
INFORMATION
SCIENCES

.A'q I~I~N~J' iONAL JOURNAL

ELSEVIER Information Sciences 112 (1998) 239-266

Personal computer storage subsystem
workload: Measurement and characterization

Imad Mahgoub *, Ahmad Ali
Department of Computer Science and Engineering, Florida Atlantic University, Boca Raton,

FL 33431, USA

Received 1 June 1997; accepted 29 April 1998

Communicated by Ahmed Elmagarmid

Abstrac t

This paper discusses the design and implementation of an operating system indepen-
dent tracing tool for storage subsystem workload in personal computers. This tool mea-
sures the workload at the storage subsystem level, and due to hardware assistance it has
very little overhead. The workload traces are collected in real-time on a data collection
station executing a special data collection program. We use the tool to collect workload
traces in real-life Netware-based personal computer environments. We then develop a
scheme to analyze and characterize the traced workload. © 1998 Elsevier Science
Inc. All rights reserved.

I . I n t r o d u c t i o n

Personal computers are becoming significantly powerful. The environment
in which they are used has been changing dramatically in the last few years.
With the availability of multitasking operating systems, current generation
PCs are now used to process multiuser operations. To meet the demand for
high performance, the processing speed of these PCs has been substantially im-
proved, which also increases the demand on the storage subsystems. In an at-
tempt to improve the performance of storage subsystem, on one end, R A I D
technology is becoming more popular in PC systems [1]. On the other end,

* Corresponding author. E-mail: imad@cse.fau.edu

0020-0255/98/$19.00 © 1998 Elsevier Science Inc. All rights reserved.
PII: S0020-025 5(98) 10036- 1

240 I. Mahgoub, A. Ali / Information Sciences 112 (1998) 239-266

designers are developing intelligent storage subsystem controllers [2] and hard-
ware cached storage devices [3] to further help the storage subsystem perfor-
mance keep up with the ever increasing speed of CPUs. Clearly, the storage
subsystem performance is a critical factor in the overall system performance.

In order to evaluate and improve the performance of existing and future
storage subsystems for an environment, one needs to understand and charac-
terize the workload as seen by the storage subsystem in that environment.
The performance evaluation procedures [4-6] may use simulation, analytical
modeling, or measurements of existing storage subsystems. For all these eval-
uation methods there is a need for a drive workload which reasonably repre-
sents the actual workload, but in reduced form, e.g. less execution time or
fewer I/O requests.

Storage subsystem workload is defined as collection of I/O requests that are
serviced by the storage subsystem in a specified period of time. The term work-
load characteristics refers to demand placed on the various components of the
subsystems. Example of these components include subsystem data transfer
channel, drive head assembly, look-ahead buffer in drive.

For valid conclusions to be drawn from performance evaluations, based on
simulation, the drive workload must be representative of the actual workload.
Many of subsystem modelling and analysis techniques use estimated workload
or measure the workload at the file system level [4,7,8]. Most of the above men-
tioned workload measurement is done at filesystem of MVS operating system.
Tools have been developed to measure workload at the file system of Unix [9]
and OS/2 [10]. The workload measured at file system is independent of the de-
vice driver and the underlying physical storage subsystem. This workload is very
helpful for performance evaluation at the operating system level. But of lesser
help for physical (hardware) storage subsystem performance evaluation. Devel-
opment of such tools requires detailed knowledge and source code of the oper-
ating system as software hooks have to be inserted in the operating system. The
added hooks introduce significant overhead and a separate tool has to be devel-
oped for each operating system of interest available for a particular platform.
Fig. 1 shows a simplistic view of access path to the storage subsystem from
an application. It can be noted that a different implementation of a device driver
can affect the workload as seen by the storage subsystem. Since, device drivers
are considered to be part of the personal computer operating system, therefore
workload measured at the storage subsystem would be more operating system
independent and more helpful for storage subsystem hardware designers.

There is a very little work done to characterize the workload at the physical
storage subsystem in Personal Computer environment. In [8], Houtekamer has
traced the workload at the MVS operating system in Systeard370 and then
mapped it to physical storage subsystem. This indirect technique can be used
to approximately characterize the workload at storage subsystem, but being
operating system dependent, it would require knowledge of all operating

L Mahgoub, A. Ali / Information Sciences 112 (1998) 239-266 241

Application Programs

Operating
System

File System f

Physical Device Driver

Personal Computer
(Hardware)

!
, T /

DASD
Storage Subsystem

Fig. 1. A simplistic view of access path to the storage subsystem in personal computer.

systems of interest for a storage subsystem. An operating system independent
tool that can characterize the storage subsystem workload is desired by storage
subsystem designers. Such a tool can be used under different operating systems
for a specific PC platform, instead of developing separate tools for each oper-
ating system that is available for a particular platform.

Lack of an existing operating independent tool for characterization of work-
load at the (hardware) storage subsystem level motivated this research. This
paper discusses the design and implementation of an operating system indepen-
dent tracing tool for the storage subsystem workload in personal computers.
This tool measure the workload at the storage subsystem level. Due to hard-
ware assistance, this tool has very little overhead. This is achieved by incorpo-
rating the tracing routine in the firmware of an IBM PS/2 SCSI adapter. The
workload traces are collected in real-time, on a PS/2, executing a special data

242 I. Mahgoub, A. Ali I Information Sciences 112 (1998) 239-266

collection program, connected to the modified SCSI adapter via an asynchro-
nous link. We also discuss a storage subsystem workload characterization
scheme by studying the parameters of the traced workload. These parameters
include LBA distribution, interarrival time distribution, request size distribu-
tion, ratios between read requests and write requests, adapter's cache perfor-
mance. This tool was used to trace the storage subsystem of Novell Netware
fileserver in a real-life environment. The paper also presents characterization
of this workload. Section 2 describes the tools developed for workload tracing
and post processing. Workload characterization is presented in Section 3. Fi-
nally, conclusions are included in Section 4.

2. Description of tools developed

In this section, we discuss the design and implementation of a real time, op-
erating system (OS) independent, tracing tool for storage subsystems in person-
al computers (PCs). We then present tools developed to post process the traced
workload. Tracing storage subsystems involves measuring the workload as
seen by the storage subsystem. One way to achieve this is to incorporate soft-
ware hooks in the OS [10]. This enables the monitoring of I/O requests submit-
ted to the storage subsystem as well as collection and storage of information
about these requests for later analysis. This requires detailed knowledge of
the operating system, and the added hooks increase the OS kernel overhead.
Moreover, different sets of code have to be developed to support these hooks
in different operating systems. Undoubtedly, this can be tedious, expensive,
and time-consuming process. Another way of collecting same information is
to trace the workload at the storage subsystem level. The advantages of this ap-
proach over the previous one are that the tool becomes operating system inde-
pendent and due to hardware assistance it introduces minimal overhead.

The proposed tracing tools design is based on the later approach. In this de-
sign, we modify the storage subsystem controller such that for each I/O request
it receives from the host system, a packet of a few bytes of information (trace)
about that request is sent to a Data Collection Station (DCS). In our imple-
mentation of this design, we have modified an existing SCSI Host Adapter.
The design and implementation of this tool is discussed in Section 2.1. Descrip-
tion of tools developed for post processing is included in Section 2.2

2.1. Storage subsystem tracing tool

The Storage subsystem tracing tool (SSTT) consists of a modified storage
subsystem controller and a data collection station (DCS). The DCS is essential-
ly a PS/2 running a data collection and storage program.

I. Mahgoub, A. Ali / Information Sciences 112 (1998) 239-266 243

Rx Tx

Serial Port I SCSI Bus Connector SCSI Bus Connector I

I I
Disk
Cache SCSI Bus
Buffer Controller ~R"(~ M---~ IRAM

Cache and
Data Flow
Controller

SCSI BIOS
[Microprocessor]]

I
System Interface/
Bus Master DMA
Controller

I
32 - Bit Micro Channel J

Fig. 2. Block diagram of the micro channel SCSI adapter with cache.

2.1.1. Modified storage subsystem controller
At this time, almost all storage subsystem controllers have a microprocessor

on board. Tracing of workload at the storage subsystem level can be achieved
by modifying the firmware (micro-code) of a controller and incorporating a
port, or a separate I/O channel, on the controller. For each I/O request submit-
ted by the host PC to the storage subsystem, the following information can be
collected
• Type of request (i.e., read, write)
• Logical Block Address (LBA)
• Request size (in blocks)
• ID of the target Direct Access Storage Device (DASD)
• Time when this request arrived at the controller and
• Status of controller cache (hit/miss).
Firmware modification should be such that, while processing a request, the
controller's processor would store the desired information bytes at an address
that is not being used during its regular activities. This address could be map-
ped as an input port of a peripheral I/O (PIO) chip. The stored bytes could then
be sent by the PIO chip to the DCS. Time stamping of the traces could be done,
if possible, by the PIO circuitry, otherwise it could be done at the DCS.

244 I. Mahgoub, A. Ali / Information Sciences 112 (1998) 239-266

In our implementation of this design, we have modified an existing 32-bit
IBM PSI2 MicroChannel SCSI Host Adapter with 512KB cache [11]. Fig. 2
shows a simplified block diagram of such a card.

This card has built-in serial port, normally used for diagnostic purposes. In
the presence of this serial port we did not have to make any hardware modifi-
cations on the card; rather firmware of the card was modified. The modified
code stores 5 bytes of information, in controller's RAM, about the request
while processing it. One byte sync mark is appended to these 5 bytes and this
6 byte packet of information is transmitted through the port.

Fig. 3 shows a Generalized Stochastic Petri Net (GSPN) Model [12,13] of
the card's firmware, and Table 1 has a brief description of the GSPN. All
the points marked by an asterisk (*) show places where code is modified/added.
This modified/added code sends a 6-byte packet of information through the di-
agnostic serial port at 38 400 baud, 8 data bits, 1 start bit and no parity bit.
Fig. 4 shows the structure of this information packet. The packet consists of
the following fields.
• Sync Mark (1 byte): Declaring beginning of a new packet.

-2' - -

t 10

Fig. 3. GSPN model o f IBM SCSI at tachment controller.

t l

t2

t~

t4t

t4

I. Mahgoub, A. Ali I Information Sciences 112 (1998) 239-266

Table 1
Description of the GSPN model in Fig. 3

245

pl Arrival of a job
p2 Select read or write
p3 Select read hit, read miss or bypass
p4 Read hit
p5 Job done
p6 Read cache bypass
p7 Read cache miss
p7a No op
p8 Get drive, SCSI bus and send msg & cmd
p9 Select data xfer length
pl0 Select prefetch length
pl 1 SCSI bus available
p12 Drive available
p13 No op
p14 Select write cache bypass delete update
p 15 Write cache bypass
pl6 Write cache delete
p 17 Write cache update
pl7a No op
p18 Get drive, SCSI bus and send write cmd
p 19 Select xfer length
p20 Write data xfer ready
p21 Write data xfer waiting for cmd complete
p22 No op
p23 Start drive (seek, latency and xfer)
p24 Drive complete
p25 House-keeping (no op)
p26 House-keeping (no op)
p26a No op
p26b No op
p27 Start read data xfer
p28 Read data xfer complete
pa Send trace packet
pb Send trace packet
tl Inter-arrival time
t2 Preprocessing
t3 Overhead read hit
t4 Post processing
t5 Overhead read cache bypass
t6 Overhead read miss
t7 Read cmd and msg time
t8 Write cache bypass overhead
t9 Write cache delete overhead
tl0 Write cache update overhead
tl 1 Write cmd time
t12 Write data xfer time
t 13 Drive time
t14 Read data transfer time
ta Trace packet xfer time
tb Trace packet xfer time

246

1

I

I. Mahgoub, A. Ali / Information Sciences 112 (1998) 239-266

2 3 4 5 6

I
|REQ I Mist J LBA Len~ I.nfo.

IB/MI t--- SCSI ID Code

Fig. 4. Structure of a workload trace packet.

• Logical Block Address (3 bytes): Showing beginning LBA of the request. The
LBA field is big enough to represent an address space of 16 Mega Blocks.
For a 512 byte block this translates to 8GB of storage capacity.

• Request Length (1 byte): Showing length or size of the request in blocks.
• Miscellaneous Information (1 byte): This byte has 1 bit (bit7) indicating

adapter cache hit/miss (H/M), next bit (bit6) is always zero. 3 bits (bit5-
bit3) represent the SCSI device ID and the last 3 bits (bit2-bit0) show the
request opcode.

For each byte of data 10 bits (1 start bit, 8 data bits and 1 stop bit) are trans-
mitted. Therefore, the transmission time of a packet (containing N bytes) at the
rate of R baud (bits/second) can be given as follows:

Transmission time per packet -- ION/R.

From above, the transmission time for a 6 byte packet at 38 000 baud is
1.56 ms. In all cases, except read hit in the controller cache, transmission time
of the packet is overlapped by the SCSI device request service time (see Fig. 3).
Therefore, in a worstcase situation (i.e., read hit in controller cache) the mod-
ified/added code introduces a maximum 1.56 ms overhead. Depending upon
SCSI bus contention and DASD response, other scenarios introduce overhead
values of much less than 1.56 ms.

The extra code introduced above causes some tracing overhead, which can
increase the service time of the storage subsystem. We estimated the increase
in the service time using PC Magazine Laboratory Benchmark Series (Release
5.6). We used IBM PS/2 Model 95 (80486 25 MHz) with two different types of
hard drives (C and D) to run the Disk Performance Tests of the benchmark
with and without the modified microcode. The benchmark basically,

1. Mahgoub, A. Ali I Information Sciences 112 (1998) 239-266 247

• Computes an average time for a DOS access. This average is computed for
accesses to different sectors of the drive.

• Then it performs DOS file access operations involving reading/writing re-
cords in sequential and random patterns. It reports results for both sequen-
tial and random access operations. The DOS file access test is performed for
different sizes of records. The results shown are average time in seconds to
perform each part of the test (the average is taken for five iterations).
Table 2 shows computed results for drive 'C' and Table 3 shows results for

drive 'D' as reported by benchmark. The following are few observations based
on the PC Magazine Benchmark results.
• The maximum overhead of the additional code for DOS disk access is less

than 3%.
• For DOS files access operations involving 512 byte records, the overhead of

the added code is very significant (37.86~4.63%) for both sequential and
random read operations. For random write operations the overhead is less
than 9% and around only 2% for sequential write operations. Apparently,
for 512 byte read requests we have a higher rate of cache hit and as explained
earlier, for a read cache hit, the added code introduces a maximum over-
head.

• For DOS file access operations involving 4KB records, the overhead for se-
quential read and random read operations is less than or equal to 9% and
20%, respectively. For other operations the overhead is very minimal and
strangely on drive D the overhead for random writer operations is a little
negative (-0.83%). This may be due to randomness or due to rounding real
numbers in computations of delay and resolution of clock used by the
benchmark. The benchmark reports results only up to 2 digits after the dec-
imal and the difference in this case is 0.01.

• For DOS file access operations, involving 16KB and 32KB, the overhead of
added code is very minimal (3%) except for sequential read operations where
it is up to 4.17%. Here, again, we see some negative overheads which may be
explained as discussed previously.

The PC Magazine Laboratory Benchmark used in performing the tests is pri-
marily for measuring the performance index in a DOS environment and can be
influenced by the OS characteristics. Therefore, we wanted to use some tool
that would provide a similar performance index without being influenced by
the OS. The SCSI Exerciser program, developed by IBM engineers for IBM in-
ternal use, works at the BIOS level and gives full control of the SCSI device
under test. Results obtained using the SCSI Exerciser on a third hard disk drive
(drive E) in the same IBM PS/2 model 95, are shown in Table 4.

From the numbers and figures obtained using PC Magazine Benchmark and
the SCSI Exerciser, it can be concluded that:
• Any time there is a SCSI device access the impact of the additional code is

almost invisible (<0.33 ms or 1.7%).

248 I. Mahgoub, A. Ali / Information Sciences 112 (1998) 239-266

Table 2
Disk 'C' performance as reported by the benchmark

Disk performance tests, for drive 'C'

With modified Without modified % of
code (s) code (s) overhead

DOS disk access 27.29 26.85 1.64

DOS file access (small records)
512 Records / 512 bytes each

File create 8.97 8.97 0.00
Sequential write 9.98 9.82 1.63
Sequential read 2.57 1.80 42.78
Random write 13.26 12.49 6.16
Random read 2.65 1.86 42.47

Total (512 * 512) 37.43 34.94 7.13
64 Records / 4096 bytes each

File create 1.67 1.65 1.21
Sequential write 1.49 1.49 0.00
Sequential read 0.50 0.46 8.7
Random write 1.85 1.81 2.21
Random read 0.38 0.33 15.15

Total (64 * 4096) 5.89 5.74 2.61
Total (small records) 43.32 40.68 6.49

DOS file access (large records)
16 Records I 16384 bytes each

File create 0.84 0.79 6.33
Sequential write 0.70 0.70 0.00
Sequential read 0.43 0.43 0.00
Random write 0.80 0.79 1.27
Random read 0.76 0.77 -1.30

Total (16/16 384) 3.53 3.48 1.44
8 Records 1 32768 bytes each

File create 0.77 0.75 2.67
Sequential write 0.56 0.56 0.00
Sequential read 0.44 0.43 2.33
Random write 0.63 0.62 1.61
Random read 0.58 0.59 - 1.69

Total (8/32768) 2.98 2.95 1.02
Total (large records) 6.51 6.43 1.24

Total (small and large records) 49.83 47.11 5.77

F o r s m a l l r e a d r e q u e s t s t h a t a r e s e r v e d f r o m t h e c o n t r o l l e r ' s c a c h e o n e sees a

m a x i m u m i m p a c t . T h i s is in a g r e e m e n t w i t h t h e i n t u i t i v e e s t i m a t e s o b t a i n e d

b y i n s p e c t i n g t h e G S P N m o d e l o f t h e c o n t r o l l e r c a r d .

I. Mahgoub, A. Ali / Information Sciences 112 (1998) 239-266

Table 3
Disk 'D' performance as reported by the benchmark

249

Disk performance tests for drive 'D'

With modified Without modified % of over-
code (s) code (s) head

DOS disk access 22.96 22.31 2.91

DOS file access (small records)
512 Records / 512 bytes each

File create 7.35 7.33 0.41
Sequential write 7.77 7.60 2.19
Sequential read 2.56 1.77 44.63
Random write 10.66 9.79 8.89
Random read 2.84 2.06 37.86

Total (512 * 512) 31.18 28.54 8.47
64 Records / 4096 bytes each

File create 1.13 1.13 0.00
Sequential write 1.04 1.04 0.00
Sequential read 0.54 0.50 8.00
Random write 1.19 1.20 -0.83
Random read 0.37 0.31 19.35

Total (64 * 4096) 4.27 4.18 2.15
Total (small records) 35.45 32.72 7.70

DOS file access (large records)
16 Records / 16384 bytes each

File create 0.46 0.46 0.00
Sequential write 0.38 0.38 0.00
Sequential read 0.34 0.33 3.03
Random write 0.44 0.44 0.00
Random read 0.45 0.45 0.00

Total (16/16 384) 2.07 2.06 0.48
8 Records / 32768 bytes each

File create 0.39 0.38 2.63
Sequential write 0.28 0.28 0.00
Sequential read 0.25 0.24 4.17
Random write 0.32 0.33 -3.03
Random read 0.30 0.31 -3.23

Total (8/32768) 1.54 1.54 0.00
Total (large records) 3.61 3.60 0.28

Total (small and large records) 39.06 36.32 7.54

I t s h o u l d b e n o t e d t h a t in m o s t o f t h e s y s t e m s t h e d e m a n d o n t h e c o n t r o l l e r is

m u c h b e l o w i ts t h r o u g h p u t c a p a c i t y , a n d a r ea l i s t i c w o r k l o a d d o e s n o t c o n s i s t

o f a h i g h p e r c e n t a g e o f r e a d h i t s a t t h e c o n t r o l l e r c a c h e level . T h e r e f o r e , m o s t

250 I. Mahgoub, A. Ali I Information Sciences 112 (1998) 239-266

Table 4
Disk performance as reported by the SCSI Exerciser

With modified Without modified % of
code (ms) code (ms) overhead

No cache bypass (small requests)
Read same location
512 byte requests 51.04 36.23 40.88
4096 bytes requests 56.8 41.13 38.10
8192 byte requests 63.54 47.3 34.33
Write same location
512 byte requests 139.33 139.33 0.00
4096 bytes requests 139.50 139.35 0.11
8192 byte requests 141.1 139.51 1.14
Sequential (LBA = LBA + 18) read
512 byte requests 82.2 82.2 0.00
4096 bytes requests 93.6 93.6 0.00
8192 byte requests 107.1 107.1 0.00
Sequential (LBA = LBA + 18) write
512 byte requests 194 193.53 0.24
4096 bytes requests 195.09 193.6 0.77
8192 byte requests 196.88 193.6 1.69

Cache bypass (16384 bytes requests)
Sequential requests (LBA = LBA + 32)
Reads 12.19 12.19 0.00
Writes 23.83 23.82 0.04
Random requests
Reads 38.06 37.8 0.69
Writes 37.95 37.8 0.40

o f the t ime the ove rhead due to the mod i f i ed / added code wou ld be less than
0.33 ms.

2.1 .2 . D a t a co l l ec t ion s t a t i o n

The D a t a Col lec t ion Sta t ion, as descr ibed earlier, receives t races sent by the
modi f ied s torage subsys tem con t ro l l e r (t racing card) and stores them (in a ha rd
d i sk drive) for la te r analysis . A D C S should be fast enough to hand le the t race
col lec t ion act iv i ty and it mus t have:
* an I /O p o r t tha t can be connec ted to the s to rage subsys tem con t ro l l e r ' s t race

ou tpu t por t ,
• s torage capac i ty to s tore t races for a r easonab le length o f t ime, and
• i f t ime- s t amping o f t races is no t done at the con t ro l le r level then a high res-

o lu t ion t imer (at least 1 ms) is also requi red for t ime-s tamping .
In ou r imp lemen ta t i on o f a D C S we f o u n d tha t a 386-20 M H z - b a s e d PSI2 with
a ha rd d isk dr ive o f 80MB can be p r o g r a m m e d to meet the requ i rements o f a

I. Mahgoub, A. Ali / Information Sciences 112 (1998) 239-266 251

DCS. It has a built-in serial port (COM1) than can easily be programmed and
connected to the tracing controller's serial port using a special cable. Its system
clock can be programmed to give a resolution of 1 ms. It has enough processing
power to receive the traces at a high rate, time-stamp them and store them on
the hard disk. Description of the data collection program (called COLLECT)
running on the DCS follows.

The serial port (COM1) is programmed to give an interrupt (0 × 0C) after
receiving each byte of the information from the card. The COM1 is pro-
grammed at 38 400 baud, 8 data bit, 1 start bit and no parity bit. It is achieved
by loading different registers of the serial port controller as listed below:

PORT Hex 03F9 := Hex 00
PORT Hex 03FB := Hex 80
PORT Hex 03F8 := Hex 03
PORT Hex 03F9 := Hex 00
PORT Hex 03FB := Hex 03

PORT Hex 03FC := Hex 0B
PORT Hex 03F9 := Hex 05

PORT Hex 03FA := Hex 00
PORT Hea 0021 := Hex 00

; Disable data recv'd interrupt.
; Enable divisor latch.
; Divisor Low byte.
; Divisor high byte.
; Disable divisor latch.
; No parity, 1 stop bit ~nd
; 8 data bits.
; Enable COM 1 interrupts.
; Enable data receive interrupt.
; and line error interrupt.
; Disable FIFO.
; Interrupt mask register reset.

The existing clock in a PC gives a resolution of about 54.9 ms (= 3 600 000
- 65 536). In an IBM PC (or compatible) a timer/counter chip issues an inter-
rupt (timer tick) every 54.9 ms. The interrupt controller forwards it as interrupt
number 8 to the system processor, and the BIOS handler [14] services it as fol-
lows.
• Keeps a 4-byte count of timer ticks at memory location 0004:006C.
• Wraps it to zero after 24 h (1 573 024 ticks).
• Controls diskette drive motor.
• Issues a software interrupt hex 1C.
Originally the timer/counter chip generates a timer tick by dividing 1.193 MHz
input frequency by 65 536 [15] to give an output frequency of about 18.2 Hz
(1/18.2 = 0.0549 s). For a 1 ms (1 kHz) resolution we need a frequency divider
value of 1193. This value can be loaded in the latch register of the timer/counter
by accessing port hex 40 (low byte first).

We also have replaced the BIOS interrupt handler for interrupt 8 with our
code, which simply keeps a 4-byte count of timer ticks at memory location hex
(B800:lF50). The following are the reasons for replacing the BIOS routine.
• The CPU has to execute it 1000 times a second instead of about 18.2 times a

second, so we want its execution time to be smaller.

252 I. Mahgoub, A. Ali I Information Sciences 112 (1998) 239--266

• We do not need the interrupt hex 1C.
• We do not want the count of timer ticks to wrap after 1 573 024 (hex

1800B0) ticks (26.22 min at 1 ms ticks).
• We do not use the diskette drive during the trace collection.
• DOS reads the Time-of-Day (timer tick count) when closing files and, if the

tick count has exceeded 1 573 024, then it gives a divide-by-zero error.
Therefore, Time-of-Day location (0004:006C) is not used; rather a different
memory location is used for the count of ticks.
Trace reception is interrupt-driven. The serial port controller gives interrupt

0 x 0C after receiving each byte from the tracing card. The interrupt service
module performs the following tasks.
• Checks if circular buffer is full; if so then it gives an error message and drops

the data byte and is ready to service the next interrupt.
• Moves the data byte to a circular buffer (32KB).
• Checks if the data byte was a sync mark (see Fig. 4).
• If it was a sync mark then the interrupt handler writes a 4-byte time stamp in

the circular buffer just after the sync mark. It uses the modified system clock
(1 ms resolution) for time stamping.
Data storage is done by a module of COLLECT running in the foreground

during the trace collection. This module is always checking whether there is any
data in the circular buffer. If so, then it removes the data from the circular buf-
fer and writes it in a series of files on the hard disk. As a precaution against
data loss due to power or any other failure, a data file is closed if no data is
received for 10 min, or the size of the data file has reached 256KB.

2.2. Post processing tools

The data collected by the program COLLECT is in binary form and called
'raw data'. The raw data may have some inconsistencies due to the following.

(i) Time stamps caused by data bytes that are same as sync mark,
(ii) serial communication line errors (voltages drives by the card are between
0 and 5 V), or
(iii) COM 1 or circular buffer overflow.

The raw data is processed in two steps to convert the collected traces into a
readable ASCII format. In the first step binary trace data is extracted from
the raw data and in second step this data is converted to an ASCII format.

2.2.1. XTRACT
This is a smart software tool developed to extract data from the collected

raw data. It removes,
• time stamps that were placed after data bytes that are same as sync mark,
• erroneous bytes introduced due to serial communication line errors,
• incomplete packets due to port or buffer overflow.

I. Mahgoub, A. Ali / Information Sciences 112 (1998) 239 266 253

It looks for the first sync byte. Then it validates this sync looking byte (i.e. data
byte that is same as sync mark) by examining the packet following it and the
next sync in the following manner.

(1)

(2)
(3)

(4)

(5)

(6)

Find next sync looking byte. Assume that the byte found is bytel (see
Fig. 4) of the packet.
Next four bytes constitute the present time stamp, skip them.
Byte2 through byte6 are picked using following test: IF present byte is
sync looking
THEN Position of next byte = Position of present byte +5
ELSE Position of next byte = Position of present byte +1.
IF next byte after byte6 is sync looking then previous packet is valid
and go to step2 else go to stepl, starting after the previously assumed
sync mark.
If program finds four consecutive sync looking bytes which fail the test
then it gives a menu driven control to the user and user has to point
towards the next valid sync mark.
When time stamp of a packet is greater then the time stamps of
preceding and proceeding packets then it is considered inconsistent
and the packet is dropped.

When TRACT step is successfully completed the data is in usable binary form
called FIX form. The size of a FIX file is always multiple of ten bytes.

2.2.2. B N J

It converts traces from binary FIX format to BNJ (an ASCII) format. The
BNJ format has six fields as following.
1. OpCode.
2. LBA accessed.
3. Request size in blocks.
4. Inter arrival time in milliseconds.
5. SCSI id of the target device.
6. Controller cache hit/miss.
All the fields are separated by single space. The program computers inter arriv-
al time for a request by subtracting the previous time stamp from the present
time stamp. The inter arrival time for the first request is assumed to be 10 ms as
there is no previous packet and hence no previous time stamp.

For example, if the host makes a 3-block read request going to drive 6 at an
LBA of 23 642, and there is a controller cache hit (1) and 31 ms has elapsed
since the last request was made by the host, then this would be traced as 'R
23642 3 31 6 1'. Similarly, if the next request comes after 17 ms going to drive
4 at an LBA of 316 378 for writing 23 blocks, and this one causes a controller

254 I. Mahgoub, A. Ali / Information Sciences 112 (1998) 239-266

cache miss (0), then this would be traced as 'W 316378 23 17 4 0'. Or when put
together these would look as follows:

R 23642 3 31 6 1

W 316378 23 17 4 0

REO S x z e I n t e r o r r i v a l D e l a v

/
R 23642 3 31 6 1
W 3 1 6 3 7 8 23 17 4 0

BNJ fonnat traces.

These workload traces can be directly fed to different programs for statistical
analysis, workload characterization, DASD simulations and cache algorithm
performance analysis.

3. Workload characterization

Workload characterization for any subsystem involves measuring the work-
load as seen by the subsystem and then searching for some quantifiable pat-
terns in the workload. In case of data storage subsystems of PCs, all
requests coming down to the subsystem can be identified by,
• the type of request, i.e. read, write, etc.,
• the size of the request, and
• the location/destination of the request on the storage media.
At the storage subsystem level no information about the operating system or
the file system or even which request belongs to which task/file is available.
The tracing tool, described in Section 2, provides the information about all
the requests coming down to the storage subsystem. We can characterize the
storage subsystem workload by computing the following.
• The ratio of read requests to write requests.
• Distribution of request size frequency.
• Distribution of LBA frequency (or LBA footprint).
• Distribution of inter-request LBA-distances.
• Distribution of inter-arrival time frequency.
• Hourly demand on the system in terms of number of requests per hour.

The distribution of request size frequency gives an idea about demand on
the data transfer channel. Distribution of LBA frequency shows how requests
are distributed on the disk space. Knowledge of read-to-write ratio, request size
frequency distribution and LBA frequency distribution helps us in perfor-
mance analysis and optimization of storage subsystem level (controller level

I. Mahgoub, A. Ali I Information Sciences 112 (1998) 239-266 255

or device level) cache design. Distribution of inter-request LBA-distance shows
demand on the head movement mechanism. A big number of large inter-re-
quest LBA-distances indicates that the workload demands heavy head move-
ment. Distribution of inter-arrival time frequency reveals instantaneous
deman on the storage subsystem. Demand on the system for each hour shows
the trend of resource utilization over longer periods of time. This can help to
redistribute the load to hours where the system is relatively less busy, thereby
improving subsystem response time in busy hours.

The storage subsystem workload in Netware operating system environment
is traced using the tracking tool (SSTT) described in the Section 2. The traced
workload is then characterized by obtaining the above mentioned distributions.

3.1. Characteristics o f traced workload

In this section, we present the characteristics of the traced storage subsystem
workload in a PSI2 file server running Novell Netware version 3.11. The site
profile is given in Table 5. The storage subsystem traces containing detailed in-
formation about the I/O requests were collected at the storage subsystem level
using the SSTT as described in Section 2. These traces were later processed
using tools described in Section 2 to characterize the workload. The character-
istics of the workload at the storage subsystem are summarized in Table 6.
Traces were collected for 99.09 h.

3.1.1. I / 0 request size distribution
Fig. 5 shows read and write I/O request size frequency distribution. Clearly,

all reads are 8-sector requests and most of the writes (more than 60% of all
write request) are one sector requests. Relative frequency of write requests ex-
ponentially drops with increasing request size up to 7-sector but increases at 8-
sector. I/O request size frequency distribution is presented in Table 7.

The read request to write request ratio is observed to be 43:57. This is almost
the opposite of the 70:30 read to write ratio observed by the file system work-
load studies. This could be attributed to the huge file system caching. The file

Table 5
The site profile

Applications
Business: Database/transaction
Office support: E-mail, Wordprocessor, and Spreadsheet
Representative cycle time: Generally majority of activity is during 8 am to 5 pm business day

Server configuration
System: IBM PSI2 model 8595 (486•33 MHz) with 20MB RAM.
Hard drives: 2 320MB IBM SCSI drives connected to a single SCSI adaptor
Network adapter: IBM 16/4 Token Ring/A

256 1. Mahgoub, A. Ali I Information Sciences 112 (1998) 239-266

Table 6
Summary of the storage subsystem workload

Period
Total transactions
Read operations
Adapter cache hit in read
Write operation
Adapter cache hit in write
Mean interarrival time
Mean I/O request size

Day-three
180 321 (Drive 0: 179746: Drive 1:575)
43.0% (77596)
21.8% (50.7% of total read)
57.0% (102725)
7.86% (13.8% of total write)
1978.18 ms (St. Dev.: 10228.42 ms)
4.39 Sectors (St. Dev.: 3.38 Sectors)

system, due to caching, could be filtering a significant number of read requests
and doing lazy writes back to the storage subsystem. This notion is further
strengthened by the observation (Table 7) that more that 60% of write requests
are small (1 block) in size while 44%-50% of read requests (8 blocks each)

8 0

70

6o

5O

0 "
u 4 0

z

'.0

1 2 3 4 5 6 7

Size in Blocks

Fig. 5. I/O request size distribution on day-three.

L Mahgoub, A. Ali / Information Sciences 112 (1998) 239-266

Table 7
I/O request size frequency distribution

257

Sector

1 2 3 4 5 6 7 8

Write 77 792 14 604 2105 1052 902 718 705 4847
Read 0 0 0 0 0 0 0 77 596
Total 77 792 14 604 2105 1052 902 718 705 82443

resulted in adapter cache hit. From Table 7, the total volume (in blocks) of da-
ta read and written by the storage subsystem can be computed. It is interesting
to note that the ratio of blocks read to blocks written is 78.5:21.5.

3.1.2. Interarrival time d&tribution

I n t e r a r r i v a l t i m e b e t w e e n success ive r eques t s a re s h o w n in Fig . 6. T h e f igure

s h o w s t w o peaks , one a r o u n d 20 ms a n d a n o t h e r a r o u n d 70 ms. I t was a lso

::1
o

z

20 I 4o I 6o I 80 1 1 0 0 1 1 2 0 1 1 4 0 1 1 6 0 1 1 8 0 1 Z O O l Z 2 0 1 2 4 0 1 2 6 0 1 2 8 0
10 30 50 7 0 go 110 130 150 170 190 210 230 2:50 270

Inter Arrival Time (reset)

Fig. 6. I/O request interarrival time distribution on day-three.

258 I. Mahgoub, A. Ali / Information Sciences 112 (1998) 239-266

observed that drive 1 was practically inactive and received less than 0.4% of the
subsystem load (see Table 6). Note that since the storage subsystem does not
support command queuing at the drive level, interarrival time is in fact approx-
imately equal to the service time of the storage subsystem when there are re-
quest queued at the host device driver. This is because of the fact that the
device driver running at the host does not send I/O request to the storage sub-
system unless the drive is free and ready to serve them. Therefore, if the sub-
system has only one active drive and queued requests pending, the
interarrival time exactly represents the service time of the subsystem when
the host device driver overhead (which is normally negligible compared to stor-
age subsystem service time) is subtracted.

It is interesting to note that the mean and standard deviation of the interar-
rival time around peaks is as presented in Table 8. As explained in previous
paragraphs, the first peak around 20 ms represents the subsystem response time
which is summation of delays in the SCSI adapter and drive(s).

However, the second peak at the 60 ms is due to sequential (mostly) read
requests at routine backup operation. Since backup operations are normally
done to a relatively slow device such as tape or optical drive the interarrival
times are relatively large. In addition, the standard deviation of interarrival
time around 60 ms (>~ 55 and <~ 70 ms) is also small due to sequential read re-
quests which get a large number of hits in the SCSI adapter cache and almost
deterministic interval between successive requests from the backup device.

3.1.3. Distribution of the logical block address o f I/O requests
Figs. 7 and 8 show the distribution of the LBA on day-one for read and

write I/O requests for drive 0 (there was almost no activity in drive 1 as shown
in Table 6). In Fig. 7, read requests are distributed approximately uniformly
over the first 70% of the storage address space. However, the write requests
(Fig. 8) are mainly concentrated into several LBA regions.

3.1.4. Sequential I / 0 requests
The Novell Netware file system block size was set to eight sectors during vol-

ume definition. Therefore, the size of all read I/O requests to storage subsys-
tems is eight sectors and write requests size vary from one to eight sectors.
When an application program running in a client system requests more than

Table 8
Mean and standard deviation of interarrival time

Only first peak Only second peak Both first and second peaks
(<~ 40 ms) (>~ 55 and ~< 70 ms) (~< 70 ms)
Mean/St. Dev. Mean/St. Dev. Mean/St. Dev.

20.37/7.35 60.20/3.09 33.74119.51

I. Mahgoub, A. All I Information Sciences 112 (1998) 239-266 259

0
0

0

8
o

. _ g)

0
t~

0
0 ~q

0
, t

8

g)

Q
0

0

0
0

~T

0

C~

g.~

...a o

._o

¢',1 "~ (NI

s]sonba;8 jo aaquan N

0

2 6 0 I. Mahgoub, A. All / Information Sciences 112 (1998J 239-266

co
i

m III I I I I

(spuosnoq,L) slsonb~E[jo Joqmn N

o

8
I10

t',,

g
/.,,

g

o ~
0 o

o
u"j "~0

0
0 "~,

0 o8

0
°

0 ~ra

0
0

0

0

I. Mahgoub, A. All I Information Sciences 112 (1998) 239-266 261

eight sectors and they are not found in the host cache memory, the host must
issue more than one I/O request to the storage subsystem. Clearly, file system
block size has serious storage subsystem performance implications. If most of
the client requests are 16 sectors, 8-sector file system block size would generate
almost twice the traffic to the storage subsystem as a 16-sector file system block
size. However, if most of the time client read requests size is less then 16 sectors
and file system block size is set to 16-sectors, the host will always issue 16-sec-
tor read requests to the subsystem. It will increase data transfer time over the
SCSI bus and at the same time destage more blocks from the host cache mem-
ory to make space for the blocks being read. If most of the client write requests
are less than 16-sectors where file system block size is set to 16-sectors, the per-
formance does not degrade since write I/O requests are issued to the storage
subsystem during host cache lazy write or cache flushout and the size of these
(less than or equal to 16) write requests depend on the sectors that need to be
updated on the disk. In fact it is possible to observe some performance im-
provement in 16-sector file system block over 8-sector file system block due
to reduced number of I/Os when write requests are less than 8-sectors.

We studied the sequentiality of consecutive 8-sector requests to see if the
storage subsystem performance would improve by setting up the file system
maximum block size to 16-sectors. Figs. 9 and 10 show the probability mass
function of number of 8-sector sequential read and write I/O requests. In these
figures abscissa represents the numbers of sequential 8-sector requests. From
Fig. 9 it is clear that most of the read requests (more than 85%) are one 8-sec-
tor read. From Fig. 10 we see that out of all 8-sector write requests less than
20% of these sequential requests are accessing contiguous 8-sector data blocks.

3.1.5. Subsystem load variation with respect to time
Fig. 11 shows instantaneous I/Os per hour with respect to hours of opera-

tion. Note that abscissa in this figure represent numbers of hours in operation
and not the time of day. The storage subsystem workload data collection start-
ed around 4:30 pm on a Thursday and data collection was completed on fol-
lowing Monday evening around 8:30.

In Fig. 11 we see a sharp rise in mostly read load representing routine back-
up at early evening. Server was mostly inactive during the night. Activity dur-
ing Friday morning and afternoon was similar to the load seen on day-two.
There was no routine backup on Friday evening. There was almost no activity
until Sunday evening, except some write operations on Saturday morning
around 38th hour of operation (around 6:30 am).

We see some intense activity on Sunday evening around the 73rd hour of op-
eration (around 5:30 pm). We first see large number of write I/O requests fol-
lowed by a large number of read I/O requests which strongly suggest that there
was some kind of file maintenance operation (e.g. backup/restore). We then see
usual Monday morning activity, a dip during lunch, an increase after lunch,

262 L Mahgoub, A. Ali / Information Sciences 112 (1998) 239--266

I oo ^

6 d d d ~ o c~ 6 d

sossoooV |~!lu~nbo S jo ,~ouonboz~l poz!l~UUO N

,6

0
t~

<

I. Mahgoub, A. Ali I Information Sciences 112 (1998) 239-266 263

A

r~

e~
o
o
<

O0

e3"

r ~

0

6
Z

6 ¢5 c5 c~ c~ c5 c~ c5 ~ c~

sossoooV lU!luonbo S jo ,(ouonboa d poz!lum~o N

0

' 3

..Q

E
e-,

e-,
©

E

~5

264 I. Mahgoub, A. Ali I Information Sciences 112 (1998) 239-266

Number o f I/Os per Hour

35,000

30,000

25,000

20,000

15,000

10,000

5,000

0
0 10 20 ,30 40 50 60 70 80 90 100

Hours in Operation

Fig. 11. Instantaneous subsystem load with respect to time on day-three.

"ite

-rotol

and a gradual drop in load towards late afternoon. We also see increase in load
due to routine backup around the 99th hour of operation (around 7:30 pm).

3.1.6. Summary o f workload in the traced Netware environment
Detailed analysis of the four day long trace data totaling 82 443 I/O requests

in a PSI2 file server running Novell Netware is presented. Analysis showed that
peak subsystem instantaneous load (when averaged over one second interval)
was 64 I/Os per s. However, when averaged over one hour period they drop
to around 9 I/Os per s. Although, subsystem performance under the peak tran-
sient load (i.e. averaged over one second) can be improved by increasing the

L Mahgoub, A. Ali I Information Sciences 112 (1998) 239-266 265

number of subsystem components (e.g. adapter and drives), the peak steady-
state load (i.e. averaged over one hour) is well below the existing subsystem
throughput capacity. It is also observed that mostly only one of the two drives
was active. Some response time reduction can be easily achieved by spreading
data over both drives such that they are accessed uniformly.

All read requests' sizes were eight sectors and most of the write requests' siz-
es (63-75%) were one sector. Further analysis showed that more than 85% of
the read requests were only one 8-sector read requests. One or more 8-sector
write requests were 4.7%. It is concluded that with current workload, changing
file system block size from 8-sector to 16-sector would not significantly improve
the overall performance. The fraction of I/Os with two or more 8-sector re-
quests is very much sensitive to future workload changes and should be closely
monitored. If this fraction becomes significant, the file system block size should
be changed to 16-sector.

4. Conclusions

In this study, an operating system independent tool has been developed
which traces the storage subsystem workload at the subsystem level. Due to
hardware assistance, this tool has very little overhead. This is achieved by in-
corporating the tracing routine in the firmware of the IBM SCSI adapter.
The I/O traces are collected, in real-time, on a PS/2 connected to the modified
SCSI adapter via a special asynchronous (serial) port. These traces are then
processed and converted into formats useable by other specially developed
software tools.

We proposed a workload characterization scheme and developed tools to
implement it. One set of tools developed characterize the workload by studying
statistical parameters of the traced workload. These parameters include LBA
distributions, interarrival time distribution, size distributions, ratios between
read requests and write requests, adapter's cache performance.

Acknowledgements

This work was supported in part by Entry Systems Technology, IBM, under
contract No. N-UN-270-00 task # 3.

References

[1] J. Moad, Relief for Slow Storage Systems, Datamation, 1 September 1990, pp. 22-28.
[2] D. Smith, The M212 - A zero-glue single-chip VLSI Wnnchester controller with on-board 10

MIPS processor, in: Wescon/86 - Conference Record, Anaheim, CA, November 1986.
[3] C.P. Grossman, Cache-DASD storage design for improving system performance, IBM System

Journal 24 (3/4) (1985) 316-334.

266 I. Mahgoub, A. Ali / Information Sciences 112 (1998) 239-266

[4] A. Goyal, A. Agerwala, Performance analysis of future shared storage systems, IBM Jornal of
Research and Development 28 (1) (1984) 95-108.

[5] T. Beretvas, DASD performance analysis using modelling, in: CMG'85 Conference
Proceedings, Dallas, TX, December 1985.

[6] P.K. Lim, J.M. Tien, A tool for direct access storage device (DASD) performance evaluation,
in: Proceedings of the Urban Regional Information Systems Association Conference, Boston,
MA, August 1989.

[7] B.J. Smith, A survey of the state of the art and practice in I/O subsystem modelling and
analysis, in: Proceedings of the Fall Joint Computer Conference, Dallas, TX, 1986.

[8] G.E. Houtekamer, Measuring and modelling disk I/O subsystems, Ph.D. Dissertation,
Technische Universiteit te Delft, The Netherlands, 1989.

[9] S. Zhou, H. DaCosta, A.J. Smith, A file system tracing package for Berkley UNIX, in:
USENIX Association Summer Conference Proceedings, Portland, 1985.

[10] D.A. Bishop, Dekko and PCPERF/VMPERF Performance Trace User's Guide, IBM, 1991.
[11] PSI2 Micro Channel SCSI Adapter Technical Reference, IBM Corporation, Armonk, NY,

1990.
[12] J.L. Peterson, Petri Net Theory and the Modelling of Systems, Prentice-Hall, Englewood

Cliffs, NJ, 1981.
[13] M. Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis, Modelling with Generalized

Stochastic Petri Nets, Wiley, New York, 1995.
[14] Personal Systern/2 and Personal Computer BIOS Interface Technical Reference, IBM

Corporation, Armonk, NY, 1988.
[15] Personal System/2 Hardware Interface Technical Reference - Common Interfaces, IBM

Corporation, Armonk, NY, 1990.

