 
512 byte requests 51.04 36.23 40.88 
4096 bytes requests 56.8 41.13 38.10 
8192 byte requests 63.54 47.3 34.33 
Write same location 
512 byte requests 139.33 139.33 0.00 
4096 bytes requests 139.50 139.35 0.11 
8192 byte requests 141.1 139.51 1.14 
Sequential (LBA = LBA + 18) read 
512 byte requests 82.2 82.2 0.00 
4096 bytes requests 93.6 93.6 0.00 
8192 byte requests 107.1 107.1 0.00 
Sequential (LBA = LBA + 18) write 
512 byte requests 194 193.53 0.24 
4096 bytes requests 195.09 193.6 0.77 
8192 byte requests 196.88 193.6 1.69 

Cache bypass (16384 bytes requests) 
Sequential requests (LBA = LBA + 32) 
Reads 12.19 12.19 0.00 
Writes 23.83 23.82 0.04 
Random requests 
Reads 38.06 37.8 0.69 
Writes 37.95 37.8 0.40 

o f  the t ime the ove rhead  due to the mod i f i ed / added  code  wou ld  be less than  
0.33 ms. 

2.1 .2 .  D a t a  co l l ec t ion  s t a t i o n  

The  D a t a  Col lec t ion  Sta t ion,  as descr ibed  earlier,  receives t races  sent  by  the  
modi f ied  s torage  subsys tem con t ro l l e r  ( t racing card)  and  stores them (in a ha rd  
d i sk  drive) for  la te r  analysis .  A D C S  should  be fast  enough  to hand le  the t race 
col lec t ion  act iv i ty  and  it mus t  have:  
* an  I /O p o r t  tha t  can  be connec ted  to  the s to rage  subsys tem con t ro l l e r ' s  t race 

ou tpu t  por t ,  
• s torage  capac i ty  to s tore  t races  for  a r easonab le  length  o f  t ime,  and  
• i f  t ime- s t amping  o f  t races  is no t  done  at  the con t ro l le r  level then a high res- 

o lu t ion  t imer  (at  least  1 ms) is also requi red  for  t ime-s tamping .  
In  ou r  imp lemen ta t i on  o f  a D C S  we f o u n d  tha t  a 386-20 M H z - b a s e d  PSI2 with 
a ha rd  d isk  dr ive  o f  80MB can be p r o g r a m m e d  to meet  the requ i rements  o f  a 
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DCS. It has a built-in serial port (COM1) than can easily be programmed and 
connected to the tracing controller's serial port  using a special cable. Its system 
clock can be programmed to give a resolution of  1 ms. It has enough processing 
power to receive the traces at a high rate, time-stamp them and store them on 
the hard disk. Description of  the data collection program (called COLLECT) 
running on the DCS follows. 

The serial port (COM1) is programmed to give an interrupt (0 × 0C) after 
receiving each byte of the information from the card. The COM1 is pro- 
grammed at 38 400 baud, 8 data bit, 1 start bit and no parity bit. It is achieved 
by loading different registers of  the serial port controller as listed below: 

PORT Hex 03F9 := Hex 00 
PORT Hex 03FB := Hex 80 
PORT Hex 03F8 := Hex 03 
PORT Hex 03F9 := Hex 00 
PORT Hex 03FB := Hex 03 

PORT Hex 03FC := Hex 0B 
PORT Hex 03F9 := Hex 05 

PORT Hex 03FA := Hex 00 
PORT Hea 0021 := Hex 00 

; Disable data recv'd interrupt. 
; Enable divisor latch. 
; Divisor Low byte. 
; Divisor high byte. 
; Disable divisor latch. 
; No parity, 1 stop bit ~nd 
; 8 data bits. 
; Enable COM 1 interrupts. 
; Enable data receive interrupt. 
; and line error interrupt. 
; Disable FIFO. 
; Interrupt mask register reset. 

The existing clock in a PC gives a resolution of  about 54.9 ms ( = 3 600 000 
- 65 536). In an IBM PC (or compatible) a timer/counter chip issues an inter- 
rupt (timer tick) every 54.9 ms. The interrupt controller forwards it as interrupt 
number 8 to the system processor, and the BIOS handler [14] services it as fol- 
lows. 
• Keeps a 4-byte count of  timer ticks at memory location 0004:006C. 
• Wraps it to zero after 24 h (1 573 024 ticks). 
• Controls diskette drive motor. 
• Issues a software interrupt hex 1C. 
Originally the timer/counter chip generates a timer tick by dividing 1.193 MHz 
input frequency by 65 536 [15] to give an output frequency of  about 18.2 Hz 
(1/18.2 = 0.0549 s). For  a 1 ms (1 kHz) resolution we need a frequency divider 
value of 1193. This value can be loaded in the latch register of  the timer/counter 
by accessing port hex 40 (low byte first). 

We also have replaced the BIOS interrupt handler for interrupt 8 with our 
code, which simply keeps a 4-byte count of  timer ticks at memory location hex 
(B800:lF50). The following are the reasons for replacing the BIOS routine. 
• The CPU has to execute it 1000 times a second instead of  about 18.2 times a 

second, so we want its execution time to be smaller. 
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• We do not need the interrupt hex 1C. 
• We do not want the count of  timer ticks to wrap after 1 573 024 (hex 

1800B0) ticks (26.22 min at 1 ms ticks). 
• We do not use the diskette drive during the trace collection. 
• DOS reads the Time-of-Day (timer tick count) when closing files and, if the 

tick count has exceeded 1 573 024, then it gives a divide-by-zero error. 
Therefore, Time-of-Day location (0004:006C) is not used; rather a different 
memory location is used for the count of ticks. 
Trace reception is interrupt-driven. The serial port controller gives interrupt 

0 x 0C after receiving each byte from the tracing card. The interrupt service 
module performs the following tasks. 
• Checks if circular buffer is full; if so then it gives an error message and drops 

the data byte and is ready to service the next interrupt. 
• Moves the data byte to a circular buffer (32KB). 
• Checks if the data byte was a sync mark (see Fig. 4). 
• If it was a sync mark then the interrupt handler writes a 4-byte time stamp in 

the circular buffer just after the sync mark. It uses the modified system clock 
(1 ms resolution) for time stamping. 
Data storage is done by a module of  COLLECT running in the foreground 

during the trace collection. This module is always checking whether there is any 
data in the circular buffer. If  so, then it removes the data from the circular buf- 
fer and writes it in a series of  files on the hard disk. As a precaution against 
data loss due to power or any other failure, a data file is closed if no data is 
received for 10 min, or the size of the data file has reached 256KB. 

2.2. Post processing tools 

The data collected by the program COLLECT is in binary form and called 
'raw data'. The raw data may have some inconsistencies due to the following. 

(i) Time stamps caused by data bytes that are same as sync mark, 
(ii) serial communication line errors (voltages drives by the card are between 
0 and 5 V), or 
(iii) COM 1 or circular buffer overflow. 

The raw data is processed in two steps to convert the collected traces into a 
readable ASCII format. In the first step binary trace data is extracted from 
the raw data and in second step this data is converted to an ASCII format. 

2.2.1. XTRACT 
This is a smart software tool developed to extract data from the collected 

raw data. It removes, 
• time stamps that were placed after data bytes that are same as sync mark, 
• erroneous bytes introduced due to serial communication line errors, 
• incomplete packets due to port  or buffer overflow. 
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It looks for the first sync byte. Then it validates this sync looking byte (i.e. data 
byte that is same as sync mark) by examining the packet following it and the 
next sync in the following manner. 

(1) 

(2) 
(3) 

(4) 

(5) 

(6) 

Find next sync looking byte. Assume that the byte found is bytel (see 
Fig. 4) of the packet. 
Next four bytes constitute the present time stamp, skip them. 
Byte2 through byte6 are picked using following test: IF present byte is 
sync looking 
THEN Position of next byte = Position of present byte +5 
ELSE Position of next byte = Position of present byte +1. 
IF next byte after byte6 is sync looking then previous packet is valid 
and go to step2 else go to stepl, starting after the previously assumed 
sync mark. 
If  program finds four consecutive sync looking bytes which fail the test 
then it gives a menu driven control to the user and user has to point 
towards the next valid sync mark. 
When time stamp of a packet is greater then the time stamps of 
preceding and proceeding packets then it is considered inconsistent 
and the packet is dropped. 

When TRACT step is successfully completed the data is in usable binary form 
called FIX form. The size of a FIX file is always multiple of ten bytes. 

2.2.2. B N J  

It converts traces from binary FIX format to BNJ (an ASCII) format. The 
BNJ format has six fields as following. 
1. OpCode. 
2. LBA accessed. 
3. Request size in blocks. 
4. Inter arrival time in milliseconds. 
5. SCSI id of the target device. 
6. Controller cache hit/miss. 
All the fields are separated by single space. The program computers inter arriv- 
al time for a request by subtracting the previous time stamp from the present 
time stamp. The inter arrival time for the first request is assumed to be 10 ms as 
there is no previous packet and hence no previous time stamp. 

For example, if the host makes a 3-block read request going to drive 6 at an 
LBA of 23 642, and there is a controller cache hit (1) and 31 ms has elapsed 
since the last request was made by the host, then this would be traced as 'R 
23642 3 31 6 1'. Similarly, if the next request comes after 17 ms going to drive 
4 at an LBA of 316 378 for writing 23 blocks, and this one causes a controller 
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cache miss (0), then this would be traced as 'W 316378 23 17 4 0'. Or when put 
together these would look as follows: 

R 23642 3 31 6 1 

W 316378 23 17 4 0 

REO S x z e  I n t e r o r r i v a l  D e l a v  

/ 
R 23642 3 31 6 1 
W 3 1 6 3 7 8  23 17 4 0 

BNJ fonnat traces. 

These workload traces can be directly fed to different programs for statistical 
analysis, workload characterization, DASD simulations and cache algorithm 
performance analysis. 

3. Workload characterization 

Workload characterization for any subsystem involves measuring the work- 
load as seen by the subsystem and then searching for some quantifiable pat- 
terns in the workload. In case of data storage subsystems of PCs, all 
requests coming down to the subsystem can be identified by, 
• the type of request, i.e. read, write, etc., 
• the size of the request, and 
• the location/destination of the request on the storage media. 
At the storage subsystem level no information about the operating system or 
the file system or even which request belongs to which task/file is available. 
The tracing tool, described in Section 2, provides the information about all 
the requests coming down to the storage subsystem. We can characterize the 
storage subsystem workload by computing the following. 
• The ratio of read requests to write requests. 
• Distribution of request size frequency. 
• Distribution of LBA frequency (or LBA footprint). 
• Distribution of inter-request LBA-distances. 
• Distribution of inter-arrival time frequency. 
• Hourly demand on the system in terms of number of requests per hour. 

The distribution of request size frequency gives an idea about demand on 
the data transfer channel. Distribution of LBA frequency shows how requests 
are distributed on the disk space. Knowledge of read-to-write ratio, request size 
frequency distribution and LBA frequency distribution helps us in perfor- 
mance analysis and optimization of storage subsystem level (controller level 
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or device level) cache design. Distribution of  inter-request LBA-distance shows 
demand on the head movement mechanism. A big number of large inter-re- 
quest LBA-distances indicates that the workload demands heavy head move- 
ment. Distribution of  inter-arrival time frequency reveals instantaneous 
deman on the storage subsystem. Demand on the system for each hour shows 
the trend of  resource utilization over longer periods of  time. This can help to 
redistribute the load to hours where the system is relatively less busy, thereby 
improving subsystem response time in busy hours. 

The storage subsystem workload in Netware operating system environment 
is traced using the tracking tool (SSTT) described in the Section 2. The traced 
workload is then characterized by obtaining the above mentioned distributions. 

3.1. Characteristics o f  traced workload 

In this section, we present the characteristics of the traced storage subsystem 
workload in a PSI2 file server running Novell Netware version 3.11. The site 
profile is given in Table 5. The storage subsystem traces containing detailed in- 
formation about the I/O requests were collected at the storage subsystem level 
using the SSTT as described in Section 2. These traces were later processed 
using tools described in Section 2 to characterize the workload. The character- 
istics of  the workload at the storage subsystem are summarized in Table 6. 
Traces were collected for 99.09 h. 

3.1.1. I / 0  request size distribution 
Fig. 5 shows read and write I/O request size frequency distribution. Clearly, 

all reads are 8-sector requests and most of  the writes (more than 60% of  all 
write request) are one sector requests. Relative frequency of write requests ex- 
ponentially drops with increasing request size up to 7-sector but increases at 8- 
sector. I/O request size frequency distribution is presented in Table 7. 

The read request to write request ratio is observed to be 43:57. This is almost 
the opposite of  the 70:30 read to write ratio observed by the file system work- 
load studies. This could be attributed to the huge file system caching. The file 

Table 5 
The site profile 

Applications 
Business: Database/transaction 
Office support: E-mail, Wordprocessor, and Spreadsheet 
Representative cycle time: Generally majority of activity is during 8 am to 5 pm business day 

Server configuration 
System: IBM PSI2 model 8595 (486•33 MHz) with 20MB RAM. 
Hard drives: 2 320MB IBM SCSI drives connected to a single SCSI adaptor 
Network adapter: IBM 16/4 Token Ring/A 
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Table 6 
Summary of the storage subsystem workload 

Period 
Total transactions 
Read operations 
Adapter cache hit in read 
Write operation 
Adapter cache hit in write 
Mean interarrival time 
Mean I/O request size 

Day-three 
180 321 (Drive 0: 179746: Drive 1:575) 
43.0% (77596) 
21.8% (50.7% of total read) 
57.0% (102725) 
7.86% (13.8% of total write) 
1978.18 ms (St. Dev.: 10228.42 ms) 
4.39 Sectors (St. Dev.: 3.38 Sectors) 

system, due to caching, could be filtering a significant number of read requests 
and doing lazy writes back to the storage subsystem. This notion is further 
strengthened by the observation (Table 7) that more that 60% of write requests 
are small (1 block) in size while 44%-50% of read requests (8 blocks each) 

8 0  

70  

6o 

5O 

0 "  
u 4 0  

z 

'.0 

1 2 3 4 5 6 7 

Size in Blocks 

Fig. 5. I/O request size distribution on day-three. 
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Table 7 
I/O request size frequency distribution 

257 

Sector 

1 2 3 4 5 6 7 8 

Write 77 792 14 604 2105 1052 902 718 705 4847 
Read 0 0 0 0 0 0 0 77 596 
Total 77 792 14 604 2105 1052 902 718 705 82443 

resulted in adapter cache hit. From Table 7, the total volume (in blocks) of da- 
ta read and written by the storage subsystem can be computed. It is interesting 
to note that the ratio of blocks read to blocks written is 78.5:21.5. 

3.1.2. Interarrival time d&tribution 

I n t e r a r r i v a l  t i m e  b e t w e e n  success ive  r eques t s  a re  s h o w n  in Fig .  6. T h e  f igure  

s h o w s  t w o  peaks ,  one  a r o u n d  20 ms  a n d  a n o t h e r  a r o u n d  70 ms.  I t  was  a lso  

::1 
o 

z 

20  I 4o I 6o I 80 1 1 0 0 1 1 2 0 1 1 4 0 1 1 6 0 1 1 8 0 1 Z O O l Z 2 0 1  2 4 0 1 2 6 0 1 2 8 0  
10 30  50 7 0  go 110 130 150 170 190 210  230  2:50 270 

Inter Arrival Time (reset) 

Fig. 6. I/O request interarrival time distribution on day-three. 
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observed that drive 1 was practically inactive and received less than 0.4% of  the 
subsystem load (see Table 6). Note that since the storage subsystem does not 
support command queuing at the drive level, interarrival time is in fact approx- 
imately equal to the service time of the storage subsystem when there are re- 
quest queued at the host device driver. This is because of  the fact that the 
device driver running at the host does not send I/O request to the storage sub- 
system unless the drive is free and ready to serve them. Therefore, if the sub- 
system has only one active drive and queued requests pending, the 
interarrival time exactly represents the service time of  the subsystem when 
the host device driver overhead (which is normally negligible compared to stor- 
age subsystem service time) is subtracted. 

It is interesting to note that the mean and standard deviation of  the interar- 
rival time around peaks is as presented in Table 8. As explained in previous 
paragraphs, the first peak around 20 ms represents the subsystem response time 
which is summation of  delays in the SCSI adapter and drive(s). 

However, the second peak at the 60 ms is due to sequential (mostly) read 
requests at routine backup operation. Since backup operations are normally 
done to a relatively slow device such as tape or optical drive the interarrival 
times are relatively large. In addition, the standard deviation of  interarrival 
time around 60 ms ( >~ 55 and <~ 70 ms) is also small due to sequential read re- 
quests which get a large number of hits in the SCSI adapter cache and almost 
deterministic interval between successive requests from the backup device. 

3.1.3. Distribution of  the logical block address o f  I/O requests 
Figs. 7 and 8 show the distribution of  the LBA on day-one for read and 

write I/O requests for drive 0 (there was almost no activity in drive 1 as shown 
in Table 6). In Fig. 7, read requests are distributed approximately uniformly 
over the first 70% of  the storage address space. However, the write requests 
(Fig. 8) are mainly concentrated into several LBA regions. 

3.1.4. Sequential I / 0  requests 
The Novell Netware file system block size was set to eight sectors during vol- 

ume definition. Therefore, the size of all read I/O requests to storage subsys- 
tems is eight sectors and write requests size vary from one to eight sectors. 
When an application program running in a client system requests more than 

Table 8 
Mean and standard deviation of interarrival time 

Only first peak Only second peak Both first and second peaks 
( <~ 40 ms) ( >~ 55 and ~< 70 ms) ( ~< 70 ms) 
Mean/St. Dev. Mean/St. Dev. Mean/St. Dev. 

20.37/7.35 60.20/3.09 33.74119.51 
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eight sectors and they are not found in the host cache memory, the host must 
issue more than one I/O request to the storage subsystem. Clearly, file system 
block size has serious storage subsystem performance implications. If  most of 
the client requests are 16 sectors, 8-sector file system block size would generate 
almost twice the traffic to the storage subsystem as a 16-sector file system block 
size. However, if most of  the time client read requests size is less then 16 sectors 
and file system block size is set to 16-sectors, the host will always issue 16-sec- 
tor read requests to the subsystem. It will increase data transfer time over the 
SCSI bus and at the same time destage more blocks from the host cache mem- 
ory to make space for the blocks being read. If  most of the client write requests 
are less than 16-sectors where file system block size is set to 16-sectors, the per- 
formance does not degrade since write I/O requests are issued to the storage 
subsystem during host cache lazy write or cache flushout and the size of these 
(less than or equal to 16) write requests depend on the sectors that need to be 
updated on the disk. In fact it is possible to observe some performance im- 
provement in 16-sector file system block over 8-sector file system block due 
to reduced number of I/Os when write requests are less than 8-sectors. 

We studied the sequentiality of  consecutive 8-sector requests to see if the 
storage subsystem performance would improve by setting up the file system 
maximum block size to 16-sectors. Figs. 9 and 10 show the probability mass 
function of  number of  8-sector sequential read and write I/O requests. In these 
figures abscissa represents the numbers of sequential 8-sector requests. From 
Fig. 9 it is clear that most of  the read requests (more than 85%) are one 8-sec- 
tor read. From Fig. 10 we see that out of all 8-sector write requests less than 
20% of  these sequential requests are accessing contiguous 8-sector data blocks. 

3.1.5. Subsystem load variation with respect to time 
Fig. 11 shows instantaneous I/Os per hour with respect to hours of  opera- 

tion. Note that abscissa in this figure represent numbers of hours in operation 
and not the time of  day. The storage subsystem workload data collection start- 
ed around 4:30 pm on a Thursday and data collection was completed on fol- 
lowing Monday evening around 8:30. 

In Fig. 11 we see a sharp rise in mostly read load representing routine back- 
up at early evening. Server was mostly inactive during the night. Activity dur- 
ing Friday morning and afternoon was similar to the load seen on day-two. 
There was no routine backup on Friday evening. There was almost no activity 
until Sunday evening, except some write operations on Saturday morning 
around 38th hour of  operation (around 6:30 am). 

We see some intense activity on Sunday evening around the 73rd hour of op- 
eration (around 5:30 pm). We first see large number of  write I/O requests fol- 
lowed by a large number of read I/O requests which strongly suggest that there 
was some kind of  file maintenance operation (e.g. backup/restore). We then see 
usual Monday morning activity, a dip during lunch, an increase after lunch, 
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Number o f  I/Os per Hour 
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Fig. 11. Instantaneous subsystem load with respect to time on day-three. 
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and a gradual drop in load towards late afternoon. We also see increase in load 
due to routine backup around the 99th hour of operation (around 7:30 pm). 

3.1.6. Summary  o f  workload in the traced Netware environment 
Detailed analysis of the four day long trace data totaling 82 443 I/O requests 

in a PSI2 file server running Novell Netware is presented. Analysis showed that 
peak subsystem instantaneous load (when averaged over one second interval) 
was 64 I/Os per s. However, when averaged over one hour period they drop 
to around 9 I/Os per s. Although, subsystem performance under the peak tran- 
sient load (i.e. averaged over one second) can be improved by increasing the 



L Mahgoub, A. Ali I Information Sciences 112 (1998) 239-266 265 

number of  subsystem components (e.g. adapter and drives), the peak steady- 
state load (i.e. averaged over one hour) is well below the existing subsystem 
throughput capacity. It is also observed that mostly only one of  the two drives 
was active. Some response time reduction can be easily achieved by spreading 
data over both drives such that they are accessed uniformly. 

All read requests' sizes were eight sectors and most of  the write requests' siz- 
es (63-75%) were one sector. Further analysis showed that more than 85% of 
the read requests were only one 8-sector read requests. One or more 8-sector 
write requests were 4.7%. It is concluded that with current workload, changing 
file system block size from 8-sector to 16-sector would not significantly improve 
the overall performance. The fraction of I/Os with two or more 8-sector re- 
quests is very much sensitive to future workload changes and should be closely 
monitored. If  this fraction becomes significant, the file system block size should 
be changed to 16-sector. 

4. Conclusions 

In this study, an operating system independent tool has been developed 
which traces the storage subsystem workload at the subsystem level. Due to 
hardware assistance, this tool has very little overhead. This is achieved by in- 
corporating the tracing routine in the firmware of  the IBM SCSI adapter. 
The I/O traces are collected, in real-time, on a PS/2 connected to the modified 
SCSI adapter via a special asynchronous (serial) port. These traces are then 
processed and converted into formats useable by other specially developed 
software tools. 

We proposed a workload characterization scheme and developed tools to 
implement it. One set of  tools developed characterize the workload by studying 
statistical parameters of  the traced workload. These parameters include LBA 
distributions, interarrival time distribution, size distributions, ratios between 
read requests and write requests, adapter's cache performance. 
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