{9 TeEXAS
INSTRUMENTS

Design of Active Noise Control
Systems With the TMS320
Family

Application
Report

1996 Digital Signal Processing Solutions

‘? TEXAS
INSTRUMENTS

Printed in U.S.A., June 1996 SPRA042

6}
<
o
A

uonesyddy

Anweq 02eSL @Yl YU M swdjsihs
JO4UO9 ISION dAI}IY jJO ubisag

1996

If the spine is too narrow to print this text on, reduce
ALL spine copy (including Tl bug at the top of the spine
and the year at the bottom) the same amount and re-
position at the reference marks as shown for the blue-
line.

If the reduction required is such that the resulting copy
is very small, we may opt to print the spine with no text.

Design of Active Noise Control
Systems With the TMS320 Family

Sen M. Kuo, Ph.D.
Issa Panahi, Ph.D.
Kai M. Chung
Tom Horner
Mark Nadeski
Jason Chyan

Digital Signal Processing Products—Semiconductor Group

SPRA042
June 1996

©

T b TEXAS 2s

SOYINK - NSTRUM ENTS Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

Tlwarrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer.
Use of Tl products in such applications requires the written approval of an appropriate Tl officer.
Questions concerning potential risk applications should be directed to Tl through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does Tl warrant or
representthat any license, either express orimplied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of Tl covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 0 1996, Texas Instruments Incorporated

Content

Title Page

AB ST R A CT L 1

INTRODUCTION .. e e e e e e e e e 3

The General Concept of Acoustic NoiseControlt 3

General Applications of Active NoiseControl o 4

The Development of Active Techniquesfor Acoustic NoiseControl 5

EVALUATING THE PERFORMANCE OF ANC SYSTEMSt 7

TYPESOF ANC SY STEM S . .o e e 9

The Broadband Feedforward Systemot 9

The Narrowband Feedforward System 10

TheFeedback ANC SyStemo e e e 1

The Multiple-Channel ANC System it 12

ALGORITHMSFOR ANC SYSTEMS ..o e e e e 13

Algorithmsfor Broadband Feedforward ANC Systemst 13

Secondary-Path Effectso 14

Filtered-X Least-Mean-Square (FXLMS) Algorithm 15

Leaky FXLMSAIgorithm e e e e 20

Acoustic Feedback Effects and Solutions (FBFXLMS Algorithm) 20

Filtered-U Recursive LMS (RLMS) Algorithm 24

Algorithms for Narrowband Feedforward ANC Systems, 27
Waveform Synthesis Method of Synthesizing the Reference Signal

(Bssex AlQorithm)o 27

Adaptive NotCh FIlters e e e 31

Algorithmsfor Feedback ANC Systemst et 35

DESIGN OF ANC SY STEMS ..o e e 39

SysStem ConSIdErations oot 39

SamplingRateand Filter Length 40

CoherenCe FUNCLIONt e e e 41

CalSAlItY oot 42

Constraintsand SOIULIONSttt e 43

AutomaticGain Controller 44

Antialiasing and Reconstruction Analog Filters i 45

Analog Interface 46

ANC SYSTEM SOFTWARE ... o e e e 47

Implementation CoONSIAErationsttt e 47

Quantization Effectsin Digital AdaptiveFilters L 47

Real-Time Software Implementation Process i 50

Implementation of Adaptive FiltersWiththe TMS320C25......... ...t 51

Using the TM'S320C2x Simulator to Observe Noise Cancellation 55

Understanding How Individual Parameters Affect Algorithm Performance 56

PHYSICAL SETUP OF EXPERIMENTAL ANC SYSTEM IN AN ACOUSTICDUCT 59

OPTIMIZATION OF THE EXPERIMENTAL SYSTEM e 61
DeterminingtheValue of L o 61
Determiningthe Value of LEAKY e 63
Determining the Gain of the Preamplifier i, 64

Single-Tone Sinusoidal NOISE SOUrCECaSeottt e 66

Multiple-Tone Sinusoidal NoiseSourceCaseoovveeiiiiii s 69

CONCLUSION Lo e e e e e e 75

REFERENCES e e 77
Appendixes

Title Page

APPENDIX A: PSEUDO RANDOM NUMBER GENERATOR ...t 81

APPENDIX B: DIGITAL SINE-WAVE GENERATOR e 83
Table Look-Up Method e 83
Digital OSCIHIEtOr e 84

APPENDIX C: TM S320C25 ARIEL BOARD IMPLEMENTATION OF

ANC ALGORITHM S o e 85
The Filtered-X LMSAIQOrithmo e 85
Filtered-U RLMS AIQOrithm e e 95
Filtered-X LMS Algorithm With Feedback Cancellation 107

APPENDIX D: GENERAL CONFIGURABLE SOFTWARE FOR ANC EVALUATION 121
Configuration File (config.asm) DesCriptionccoiiiiiiii it 122
ANC Algorithm Module Listing (anC.asm)viiei it 127
ANC Linker Command File (anc.emd)ot 138
ANC System Configuration File (config.asm)t 139
TMS320C2x EVM lInitialization Command File (evminitemd) 141
Global Constantsand Variables(globalsasm) i 141
System Initidlization File (init.asm) e 144
Macro Library File (Macros.asm)o oottt et et et et 147
ANC System Supervisor Program (Main.asm)oueennn e iieeieeinennns 148
Memory Definitions File (Memory.asm)t 149
Simulation Models and Waveform Generators File (modelsasm) 152
Interrupt Vectors and Interrupt Service Routine Traps File (vectorsasm) 155

APPENDIX E: SCHEMATIC DIAGRAM OF 8-ORDER BUTTERWORTH

LOW-PASS FILTER .t e e 157

APPENDIX F: ANC UNIT SYSTEM SETUP AND OPERATION PROCEDURE 159
HarOWare . o 159
SO A . . oot e 159
OpEration ProCedUNEot 160

APPENDIX G: TMS320C26 DSP STARTER KIT, AN ALTERNATIVE TO THE

SPECTRUM ANALY ZER ..o e e e e e e e e 161

List of Illustrations

Figure Title Page
1 Physical Concept of ActiveNoiseCancellationc.co it 4
2 Single-Channel Broadband Feedforward ANC SysteminaDuct 10
3 Narrowband Feedforward ANC Systemottt e 10
4 Feedhatk ANC Sy Stemt e e 1
5 Multiple-Channel ANC Systemfora3-DEnclosure ..., 12
6 System Identification Approach to Broadband Feedforward ANC 14
7 Block Diagram of ANC System ModifiedtoIncludeH(z)o i, 14
8 Block Diagram of the FXLMS Algorithm for ANC e 16
9 Experimental Setup for the Off-Line Secondary-PathModeling 18
10 Active Noise Control Usingthe FXLMSAIgorithm i 19
11 ANC System With Acoustic Feedback Cancellation 21
12 Off-Line Modeling of Secondary and Feedback Paths 22
13 ANC System With the Filtered-U RLMS Algorithm o it 25
14 Spectrum of Original NoiSeSignal e 27
15 Pole-Zero Placement inZ Planeot e 30
16 Effect of Poleon NotchBandwidth e 31
17 Single-Tone ANC System With Adaptive Notch Filter 32
18 Multiple 2-Weight Adaptive FiltersinParallel i, 35
19 Block Diagram of the Feedback ANC System it e e 36
20 Probe Tube Used to INCrease CONErencCeo v ittt it et i 41
21 Microphone Mounting Method to Reduce Flow Turbulence 42
22 ANC Systemin Duct-Like MachineChamber i 44
23 TMS320C25-Based ANC SystemHardwareoooit it 44
24 Block Diagram of an AGC i 45
25 Fixed-Point Arithmetic Model of theLMSAIlgorithm o i, 48
26 Adaptive Filter Implementation ProCESSottt 51
27 Memory Layout of Weight Vector and DataVectorccoiiiiiiiininennn. 53
28 TMS320C25 Central ArithmeticLogicUnit (CALU) ... 54
29 TheError Signal Imported FrOmM MATLABot e et et e e 56
30 Error Signal Generated With it =2048 i e e e 56
31 Experimental Setup of the One-Dimensional Acoustic ANCDuct System 60
32 Level of Attenuation of the NoiSe SOUrCEVEISUSHL . . . oottt e e 62
33 Overdl Performance asaFunction of EQuation (95) ...t 63
34 Noise Reduction of SystemasaFunctionof LEAKY i, 64
35 Noise Reduction of the System as a Function of Preamplifier Gain 65
36 Error Spectrafor FXLMS Algorithm, Noise Source |s a200-Hz Single-Tone Sinusoid 66

37 Freguency Responseof Primary PathP(z) e 68

38 Frequency Responseof Secondary PathH(zZ) i i 68
39 Frequency Responseof Feedback Path F(z) i e 69
40 Error Spectrafor FXLMS Algorithm, Noise Source |s a 3-Tone Sinusoid, Order of W(z) = 64,
Order Of C(Z) = B4 ..o e 70
41 Error Spectrafor FXLMS Algorithm, Noise Source |s a 3-Tone Sinusoid, Order of W(z) = 127,
Order Of C(2) = 128 ..ot e 71
42 Error Spectrafor FBFXLMS Algorithm, Noise Source Is a 3-Tone Sinusoid, Order of W(z) = 64,
Order of C(z) =64, Order of D(2) =64ottt e 72
43 Error Spectrafor FURLMS Algorithm, Noise Source |s a 3-Tone Sinusoid, Order of A(z) = 63,
Order of B(z) =63, Order of C(Z) =64ottt 73
44 Pseudo Random Number Generator, 16-BitCaset 81
45 How Constants Are Used in Modeling Acoustic-Channel Transfer Function............... 5126

List of Tables

Table Title Page
1 Complexity of Broadband ANC and Narrowband ANC i 29
2 Performance of the SystemasaFunctionof L 61
3 Noise Attenuation for a Single-Tone Sinusoidal NoiseSource, 67
4 Filter Ordersfor 3-Tone Sinusoidal NOISESOUrCE v vt e e e 69
5 Section 1 of the Configuration File 122
6 Section 2 of theConfiguration File 123
7 Number of Instruction Cycles, DSP Execution Time, and TM S320C25 DSP Overhead

per AlQOrthm .. 125
8 How Output Signal Arrays Are Used With Various Algorithms 126

Program Listings

Title Page
The Filtered-X LMS AIQOrithm e e 85
Filtered-U RLMS AlQOrithmo e 95
Filtered-X LM S Algorithm With Feedback Cancellation i .. 107
ANC Algorithm Module Listing (8nC.a5M) vttt e e e 127
ANC Linker Command File (anc.cmd)ot 138
ANC System Configuration File (config.asm)co i 139
TMS320C2x EVM Initidization Command File (evminitemd) 141
Global Constants and Variables (globals.asm) 141
System Initialization File (init.asm) e 144
Macro Library File (MacroS.a5m)ottt e e e e e 147
ANC System Supervisor Program (Main.asm)ttt 148
Memory Definitions File (MemOry.asm)t 149
Simulation Models and Waveform Generators File(modelsasm) ...t 152
Interrupt Vectors and Interrupt Service Routine Traps File (vectorsasm)oovvn... 155

Vi

ABSTRACT

Anactivenoisecontrol (ANC) system based on adaptivefilter theory wasdevel opedinthe 1980s; however,
only with the recent introduction of powerful but inexpensive digital signal processor (DSP) hardware,
such asthe TM S320 family, hasthetechnol ogy become practical. The specialized DSPswere designed for
real-time numerical processing of digitized signals. These devices have enabled the low-cost
implementation of powerful adaptive ANC agorithms and encouraged the widespread devel opment of

ANC systems. ANC that uses adaptive signal processing implemented on a low-cost, high-performance
DSP is an emerging new technology.

Thisapplication report presents general background information about ANC methods. Contrasts between
passive and active noise control are described, and the circumstances under which ANC is preferable are
shown. Different types of noise-control algorithms are discussed: feedforward broadband, feedforward

narrowband, and feedback algorithms. The report details the design of a ssmple ANC system using a
TMS320 DSP and the implementation of that design.

INTRODUCTION

The General Concept of Acoustic Noise Control

Acoustic noise problems in the environment become more noticeable for several reasons:

* Increased numbers of large industrial equipments being used:
— Engines
— Blowers
— Fans
— Transformers
— Compressors
— Motors

¢ Thegrowth of high-density housing increasesthe population’s exposure to noise because of the
proximity to neighbors and traffic

* The use of lighter materials for building and transportation equipment, resulting from cost
constraints in construction and fabrication

Two types of acoustic noise exist in the environment. Oneis caused by turbulence and is totally random.
Turbulent noise distributes its energy evenly across the frequency bands. It is referred to as broadband
noise, and examples are the low-frequency sounds of jet planes and the impulse noise of an explosion.
Another type of noise, called narrowband noise, concentrates most of its energy at specific frequencies.
Thistypeof noiseisrelated torotating or repetitivemachines, soitisperiodic or nearly periodic. Examples
of narrowband noise include the noise of internal combustion engines in transportation, compressors as
auxiliary power sources and in refrigerators, and vacuum pumps used to transfer bulk materials in many
industries.

There are two approaches to controlling acoustic noise: passive and active. The traditional approach to
acoustic noise control uses passive techniques such as enclosures, barriers, and silencers to attenuate the
undesired noise. Passive silencers use either the concept of impedance change caused by a combination
of bafflesand tubesto silence the undesired sound (reactive silencers) or the concept of energy loss caused
by sound propagation in a duct lined with sound-absorbing material to provide the silencing (resistive
silencers). Reactive silencers are commonly used as mufflers on internal combustion engines, while
resistivesilencersareused mostly for duct-bornefan noise. Thesepassivesilencersarevaluedfor their high
attenuation over abroad frequency range. However, they arerelatively large, costly, and ineffective at low
frequencies, making the passive approach to noise reduction often impractical. Furthermore, these
silencers often create an undesired back pressure if thereis airflow in the duct.

In an effort to overcome these problems, considerabl e interest has been shown in active noise control. The
active noise control system contains an electroacoustic device that cancels the unwanted sound by
generating an antisound (antinoise) of equal amplitude and opposite phase. The original, unwanted sound
and the antinoise acoustically combine, resulting in the cancellation of both sounds. Figure 1 shows the
waveforms of the unwanted noise (the primary noise), the canceling noise (the antinoise), and the residual
noise that results when they superimpose. The effectiveness of cancellation of the primary noise depends
on the accuracy of the amplitude and phase of the generated antinoise.

Primary Noise Waveform
+
Antinoise Waveform

N\

Figure 1. Physical Concept of Active Noise Cancellation

Residual Noise

~——T~—

General Applications of Active Noise Control

The successful application of active control is determined on the basis of its effectiveness compared with
passive attenuation techniques. Active attenuation i s an attractive meansto achieve large amounts of noise
reductionin asmall package, particularly at low frequencies (below 600 Hz). At low frequencies, where
lower sampling rates are adequate and only plane wave propagation is allowed, active control offersreal
advantages.

From a geometric point of view, active noise control applications can be classified in the following four
categories:

Duct noise: one-dimensional ducts such as ventilation ducts, exhaust ducts, air-conditioning
ducts, pipework, etc.

Interior noise: noise within an enclosed space

Personal hearing protection: a highly compacted case of interior noise

Free space noise: noise radiated into open space

Specific applications for active noise control now under development include attenuation of unavoidable
noise sources in the following end-equipment:

Automotive (car, van, truck, earth-moving machine, military vehicle)

— Single-channel (one-dimensional) systems: Electronic muffler for exhaust system,
induction system, etc.

— Multiple-channel (three-dimensional) systems:. Noise attenuation inside passenger
compartment and heavy-equipment operator cabin, active engine mount, hands-free
cellular phone, etc.

Appliance

— Single-channel systems: Air conditioning duct, air conditioner, refrigerator, washing
machine, furnace, dehumidifier, etc.

— Multiple-channel systems: Lawn mower, vacuum cleaner, roomisolation (local quiet zone),
etc.

Industrial: fan, air duct, chimney, transformer, blower, compressor, pump, chain saw, wind

tunnel, noisy plant (at noise sources or many local quiet zones), public phone booth, office

cubicle partition, ear protector, headphones, etc.

Transportation: airplane, ship, boat, helicopter, snowmobile, motorcycle, diesel locomotive, etc.

The algorithms developed for active noise control can also be applied to active vibration control. Active
vibration control can be used for isolating the vibrations from a variety of machines and to stabilizing
various platforms in the presence of vibration disturbances. As the performance and reliability continue
to improve and theinitial cost continuesto decline, active systems may become the preferred solution to
avariety of vibration-control problems.

The Development of Active Techniques for Acoustic Noise Control

Active noise control is developing rapidly because it permits significant improvements in noise control,
often with potentia benefitsin size, weight, volume, and cost of the system. The book Active Control of
Sound [1] provides detail ed information on active noise control with an emphasis on the acoustic point of
view.

The design of an active noise canceler using a microphone and an electronically driven loudspeaker to
generate acanceling sound wasfirst proposed and patented by Lueg in 1936 [2]. Whilethe patent outlined
the basic idea of ANC, the concept did not have real-world applications at that time. Because the
characteristics of an acoustic noise source and the environment are not constant, the frequency content,
amplitude, phase, and velocity of the undesired noise are nonstationary (time varying). An active noise
control system must be adaptive in order to cope with these changing characteristics.

Inthefield of digital signal processing, there isaclass of adaptive systemsin which the coefficients of a
digital filter are adjusted to minimizean error signal (the desired signal minustheactual signal; thedesired
signal istypically defined to be zero). A duct-noise cancellation system based on adaptivefilter theory was
developed by Burgessin 1981 [3]. Later in the 1980s, research on active noise control was dramatically
affected by the development of powerful DSPs and the development of adaptive signal processing
algorithms [4]. The specialized DSPs were designed for real-time numerical processing of digitized
signals. These devices enabled the low-cost implementation of powerful adaptive algorithms [5] and
encouraged the widespread devel opment and application of active noise control systems based on digital
adaptive signal processing technology.

Many modern active noise cancelers rely heavily on adaptive signal processing—without adequate
consideration of the acoustical elements. If the acoustical design of the system isnot optimized, the digital
controller may not be able to attenuate the undesired noise adequately. Therefore, it is necessary to
understand the acoustics of the installation and to design the system to assist the adaptive active noise
controller to carry out its work. For electrical engineers involved in the development of active control
systems, Nelson's book [1] provides an excellent introduction to acoustics from the active noise control
point of view.

EVALUATING THE PERFORMANCE OF ANC SYSTEMS

Analysis of the performance of a given DSP-based controller for different types of source noise and
different ANC agorithmsis an integral part of successful and optimal design methodol ogy.

An approach to adaptive ANC performance analysisthat involves ahierarchy of techniques, starting with
an ideal simplified problem and progressively adding practical constraints and other complexities, was
developed by Morgan [8]. Performance analysis provides answers to the following questions:

* What are the fundamental performance limitations?

* What arethe practical constraints that limit performance?

¢ How is performance balanced against complexity?

* What isapractical design architecture?

To aid in answering these questions, four levels of performance analysis are defined:

* Leve | derivesfundamental performancelimits, given continuous measurementsover theentire
performance surface.

* Leve Il addsthe practical constraint of afixed number of sensors at discrete locations.

¢ Leve Ill incorporates knowledge of the transfer function structure between sensor(s) and
activator(s).

* Level IV addsin all of the other practical effects and design constraints required for detailed
performance calculations.

At each step, a degree of confidence is gained and a benchmark is established for comparison and
cross-checking with the next level of complexity.

Theprincipleof ANCissimple; however, whenitisappliedintherea world, thefollowing questions must
be answered [9]:

¢ Which algorithm should be adopted?

* Where should speakers and microphones be located?

¢ How isthe flow noise (the noise of air passing over the surface of the microphone) going to be

reduced?

* How isthe power of the speakers going to be increased?

* How isthe durability of the microphones and the speakers going to be increased?

* How isthe cost of the hardware (controller, microphone, and speaker) going to be reduced?

To be suitable for industrial or commercia use, the ANC system must have certain properties[10]:

¢ Maximum efficiency over the desired frequency band

¢ Autonomy with regard to the installation (the system could be built and preset at the time of
manufacture and then installed on site)

e Sef-adaptability of the system to deal with any variations in the physical parameters
(temperature, airflow, etc.)

* Robustness and reliability of the elements of the system and simplification of the control
electronics

The continuous progress of active noise control involves the development of improved adaptive signal
processing algorithms, transducers, and digital signal processing hardware. More sophisticated adaptive

7

filtering algorithmsallow faster convergence (the equalization of the phase and magnitude of theundesired
noise and the antinoise so that cancellation occurs), greater noise attenuation, and are more resistant to
interference. The DSP hardware implementation allows these more sophi sticated algorithmsto be applied
in real time to improve system performance.

TYPES OF ANC SYSTEMS

Broadband noise cancellation requires knowledge of the noise source (the primary noise) in order to
generatetheantinoisesignal. The measurement of the primary noiseisused asareferenceinput tothenoise
canceler. Primary noisethat correlates with the referenceinput signal is canceled downstream of the noise
generator (aloudspeaker) when phase and magnitude are correctly modeled in the digital controller.

For narrowband noise cancellation (reduction of periodic noise caused by rotational machinery), active
techniques have been developed that are very effective and that do not rely on causality (having prior
knowledge of the noise signal). Instead of using an input microphone, a tachometer signal provides
information about the primary frequency of the noise generator. Because all of the repetitive noise occurs
at harmonics of the machine'sbasic rotational frequency, the control system can model these known noise
frequencies and generate the antinoise signal. Thistype of control system isdesirable in avehicle cabin,
because it will not affect vehicle warning signals, radio performance, or speech, which are not normally
synchronized with the engine rotation.

Active noise control systems are based on one of two methods. Feedforward control is where a coherent
reference noise input is sensed before it propagates past the canceling speaker. Feedback control [6, 7] is
wherethe active noise controller attemptsto cancel the noise without the benefit of an upstream reference
input.

Feedforward ANC systems are the main techniques used today. Systemsfor feedforward ANC arefurther
classified into two categories:

e Adaptive broadband feedforward control with an acoustic input sensor

* Adaptive narrowband feedforward control with a nonacoustic input sensor

The Broadband Feedforward System

A considerable amount of broadband noise is produced in ducts such as exhaust pipes and ventilation
systems. A relatively simple feedforward control system for along, narrow duct isillustrated in Figure 2.
A reference signal x(n) is sensed by an input microphone close to the noise source before it passes a
loudspeaker. The noise canceler usesthereferenceinput signal to generateasignal y(n) of equal amplitude
but 180° out of phase. Thisantinoise signal is used to drive the loudspeaker to produce a canceling sound
that attenuates the primary acoustic noise in the duct.

Thebasic principle of the broadband feedf orward approach isthat the propagation time delay between the
upstream noise sensor (input microphone) and the active control source (speaker) offers the opportunity
to electrically reintroduce the noise at a position in the field where it will cause cancellation. The spacing
between the microphone and the loudspeaker must satisfy the principles of causality and high coherence,
meaning that the reference must be measured early enough so that the antinoise signal can be generated
by the time the noise signal reaches the speaker. Also, the noise signal at the speaker must be very similar
to the measured noise at the input input microphone, meaning the acoustic channel cannot significantly
changethenoise. Thenoise cancel er usestheinput signal to generateasignal y(n) that isof equal amplitude
and is 180° out of phase with x(n). Thisnoiseis output to aloudspeaker and used to cancel the unwanted
noise.

Noise Source

/» Canceling Speaker

Primary |
Noise |

A e(n) \ Error Microphone

y(n)

ANC
Controller

Input Microphone

x(n)

\ 4

Figure 2. Single-Channel Broadband Feedforward ANC System in a Duct

The error microphone measures the error (or residual) signal e(n), which is used to adapt the filter
coefficients to minimize this error. The use of a downstream error signal to adjust the adaptive filter
coefficients does not constitute feedback, because the error signal is not compared to the reference input.

Actual implementations require additional considerations to handle acoustic effects in the duct. These
considerations are discussed in the section Algorithms for ANC Systems, page 13.

The Narrowband Feedforward System

In applications where the primary noise is periodic (or nearly periodic) and is produced by rotating or
reciprocating machines, the input microphone can be replaced by a nonacoustic sensor such as a
tachometer, an accelerometer, or an optical sensor. This replacement eliminates the problem of acoustic
feedback (described in the subsection Acoustic Feedback Effects and Solutions, page 20).

The block diagram of a narrowband feedforward active noise control system is shown in Figure 3. The
nonacoustic sensor signal is synchronous with the noise source and is used to simulate an input signal that
containsthefundamental frequency and all theharmonicsof theprimary noise. Thistypeof system controls
harmonic noises by adaptively filtering the synthesized reference signal to produce a canceling signal. In
many cars, trucks, earth moving vehicles, etc., the revolutions per minute (RPM) signal is available and
can be used asthereference signal. An error microphoneis still required to measure the residual acoustic
noise. Thiserror signal isthen used to adjust the coefficients of the adaptive filter.

Noise Source /»Canceling Speaker

Primary
Noise
N
Nonacoustic \
Sensor a Error Microphone
- y(n) e(n)
Synchronization
Signal X ANC
Generator - Controller <4

Figure 3. Narrowband Feedforward ANC System

10

Generally, the advantage of narrowband ANC systemsisthat the nonacoustic sensorsareinsensitiveto the
canceling sound, leading to very robust control systems. Specifically, this technique has the following
advantages:

Environmental and aging problems of the input microphone are automatically eliminated. This
is especialy important from the engineering viewpoint, because it is difficult to sense the
reference noise in high temperatures and in turbulent gas ducts like an engine exhaust system.
Theperiodicity of the noise enablesthe causality constraint to be removed. The noisewaveform
frequency content is constant. Only adjustments for phase and magnitude are required. This
results in more flexible positioning of the canceling speaker and allows longer delays to be
introduced by the controller.

The use of a controller-generated reference signal has the advantage of selective cancellation;
that is, it has the ability to control each harmonic independently.

It is necessary to model only the part of the acoustic plant transfer function relating to the
harmonic tones. A lower-order FIR filter can be used, making the active periodic noise control
system more computationally efficient.

The undesired acoustic feedback from the canceling speaker to the input microphone [16] is
avoided.

The Feedback ANC System

Feedback active noise control was proposed by Olson and May in 1953 [6]. In this scheme, a microphone
is used as an error sensor to detect the undesired noise. The error sensor signal is returned through an
amplifier (electronic filter) with magnitude and phase response designed to produce cancellation at the
sensor viaaloudspeaker |ocated near themicrophone. Thisconfiguration providesonly limited attenuation
over arestricted frequency rangefor periodic or band-limited noise. It also suffersfrominstability, because
of the possibility of positive feedback at high frequencies. However, due to the predictable nature of the
narrowband signals, amore robust system that usesthe error sensor’s output to predict the referenceinput
has been developed (see Figure 4). The regenerated reference input is combined with the narrowband
feedforward active noise control system.

Noise Source
/- Canceling Speaker

Primary
Noise

/
=

Error Microphone

A
y(n) e(n)
ANC
Controller

Figure 4. Feedback ANC System

One of the applications of feedback ANC recognized by Olson [7] is controlling the sound field in
headphones and hearing protectors[27]. In this application, a system reduces the pressure fluctuationsin
the cavity closeto alistener’s ear. This application has been devel oped and made commercially available.

11

The Multiple-Channel ANC System

Many applications can display complex modal behavior. These applicationsinclude:
¢ Active noise control in large ducts or enclosures
¢ Activevibration control on rigid bodies or structures with multiple degrees of freedom
¢ Active noise control in passenger compartments of aircraft or automobiles

When the geometry of the sound field iscomplicated, it isno longer sufficient to adjust asingle secondary
source to cancel the primary noise using a single error microphone. The control of complicated acoustic
fields requires both the exploration and development of optimum strategies and the construction of an
adequate multiple-channel controller. These tasks require the use of a multiple-input multiple-output
adaptivealgorithm. The general multiple-channel ANC systeminvolvesan array of sensorsand actuators.
A block diagram of a multiple-channel ANC system for a three-dimensional application is shown in
Figure5.

[“Enclosure ... A 1
1 1 1
| M1 O x1(n) y1(n) I:I 51 MLO el(n) :
| |
I |
| i 2 2 2 |
| Sl\gzlf:e M2 O—=> (n) y2(n) I:l 2 M2 OS5 (n) |
| : ' ‘ I
| : ' : |
: Nonacoustic ' ' :
S
| ensol\r/lJ xJ(n) yL(n) I:[I sl MMC eM(n) |
| |
O E S L
x(n) y(n)
R R ANC e(n)
> > Controller

Figure 5. Multiple-Channel ANC System for a 3-D Enclosure

12

ALGORITHMS FOR ANC SYSTEMS

This section discusses the algorithms used in three kinds of ANC systems:
¢ Broadband feedforward ANC systems that use acoustic sensor (microphone) input
¢ Narrowband feedforward ANC systems that use nonacoustic sensor input
¢ Feedback ANC systemsthat use only an error sensor

Adaptive filters can berealized as:
* Transversa—finite impulse response (FIR)
* Recursive—infiniteimpulse response (1IR)
* Latticefilters
* Transform-domain filters

Themost common algorithm applied to adaptivefiltersisthetransversal filter using theleast mean-squared
(LMS) algorithm. The residual noise can be used as an error signal input to an adaptive algorithm that
adjusts the filter coefficients to model (estimate) the acoustic-channel effects.

Algorithms for Broadband Feedforward ANC Systems

Broadband active noise control can be described in a system identification framework, as shown in
Figure 6. Using a digital frequency-domain representation of the problem, the ideal active noise control
system uses an adaptive filter W(z) to estimate the response of an unknown primary acoustic path P(z)
between the reference input sensor and the error sensor. The z-transform of e(n) can be expressed as:

E(z) = D) + Y(29) = X(9[P(2) + W(2)])

where E(2) is the error signal, X(z) is the input signal, and Y (2) is the adaptive filter output. After the
adaptive filter W(z) has converged, E(z) = 0. Equation (1) becomes:

W(2) = P(2) 2
which implies that:
y(n) = —d(n) 3

Therefore, the adaptivefilter output y(n) hasthe same amplitude but is 180° out of phase with the primary
noise d(n). When d(n) and y(n) are acoustically combined, the residual error becomes zero, resulting in
cancellation of both sounds based on the principle of superposition.

13

Acoustic
Duct

x(n) dn) + e(n)

Unknown .
—» Error Microphone

System P(z)

\ 4

Input Microphone

o ANC Controller

e(n)

\ 4
-
<
(0]
A

Figure 6. System Identification Approach to Broadband Feedforward ANC

Secondary-Path Effects

The error signal e(n) is measured at the error microphone downstream of the canceling speaker. The
summing junction in Figure 6 represents the acoustical environment between the canceling speaker and
the error microphone, where the primary noise d(n) is combined with the antinoise y(n) output from the
adaptive filter. The antinoise signal can be modified by the secondary-path function H(z) in the acoustic
channel from y(n) to e(n), just as the primary noise is modified by the primary path P(z) from the noise
sourcetotheerror sensor. Therefore, it isnecessary to compensatefor H(z). A moredetailed block diagram
of an active noise control system that includes the secondary path H(z) is shown in Figure 7.

ANC Controller

Acoustic
Duct
x(n) d(n) + e(n)
» P(z) » —b
I 7 +
| \
\ | y(n)
| > W(2) i > H(z)
\ \
\ A \
\ \
| \ e(n)
\ > LMS ‘ 4
\ \
| \
| \
L

Figure 7. Block Diagram of ANC System Modified to Include H(z)

14

From Figure 7, the z-transform of error signal e(n) is:
E(2) = X(2) P(2) + X(2) W(2) H(2) (4)

Assuming that W(z) has sufficient order, after the convergence of the adaptive filter, theresidual error is
zero (that is, E(z) = 0). Thisresult requires W(z) to be:

W@ = ®

to realize the optimal transfer function.

Thus, the adaptive filter W(z) hasto model the primary path P(z) and inversely model the secondary path
H(z). However, it isimpossible to invert the inherent delay caused by H(z) if the primary path P(z) does
not contain adelay of at least equal length. Thisisthe overall limiting causality constraint in broadband
feedforward control systems. Furthermore, from equation (5), the control system is unstableif thereisa
frequency w such that H(w) = 0. Also, the control system isineffective if there is afrequency w where
P(w) = 0, (that is, azero in the primary path causes an unobservable control frequency). Therefore, the
characteristics of the secondary path H(z) have significant effects on the performance of an ANC system.

Filtered-X Least-Mean-Square (FXLMS) Algorithm

Toaccount for the effects of the secondary-path transfer function H(z), the conventional |east-mean-square
(LMS) agorithm [4] needsto bemodified [3]. To ensure convergenceof theal gorithm, theinput to theerror
correlator is filtered by a secondary-path estimate C(z). This results in the filtered-X LMS (FXLMYS)
algorithm developed by Morgan [11]. Burgess [3] has suggested using this FXLMS algorithm to
compensate for the effects of the secondary path in ANC applications.

The FXLMS agorithmisillustrated in Figure 8, where the output y(n) is computed as:

V() = W) = > wlnx(n - i) ©

i=0

where wT(n) = [wg(n) wy(n) ... wy — 1 (M]T is the coefficient vector of W(z) at time n and
x(n) = [x(n) x(n=1) ... x(n—N + 1)]T isthe reference signal vector at time n.

Thefilter isimplemented on a DSP in the form:

Y = > w(ox(n ~ i)

i=0

15

Acoustic

Duct
x(n) d(n) + e(n)
B P(z) B >3

‘rAI_\lC_ Controller |] y'(m)

‘ y(n)
} > W(2) — | HO
| M A }
} C(@) |
‘ |
} x(n) |
‘ » LMS i <
\ \
- J

Figure 8. Block Diagram of the FXLMS Algorithm for ANC
The FXLMS algorithm can be expressed as.

w(n + 1) = w(n) — ue(n)x(n)h(n))

where L isthe step size of the al gorithm that determinesthe stability and convergence of the algorithm and
h(n) is the impulse response of H(z). Therefore, the input vector x(n) isfiltered by H(z) before updating
theweight vector. However, in practical applications, H(z) isunknown and must be estimated by thefilter,
C(2). Therefore:

wi(n + 1) = w;(n) — pe(nx’(n — i) i=01,.,N—-1 ®)
and:

w(n + 1) = w(n) — ue(n)x’(n) 9)
where:

x'(n) = c'x(n) = gqu — i) (10

isthe vector for the filtered version of reference input x'(n) that is computed as:

x'(nN) = [X'(nN) x'(n=1) ... x'(n=N+ 1)]" (19)

16

and:
c=1[coc, ... Cyal' (12)

isthe coefficient vector of the secondary-path estimate, C(z).

Whenthisalgorithmisimplemented, the convergence of thefilter can be achieved much morequickly than
theory suggests, and the algorithm appears to be very tolerant of errors made in the estimation of the
secondary path H(z) by thefilter C(z). Asshown by Morgan [11], thea gorithm still convergeswith nearly
90° of phase error between C(z) and H(2).

It isimportant that in equation (7), aminus sign is used for ANC applicationsinstead of aplussign asin
aconventional LMS algorithm. Thisisbecause the error signal inan ANC systemise(n) = d(n) +y'(n),
due to the fact that the residual error e(n) is the result of acoustic superposition (addition) instead of
electrical subtraction.

Thetransfer function H(z) isunknown and istime-varying dueto effects such as aging of the loudspeaker,
changesintemperature, and air flow inthe secondary path. Thus, several on-line modeling techniqueswere
developed by Eriksson [12]. Assuming the characteristics of H(z) are unknown but time-invariant, an
off-line modeling technique can be used to estimate H(z) during atraining stage. At the end of training,
the estimated model C(z) isfixed and used for active noise control. The experimental setup for the direct
off-line system modeling is shown in Figure 9, where an uncorrelated white noise isinternally generated
by the DSP. The training procedure is summarized following the figure. The algorithm of the white noise
generator isgiven in Appendix A, Pseudo Random Number Generator.

17

18

Canceling Speaker

| |
| |

\ Error Microphone |

| O— |

| |

| Power | secondary
| Amplifier Preamplifier | path

| } H()

\

| |[Reconstruction Antialiasing ||

| Filter Filter }

= |

\ DAC ADC }

\

| |

-]

White
Noise
Generator

Figure 9. Experimental Setup for the Off-Line Secondary-Path Modeling

Generate a sample of white noisey(n) using the algorithm given in Appendix A. Output y(n) to
drive the canceling loudspeaker. Thisinternally generated white noise is used as the reference
input for the adaptive filter C(z) and the LM'S coefficient adaptation algorithm.

Input the secondary-path response e(n) from the error microphone.
Compute the response of the adaptive model r(n):

M-1

) = > cmyn - i) (13)

i=0
where ¢,(n) istheith coefficient of the adaptivefilter C(z) at timen and M isthe order of filter.

Compute the difference:

e'(n) = e(n) —r(n) (14

5. Update the coefficients of the adaptive filter C(z) using the LM S algorithm:

cn+1) =c¢(n +uemymn-i), i=0,1,..., M-1 (15)

where |1 isthe step size that must satisfy the following stability condition:

1

<u<
O“MPy

(16)

where Py is the power of the generated white noise y(n).

6. Repeat the procedure for about 10 seconds. Save the coefficients of the adaptive filter C(z) and
use them in the following noise cancellation mode.

After the off-linemodeling iscompleted, the system isoperated in the active noi se cancellation mode. The
algorithm isillustrated in Figure 10, and the procedure of on-line noise control is summarized following
thefigure.

Input Microphone Canceling Speaker Error Microphone
Primary Noise \ x /
—_—b
e e —
} ANC Controller y(n) e(n) }
\ \
} \
| c) |
\ \
} | LMS |« }
- e 4

Figure 10. Active Noise Control Using the FXLMS Algorithm

1. Input thereference signal x(n) (from the input microphone) and the error signal e(n) (from the
error microphone) from the input ports.

2. Compute the antinoise y(n):
N-1

yn) = > winx(n - i) (17)

i=0

where w;(n) istheith coefficient of the adaptivefilter W(z) at timenand N isthe order of filter
w(2).

3. Output the antinoise y(n) to the output port to drive the canceling loudspeaker.

19

4. Compute the filtered-X version of x'(n):
M
x'(n) = z cx(n—1) (18)
i=0
5. Update the coefficients of adaptive filter W(z) using the FXLMS algorithm:
wi(n+ 1) = wi(n) —pue(n)x'(n-1i), i=0 1,....N-1 (19

6. Repeat the procedure for the next iteration. Note that the total number of memory locations
required for this algorithm is 2(N + M) plus some parameters.

Assembly languageimplementationsof the FXLM Salgorithmaregivenin Appendix C, TMS320C25 Ariel
Board Implementation of ANC Algorithms, and Appendix D, General Configurable Software for ANC
Evaluation.

Leaky FXLMS Algorithm

When an adaptive filter isimplemented on asignal processor with fixed word lengths, roundoff noiseis
fed back to the filter weights and accumul ates continuously. This can cause the coefficientsto grow larger
than the dynamic range of the processor (overflow), which results in inaccurate filter performance. One
solution to the problem is based on adding asmall forcing function, which tendsto bias each filter weight
toward zero. According to equation (9), this leaky FXLMS algorithm can be expressed as [5]:

w(n + 1) = vw(n) — ne(n)x'(n) (20)

where v (the leakage factor) is dlightly less than 1 and x'(n) is defined in equation (11).

The leaky FXLMS algorithm can not only reduce numerical error in the finite precision implementation
but also limit the output power of the loudspeaker to avoid nonlinear distortion, which is caused by
overdriving the canceling speaker.

Acoustic Feedback Effects and Solutions (FBFXLMS Algorithm)

Referring again to the simple system shown in Figure 2 on page 10, the antinoi se output to the loudspeaker
not only cancels acoustic noise downstream, but unfortunately, it also radiates upstream to the input
microphone, resultinginacontaminated referenceinput x(n). Thisacousti c feedback introducesafeedback
loop or polesin the response of the model and results in potential instability in the control system.

This problem has been intensively studied in active noise and vibration control literature. Solutions such
as the following have been proposed:

1. Usingdirectional microphonesand speakers[14]. (Thishasalimitationinthat directional arrays
are usually highly dependent on the spacing of the array elements and are directional over only
arelatively narrow frequency range.)

2. Using fixed compensating signals (generated from the compensating filter whose coefficients
are determined off-line by using atraining signal) to cancel the effects of the acoustic feedback

3. Using a second off-line adaptive filter in parallel with the feedback path [15]

4. Using an adaptive lIR filter [16]

This report examines methods 2 and 4. An adaptive feedforward controller with feedback compensation
isshowninFigure 11. Thefilter D(z) isan estimate of thefeedback path F(z) from the adaptivefilter output

20

y(n) to the output of the reference input microphone u(n). Filter D(z) removesthe acoustic feedback from
the reference sensor input; the filter C(z) compensates the secondary-path transfer function H(z) in the
FXLMSalgorithm. Removal of the acoustic feedback from thereferenceinput addsaconsiderable margin
of stability to the system if the model D(z) is accurate. The models C(z) and D(z) can be estimated
simultaneously by an off-line modeling technique using an internally generated white noise.

The expressions for the antinoise y(n), filtered-X signal x'(n), and the adaptation equation for the
FBFXLMS agorithm are the same as that for the FXLMS ANC system, except that x(n) in FBFXLMS
agorithm is afeedback-free signal that can be expressed as:

X(n) = u(m) - > dy(n - i) (21)

whereu(n) isthe signal from input microphone, d; istheith coefficient of D(z), and L isthe order of D(z).

In the case of a perfect model of the feedback path (that is, D(z) = F(2)), the acoustic feedback is
completely canceled by D(z). The adaptivefilter convergesto the transfer function given in equation (5),
theideal casewithout acoustic feedback. The function of D(z) is similar to the acoustic echo cancellation
that is used in teleconferencing applications [16].

F(2)

I
)
=

A4

e(n)

A

D(2)

W(z)

Figure 11. ANC System With Acoustic Feedback Cancellation

21

The system performsthe off-linemodeling first to estimate the secondary-path transfer function H(z) from
the canceling speaker to the error microphone and the feedback path transfer function F(z) from the
canceling speaker to theinput microphone. The off-line modeling algorithmisillustrated in Figure 12 and
the procedure is summarized following the figure.

Input Microphone Canceling Speaker Error Microphone

=

LMS LMS <
f(n) e'(n)

White Noise
Generator

Figure 12. Off-Line Modeling of Secondary and Feedback Paths

1. a Generate awhite noise sampley(n).
b. Output this excitation signal y(n) to drive the canceling loudspeaker.
c. Sendy(n) to the adaptive filters C(z) and D(2).
d. Sendy(n) tothe LMS agorithm for updating C(z) and D(z).

2. Input x(n) from the input microphone and e(n) from the error microphone.

3. Compute €(n) and f(n):

&) = &) - > ¢y) 22)
and
() = x() - > Ay -) 23

22

4. Update the coefficients of the adaptive filters C(z) and D(z) using the LM S algorithm:

c(n+ 1) =c(n) +uemymn-i), i=0 1,...M-1 (29
and
d(n + 1) = d(n) + uf(nN)y(n-j), j=0,1,....,L -1 (25)

5. Repeat the off-line modeling for about 10 seconds. Save the coefficients of adaptivefilters C(z)
and D(z) and use them in the following active noise cancellation mode.

After the off-line modeling, the ANC system is operated in active noise cancellation mode. The algorithm
(illustrated in Figure 11) is summarized as follows:

1. Input u(n) and e(n) from the input ports.
2. Compute the feedback-free reference input x(n):

X0) = u() -5 dy(n -) 26)
3. Compute the antinoise y(n):

N -1

ym) = > winx(n - i) (27)

i=1

where w;(n) isthe ith coefficient of the adaptivefilter W(z) at timen and N isthe order of filter
W(2).

4. Output the antinoise y(n) to the output port to drive the canceling loudspeaker.

5. Computethefiltered-X version of x'(n):

x'(n) = icix(n —1i) (28)

6. Update the coefficients of adaptive filter W(z) using the following FXLMS algorithm:
wi(n+ 1) = wi(n) + pe(n)x'(n-1i), i=0 1,....N-1 (29)

7. Repeat the algorithm for the next iteration. Note that the total number of memory locations
required in thisalgorithm is2(N + M + L) plus some parameters.

Assembly language implementations of thisalgorithm aregivenin Appendix C, TMS320C25 Ariel Board
Implementation of ANC Algorithms, and Appendix D, General Configurable Software for ANC
Evaluation.

23

Filtered-U Recursive LMS (RLMS) Algorithm

The adaptive infinite impul se response (11R) filter (method 4 on page 20) was proposed by Eriksson [17]
for usein activenoise control. Thisapproach considersthe acoustic feedback asapart of thewholeacoustic
plant, and the pol esintroduced by the acoustic feedback are removed by the poles of the adaptivel IR filter.
This control system dynamically tracks changesin the secondary and feedback paths during cancellation
operations. Also, as shown in equation (5), the IIR structure has the ability to model transfer functions
directly with poles and zeros. Although there are various adaptive IR agorithms that can be used, the
recursive LMS (RLMS) algorithm developed by Feintuch [18] is selected here for reasons of
computational simplicity.

The RLM S algorithm must also be modified to compensate for the transfer function of the secondary and
feedback paths. A block diagram of an ANC system using an adaptive IR filter is shown in Figure 13,
where y(n) isthe output signal of IR filter computed by:

Y = dxn) + My -1 = > a@xin-i) + > bmyn -) (30)

i=o =1

where:

a(n) =[ag(n) ag (n) ... ay —1 (N]T isthe weight vector of A(z) at timen

b (n) =[by (n) by (n) ... byy (N)]T isthe weight vector of B(z) at timen
y(n-1)=[y(h-1)y(n-2)...y(n—M)]T isthesignal vector containing output feedback with one delay
N = order of A(2)

M = order of B(2)

The filtered-U RLM S algorithm [12] can be expressed by two vector equations for adaptive filters A(z)
and B(2) asfollows:

aln + 1) = an) - we(n) x'(n) (31)
and

b(n + 1) = b(n) — pe(n) y'(n — 1) (32)
where:

yn-1) =y -yn-2 .. yn-M] (33)
and

y'(n) = i Gy(n —j) (34)

j=1
isthefiltered y(n) from C(z), and xX'(n) is defined in equation (11).

24

+
| ANC Controller | | i
| x(n) : + W(Z) : Y(n) |
| » |
| | Alz) 4’{% | |
: v |4 B(2) [T :
| |_________A__| | e(n)
: C(2) C(2) :
| LMS LMS |
| x'(n) y'(n) |
| A A |
e e .

Figure 13. ANC System With the Filtered-U RLMS Algorithm

After both A(z) and B(z) converge, the measured residua error signal e(n) isequal to zero. Now:

_AD P
W@ =186 T He - PO FO) %9

Given the complexities and pole-zero structure of P(z), H(z), and F(z), the convergence of A(z) and B(2)
cannot be generalized. Theoptimum solutionsA* (z) and B* (z) are not unique; however, thealgorithm will
converge to a solution that minimizes the residual error signal e(n). Based on equation (35), one possible
set of solutionsis:

A* (@) = ;P((ZZ)) (36)
and
B*(2) = % (37

Therefore, it is reasonable to use ahigher order for B(z) than for A(2).

25

The system performs the off-line modeling to estimate the secondary-path transfer function using the
algorithm summarized in the section on the FXLMS agorithm. After the off-line modeling, the ANC
systemisoperated in noise cancellation mode. The detailed algorithm, shownin Figure 13, is summarized
asfollows:

1
2.

6.

Input the reference signal x(n) and the error signal e(n) from the input ports.
Compute the antinoise y(n):
N-1

ym) = > axn—i) + > bn)yn - j) (38)
j=1

i=0
where N isthe order of the filter A(z) and Jisthe order of the filter B(2).

Output the antinoise y(n) to the output port to drive the canceling speaker.
Perform the filtered-U operation:

x'(n) = le cx(n—1i) (39
and
ym=> cyt-i-1 (40)

i=0
where M isthe order of thefilter C(2).

Update the coefficients of the adaptive filters A(z) and B(z) using the filtered-U RLMS
agorithm:

a(n+ 1) = a(n + we(mx'(n—-i), i=0 1,...N-1 (42)
and
bi(n + 1) = b(n) —u,e(My'(n-j, j=1, 2..., 3 (42)

Repeat the algorithm for the next iteration.

Assembly language implementations of the filtered-U RLMS algorithm are given in Appendix C,
TMS320C25 Ariel Board Implementation of ANC Algorithms, and Appendix D, General Configurable
Software for ANC Evaluation.

26

Algorithms for Narrowband Feedforward ANC Systems

In many practical applications, the acoustic measurement of the reference signal is not feasible, such as
when the primary noiseis produced by rotating machinesandisperiodicasillustratedin Figure 14. Inthese
cases, an dternative method can be used. This method estimates the acoustic signal using an indirect
measurement from a nonacoustic sensor in place of the reference microphone.

Amplitude

f1 2fq 3fq 4fq 5f1
Frequency

Figure 14. Spectrum of Original Noise Signal

The synthesisof areferencesignal istriggered by the synchronized input pul se from the noise source, such
asatachometer signal synthesized from an automotive engine. In general, there aretwo types of reference
signalsthat are commonly used in the narrowband ANC systems:

* Impulsetrain with aperiod equal to the inverse of the fundamental frequency of the periodic

noise

* Sinewavesthat have the same frequencies as the corresponding harmonics to be canceled
Thefirst techniqueis called the waveform synthesis method (al so called the Essex algorithm), which was
proposed by Chaplin [19]. Thistechnique can be analyzed asthe adaptive transversal filter excited by the
impulsetrain and updated by the FXL M Sal gorithm [20]. The second techniqueiscall ed the adaptive notch
filter for interference cancellation. The single-frequency notch filter uses two adaptive weights and a 90°
phase shifter [21] to cancel an undesired sinusoidal interference in the primary input. The application of
this technique to the active periodic noise control was proposed by Ziegler [22].

Waveform Synthesis Method of Synthesizing the Reference Signal (Essex Algorithm)

A waveform synthesizer produces a canceling signa y(n) to drive the canceling speaker. The generated
waveform is output sequentially to the canceling speaker and is synchronized with the pulse from the
nonacoustic sensor. A microphoneintheareaof the quiet zone sensesthe residual sound and feedsthisback
to the adaptation unit that is used to modify the waveform synthesizer. Cancellation occurs only at the
frequenciesof the harmonics; thefrequency bandsbetween the harmonicsremain unaffected. Thisenables,
for example, normal speechto beheard clearly inan otherwiseimpossibly noisy room, or enablestheradio
to be heard through a headset while the wearer isriding a motorcycle. Another reason for removing only
some parts of the noise spectrum isthat in acar the driver needs some audible indication of engine speed
to be able to control the vehicle safely.

The preferred synchronization signal is derived from atoothed wheel driven by the engine, generating an
impulse train of perhaps a hundred equally spaced pulses in each cycle of the source. The waveform

27

synthesizer stores canceling waveform samples {w;(n), j =0, 1, ..., N — 1}, where N is the number of
samples for one cycle of the waveform. The synchronization signal is used to derive a memory address
pointer, which can be a software-incremented counter controlled by interrupts generated from the
synchronization signal. These samplesrepresent the required waveform to be generated and are presented
sequentialy to a digital-to-analog converter to produce the actual antinoise waveform for the canceling
speaker. That is:

yn) =wn), 0 =j<sN-1 (43)

representsthe jth element of {Wj (n)}, where | isapointer. Some advanced digital signal processors such
as TM S320C50, TM S320C30, and TM S320C40 have circular pointers for this type of addressing.

Theresidua noise picked up by the error microphoneissampled in synchronization with the reference and
canceling signals. The sampled error signal e(n) isthen used by the adaptation unit to adjust the values of
the canceling waveform {w; (n)} by the following algorithm:

w(n + 1) = w(n) - u signle(n)])

Thisalgorithmisthesign-error LM Salgorithm (sincethereferenceinput x(n) = 1), whichisderived based
on the criterion to minimize the absol ute value of the instantaneous error signal. In order to provide faster
convergence, the traditional LM S algorithm can be used:

w; (n+ 1) = w; (n) — uen) (45)

where [isless than unity.

In practice, the current error signal e(n) does not correspond to the jth element of the canceling waveform
wj(n). For a practical system, there is a delay of several milliseconds between the time the signal
[y(n) = Wj(l’l)] isfed to the speaker and thetimeit isreceived at the error microphone. Thisdelay can be
accommodated by subtracting atime offset from the circular pointer j that is pointing to the waveform:

Wia (N+ 1) = w;_, (n) — nen) (46)

where A isthetime delay of data samples between the output of the signal from the waveform synthesizer
and its reception at the residual error microphone; that is:

A (47)

where &t is the time delay (which is constant for a given speaker-microphone arrangement) and T is the
sampling period. Because the sampling rate is synchronized with the noise source, this offset number is
updated in correspondence with the changing sampling rate.

Greater degrees of cancellation can be achieved in the presence of unsynchronized background noiseif the
residual waveforms are averaged over a number of cycles. The performance improves by 3-5 dB per

28

freguency component. However, the necessary number of averagesstrongly dependson the characteristics
of the noise. Thus, there is atradeoff between the degree of cancellation and the adaptation time required
for canceling stationary waveforms.

The complexity of the broadband ANC system discussed previously and the narrowband ANC system
using the waveform synthesis method is summarized in Table 1, where N is the order of the filter and
complexity is given in terms of the number of coefficients that must be updated per sample period.

Table 1. Complexity of Broadband ANC and Narrowband ANC

OPERATION BROADBAND ANC | NARROWBAND ANC
Multiplication 2N+ 1 1
Addition 2N-1 1

The concept of the waveform synthesis method can be analyzed asif the adaptive FIR filter were excited
by a periodic impulse train of period L [20]. To analyze the canceler output e(n) for a given input d(n),
consider thetransfer function G(z) between theinitial input D(z) and the error output E(2). It isshown that
[20]:

_E® _ 1z
¢® 5@ " 1-a-nz “9)

The properties of the transfer function G(z), given in equation (48), are those of acomb filter with notches
at each harmonic frequency of the interference. Therefore, the tonal components of the periodic noise at
the fundamental and the harmonic frequencies can be attenuated by this multiple notch filter.

Equation (48) also showsthe location of the poles and zeros of G(z). For ageneric fundamental frequency
wg = 21t/ L, thepolesand the zeros are aligned exactly at the same anglesfor any given value of step size
M. The zeros are at

Zk = eijkmo (49)
and the poles are at
P, = (1 — wetikw (50)

where 0 < k <N —1isafrequency index. The pole-zero placement in the z plane is shown in Figure 15.

29

Imaginary
z Plane
N=8
d ~
/ P
NN
/ \ \
Lo L
N % ¥ & Real
S r=1-M |
\ \ / //
\\\ -
——

Figure 15. Pole-Zero Placement in z Plane

The zeros must have constant amplitude (|z| = 1) and be equally spaced (21t/ N) on the unit circle of the
z-plane to create nulls in the frequency response at frequencies kwg. The poles have the same angle
(frequency) asthe zeros but are equally spaced on thecircle at distance (1 —) from the origin. The effect
of the polesisto introduce aresonancein thevicinity for the null, reducing the bandwidth of the notch. If
M << 1 isused, the 3-dB bandwidth of each notch can be shown to be:

BW = % (H2) (51)

Therefore, the smaller the step size W, the closer the poles are to the zeros and the narrower the bandwidths
of the notches that can be achieved. This effect of a pole on notch bandwidth is shown in Figure 16.

30

With Pole

Magnitude

Without Pole

\ 4

Frequency
Figure 16. Effect of Pole on Notch Bandwidth

Adaptive Notch Filters

The second type of reference signal used in the narrowband ANC system is a sine wave with the same
frequency as the narrowband noise to be canceled. When asine wave is employed as the reference input,
the LM S agorithm becomes an adaptive notch filter to remove the primary spectral components within
anarrow band centered about the reference frequency. A very narrow notch isusually desired to filter out
the interference without distorting the signal and can be realized by an adaptive noise canceler. The
advantages of the adaptive notch filter are that it offers easy control of bandwidth, aninfinite null, and the
capability of adaptively tracking the exact frequency of the interference. Thisis especially true when the
frequency of the interfering sinusoid changes slowly.

The application of the adaptive notch filter to active periodic noise control was devel oped by Ziegler [22].
A block diagram of this narrowband ANC system with two adaptive weightsis shown in Figure 17. The
timing signal sensor, such as an engine tachometer, is used to determine the fundamental frequency at
which the repetitive noise is being generated. For example, an electric motor running a 1800 RPM
completes 30 revolutions per second with a fundamental frequency of 30 Hz. A four-cylinder engine
running at 1800 RPM also completes 30 revolutions per second but with only 15 complete firing cycles
per second, and thus has a fundamental frequency 15 Hz.

31

re P ————— ol
Wi
| e p [l yen) N
| Synchronizing Sine Wave |, Xo(n)) +
Signal Generator || H(z)
: | Y e | wg(n) AH |
| I
| | 90° : | :
| | n
| | [| 30 [} i
| | vV | wan) |l e(n)
| S SR
| Secondary-Path | | |
I Delay Unit z2 I :
I
: Xg'(n) x1'(n) | |
| - LMS |- :
|

Figure 17. Single-Tone ANC System With Adaptive Notch Filter

The single-frequency active noise controller shown in Figure 17 can be configured in parallel or cascade
structures [23] to cancel the narrowband noise at the fundamental frequency and its harmonics. A sine
wave generator provides a sinusoidal reference signal at the desired frequency. Employing a Hilbert
transform [24] as the 90° phase shifter, the sine wave is split into two orthogonal components, xg(n) and
x1(n), which can be used as reference inputs for the adaptive filter. These two signals are separately
weighted and then summed to produce the canceling signal y(n):

y(n) = wy(n) Xo(n) + wy(n) X, (n) (52)
where

Xo(n) = A cos(kmgn) (53)
and

X (n) = A sin(kwgn) (54)

where wy isthe fundamental frequency, k isthe harmonicindex, A isthe amplitude of thereferencesignal,
and nisthetimeindex. The sine-wave generator can be implemented by a ROM table look-up technique
or by adigital resonator [24]. Algorithms of a sine-wave generator using both the table look-up and the
digital oscillator are givenin Appendix B, Digital Sne-Wave Generator.

32

Themagnitude and the phase of thisreferencesignal areadjusted inthe controller, which feedsoneor more
loudspeakers serving as the control source to cancel the corresponding noise components. The LMS
algorithm updates the filter weights to minimize the residual error e(n):

Wo(n + 1) = wg(n) — uen) xo(n — Ay) (55)
and
wyi(n + 1) = wy(n) — uen) xy(n — Ay) (56)

where Ay is used to compensate for the effects of the secondary path at harmonic k. This delay represents
the delay introduced between the adaptive filter output and the residual error input.

When the system time delay isfixed, the values can be estimated by an off-line secondary-path modeling
technique (described previoudly; see page 18) and then built into the controller. In general, the values of
the delay depend on the frequency. These delays can be determined by converting the impul se response
of C(z) intothefrequency domain by thediscrete Fourier transform and then by cal culating the delaysfrom
the phase values. That is:

_

= (57)

t

where t; isthe time delay at frequency f in seconds, @5 is the phase at frequency f in radians, and f isthe
frequency in Hz. The values of A in equations (55) and (56) are then determined by:

Ak = tf fS (58)

where fgisthe sampling rate.

As mentioned previously, the secondary-path delay unit z—4 in Figure 17 can be replaced by the estimate
of the secondary path. The adaptive notch filter algorithm using the FXLM S algorithm can be expressed
as.

wi (N + 1) = w; () — pe(n)x; (n) (59)

fori = 0or 1andwherex; (n) isthefiltered version of x; (n) by the secondary-path estimation C(z).

33

Structure for Multiple Frequency Cancellation

Inpractical applications, the periodic noiseusually containstonesat thefundamental frequency and several
harmonic frequencies. This type of noise can be attenuated by a filter with multiple notches. In general,
realization of multiple notches requires afilter with higher order, which also can berealized by aparallel
or cascade connection of multiple second-order sections. A method for eliminating multiple sinusoidals
or other periodic interference was proposed by Glover [25]. The application of this technique to active
periodic noise control isto generate the reference input as a sum of M sinusoids. That is:

x(n) = iAmcos(wmn) (60)

where A, and wyy, are the amplitude and the frequency of the mth sinusoid, respectively.

Whenasum of sinusoidsisappliedto an adaptivefilter, thefilter convergestoatime-varying, tunablenotch
filter with a notch located at each of the reference frequencies. As long as a reference is available that
includesevery sinusoidal interference, the narrowband ANC system createsanotch over each sinusoid and
followsit if it changesin frequency. This adaptive notch filter provides a simple method for the tracking
and elimination of sinusoidal interferences. The application of Glover’s method for actively attenuating
engine-generated noise was patented by Pfaff [26]. Thereference signal representing the selected multiple
harmoni ¢ noise components is generated from a predetermined table of values.

A single-frequency sinusoid can be canceled by the simple 2-weight adaptivefilter. For the case wherethe
undesired primary noise contains M sinusoids, M 2-weight adaptivefilters can be connected in parallel to
attenuate these narrowband components. A set of closely spaced reference sinusoids is synthesized from
theinformation provided by the synchronization signal. A specific sinusoid is used asthe reference input
for the corresponding channel of the 2-weight adaptive filter W ,(z), which is connected in parallel with
the other filters, as shown in Figure 18.

Thestructureof eachindividual channel isshowninFigure17. Theoverall transfer function of thisparallel
configurationiis:

W) = > Wa(2) (61)

wherem = 1, 2, ... and M isthe channel index. The canceling signal isasum of M adaptivefilter outputs.
Thatis:

M
y(n) = > wy(n) (62)
m=1
Each reference input isfiltered by the secondary-path estimate C(2) as:

Xm(n) = Lzﬁlcixm(n -1),m=1 2 ..M (63)

i=0

Because only one error microphone is used, thereis only one error signal e(n) used to update M adaptive
filters based on the FXLMS agorithm.

34

d(n)

\ 4

>Xo(n) Wo(2) yo(n)>
x1(n) W))’1(”)>
A
T v v + vV +
Sine | HE) —»@
Wave . +
Generator
e(n)
Xm(N) Wy(2) ym(n)

Figure 18. Multiple 2-Weight Adaptive Filters in Parallel

Algorithms for Feedback ANC Systems

Theprincipleof feedback ANCfor asingle-channel case, which can beformul ated asan adaptive predictor,
is shown in Figure 19. Because this system requires only one error microphone, it avoids the acoustic
feedback problem inherent in the 2-microphone feedforward systems that were discussed previously.
Feedback ANC schemes depend on the signal having a periodic characteristic. Several nonadaptive
feedback ANC systems have been described in theliteraturein recent years, asreviewed in Nelson’s book

[1].

Burgess[3] suggeststhe use of this configuration with the FXLM S algorithm to avoid the use of theinput
microphone. The basic idea of this algorithm is to estimate the primary noise d(n) and to use this as the
referenceinput for the adaptivefilter. Asshownin Figure 19 and using the FXLM Sa gorithm, the primary
noiseis estimated as:

M-1

x() = &n-> cyn-i) (64)

i=0

wherec; (i = 0,1, ... M —1) isthe coefficient of the secondary-path estimation filter C(z) and M isthe
order of thefilter C(2).

35

d(n) + e(n)
p— P(2) B
+
i_ANC Controller —i
> W(z) > H(z)

| \ 4 4 |
: A |
| c@) c@ | |
I I
I I
I »— LMS |« i
| X'(n) |
| y— |
| O+
I x(n) +
L- |

Figure 19. Block Diagram of the Feedback ANC System
From Figure 19:

D(2) = E(2 -H@Y((65)

where both E(z) and Y (z) are available. If the transfer function H(z) of the secondary path is modeled by
C(2):

D(2) = X(2) = E(2 - C(2)Y(2) (66)

The error signal can be shown as:

E(2) = D(2) - W(2)H(2) X(2) (67)

The error signal for this feedback ANC system is O when:

W(2) H(2)X(2) = D(2) (68)

whichispossibleif the primary noise D(z) isperiodic and thetransfer function W(z)H(z) isequal toadelay
equivalent to amultiple of the signal period.

36

Off-line modeling is conducted first to estimate the secondary-path transfer function H(z) using the
FXLMS agorithm. The noise canceling mode begins after the training. The feedback ANC agorithm
illustrated in Figure 19 is summarized as follows:

1
2.

7.

Input the error signal e(n) from the error microphone.
Compute (estimate) the referenceinput signal x(n):
M-1
x(n) = &n) - > cy(n-i) (69)

i=0

Compute the antinoise y(n):

ym = > wmx(n -) (70)

i=1

where w;(n) istheith coefficient of the adaptivefilter W(z) at timenand N isthe order of filter
W(2).

Output the antinoise y(n) to the output port to drive the canceling loudspeaker.

Compute the filtered-X version of x'(n):
M
x'(n) = z cx(n—i) (71)
i=0
Update the coefficients of adaptive filter W(z) using the FXLMS algorithm:

wi(n + 1) = wi(n) — ue(n)x'(n-1i), i=0,1,..., N-1 (72)

Repeat the procedure for the next iteration.

Assembly language implementations of the feedback ANC agorithm are given in Appendix C,
TMS320C25 Ariel Board Implementation of ANC Algorithms, and Appendix D, General Configurable
Software for ANC Evaluation.

37

38

DESIGN OF ANC SYSTEMS

System Considerations

While numerous DSP devices with varying degrees of signal processing capability are becoming
available, aparticularly suitable choice for ANC isthe TMS320C25 [42]. It combines the power of high
speed, flexibility, low cost, and an architecture optimized for adaptive signal processing. The
TMS320C25 can execute an instruction in as little as 80 ns, and the processor’s architecture makes it
possibleto execute more than one operation per instruction cycle. For example, in one cycle the processor
can generate an instruction address and fetch that instruction, decode the instruction, perform one or two
data moves (if the second data is from program memory), update one address pointer, and perform one
or two computations (multiplication and accumulation). A broad base of software support exists, and
technical articles indicating the potential of the TM S320C25 have been published. The implementation
of avariety of adaptive filter structures and adaptive algorithms can be found in the application report
by Kuo and Chen [5].

Active noise control is areal-time application of adaptive filtering that requires extensive computations.
The freguency bandwidth is 500 Hz—1000 Hz, which allows only 1-2 msto perform all the calculations.
The €electronic hardware implementation in an ANC system requires tradeoffs that have a substantial
impact on system performance. System hardware must allow software flexibility as well as fully
automatic operation of the complete active noise control system [29]. Self-calibration and self-modeling
are important system functions. The physical factors that limit the performance of ANC systems, such
as spatial matching, coherence, filter length, stability, and causality [30], are discussed in this section as
part of the implementation of active noise and vibration control systems using the TM S320C25 DSP,

In the broadband feedforward ANC system shown in Figure 2 on page 10, the input microphone should
not be placed at the node (point of little or no sound magnitude) of any standing wave that may be present
before or during cancellation [1]. The placement of the error microphone should also avoid nodal
locations before cancellation. The microphones are selected to satisfy reguirements of low cost, low
impedance, large signal-to-noise ratio, nondirectivity, and high sensitivity. The loudspeaker is required
to be able to generate a sound pressure level higher than the noise source pressure level, have good
frequency response at low frequencies, have good humidity resistance, have alow cost, and be compact.

39

Sampling Rate and Filter Length

Thetask of the controller is to estimate precisely the delay and any amplitude changes that occur as the
unwanted noise travels from the input microphone to the loudspeaker. This includes delays in the
microphones, loudspeakers, and electronics. The controller must complete the entire signal processing
task before the primary noise arrives at the loudspeaker. Real-time digital signal processing reguires that
the processing timet be less than the sampling period T. That is:

t<T=fl (73)

where fgis the sampling rate, which must be held high enough to satisfy the Nyquist criterion. That is:

fo = 2f, (74)

where fy; is the highest frequency of interest—approximately 500 Hz for most practica ANC
applications. Thisyields a minimum sampling rate of 1 kHz and a maximum processing time of 1 ms.

The sampling rate can be expressed in terms of the physical distance and the ability of the system to
resolve this distance at room temperature. The sampling resolution can be expressed as:

C
A = .I:_0 (75)

where ¢y is the speed of sound in air, which is 343 meters per second at 75°F.

The modeling of the primary plant is done in the time domain using the FXLMS agorithm or the
filtered-U RLMS algorithm. The number of direct weights (W(z) in the FXLMS agorithm and A(2) in
the filtered-U RLMS a gorithm) times the sampling resolution determines the model length in time or
an equivalent distance. That is:

_ NCO

| = NA, = <
S

(76)

wherel isthe length of duct from the input microphone to the canceling loudspeaker that can be modeled
by an adaptive filter. For example, N = 64 and asampling rate of 2 kHz resultsin a 32-msmodel, which
corresponds to a duct length of 10.976 meters.

The length of the noise control filter depends upon the acoustics of the duct. The required length is
reduced by the addition of passive damping material. The number of coefficients required also depends
upon the sampling rate. This creates a conflict with the causality constraint, which is described later. To
achieve broadband random noise cancellation, it is necessary that the filters be long enough to account
for the physical distances within the plants. For periodic signals such as sine waves, this constraint no
longer applies, because only adjustments to phase over one cycle of the sine wave are required. Another
limitation imposed on the system is that the direct modeling filter must be sufficiently long to ensure
adequate accuracy in the phase and amplitude response of thefilter at the lowest frequency of interest.

40

Coherence Function

The structure shown in Figure 2 (see page 10) assumesthat any noisethat appearsat theinput microphone
will appear at the loudspeaker after a delay. Unfortunately, both the input and the error microphones
detect the primary noise plus the self-generated flow noise of the air passing over the surface of the
microphone. Therefore, flow noise and turbulent pressure fluctuations at the microphones can limit
cancellation effectiveness. This problem is rather significant for ducts of low sound pressure levels such
asthose in an air conditioner. A convenient measure of the amount of primary noise as compared with
the flow noise is the coherence function [1] of the two microphone signals. The coherence, or similarity
of phase relationship in the sound waves, between the sensors can be improved by reducing the flow
velocity, using multiple distributed sensors, and by good fluid-mechanical design to minimize localized
turbulent noise.

In heating, ventilating, and air conditioning (HVAC) systems, air flow velocities are around 13 meters
per second. Therefore, flow microphones that reduce flow noise are required when active noise control
is applied these systems [31]. Coherence can be improved dramatically by two methods:

e Using probe tubes that allow the propagating sound to reach the microphone while damping
the turbulent pressure fluctuations (see Figure 20) [32]. Proper location of the probe tubesin
the duct, away from the most turbulent part of the air stream, helps coherence. However, this
has the disadvantage that the microphones and their supports generate turbulence and increase
the flow noise of the microphone downstream.

* Nishimurashows[33] that placing the microphonein asmall, outer turbulence tube connected
with the duct through a small dlit (see Figure 21) can significantly increase coherence. The
placement of the microphone in the outer turbulence tube also has advantages in component

Normal Sensor

protection and maintenance.
Arrangement
—\OK Turbulence

_

Protected Sensor

Air Flow %

Figure 20. Probe Tube Used to Increase Coherence

41

Slit

/ Duct

Microphone

Small Cavity With
Sound-Absorbing Material

Figure 21. Microphone Mounting Method to Reduce Flow Turbulence

When the ANC system is applied to reduce the exhaust noise of an engine, the canceling speakers are
located outside the exhaust duct but close to the outlet of a pipe to avoid exposure to high temperature
gas. The resulting action is that the pipe outlet, a monopole, is converted to a dipole by the adjacent
negative source and hence has a reduction in radiation efficiency at low frequencies [1]. Changing the
location of the control sources from inside to outside the duct also significantly reduces the problem of
acoustic feedback. In this system, the error microphoneis placed outside and close to the end of the duct.
This reduces the effect of flow noise, improving coherence. It aso removes the possibility of the error
microphone being at an acoustic node in the duct. Proper placement of the error sensor produces aglobal
canceling effect at the end of the duct. The durability of speakers and microphones can be improved by
planning for optimum arrangement and protection.

Causality
From Figure 2, the acoustic delay from the input microphone to the loudspeaker is given in seconds as:

8=, (77)

where L is the distance from the input microphone to the canceling speaker. The electrical delay can be
expressed as:

O = Oy + &, (78)

where &, is the total delay in the antidiasing filter, the analog-to-digital converter (ADC), the
digital-to-analog converter (DAC), the reconstruction filter, and the loudspeaker, plus the processing
time (one sampling period, T). 8,y isthe group delay of the digital filter W(z). The loudspeaker delay has
agreat influence on causality, especialy at low frequency, and should be selected carefully.

To ensure that the adaptive filter has causal response, ensure that:

8 > Op (79)

42

This condition is called causality and it sets the minimum length for a system that cancels random noise
above a certain frequency. That is, the distance from the input microphone to the output speaker is:

Loin > Codg (80)

Thetotal delay is approximately [1]:

6tzT(1+% (81)

where M is the number of poles in both the antialiasing and the reconstruction filters. For example,
assuming that the sampling rate is 2 kHz and that each analog filter has 6 poles, M = 12 and &; = 2.75 ms.

The response of the controller is noncausal when the electrical delay is longer than the acoustic delay.
To reduce the electrical delay, a higher sampling rate is required for a given length. However, this
potentially reduces the model length if the maximum shown in equation (76) is required. To attenuate
random noisein ducts, the standard ANC approach isto use along duct. However, packaging constraints
of commercial systems usually prevent this. Periodic noises (tones) are a special case where causality
is not required and shorter systems are possible.

Typical HVAC noise spectra are broadband with prominent low frequencies (pink noise) and a few
moderate-amplitude sinusoids [30]. Thisrequires causality at low frequencies for good cancellation. The
degree of antialiasing filtering required is determined by the high-frequency content of the noise, so it
is desirable to include some passive damping material in the duct. This passive attenuation also helps
to reduce the length of the filters[1].

Constraints and Solutions

The industrial applications of active noise control impose a different set of constraints from those of
consumer applications. These different limitations include the power of the canceling loudspeaker due
to high sound power levelsinside the ducts and protection requirements for components due to the harsh
environment. The noiseis primarily narrowband or periodic and loud, produced by fans, vacuum pumps,
compressors, or blowers. Gas flow rate is high, and there are sometimes suspended solids in the stream.
Temperatures are often high and the gas stream is sometimes wet and corrosive.

These problems can be solved by using arange of high-power loudspeakers separated from the duct gas
stream by a protective membrane that allows transmission of the sound energy into and out of the duct
while maintaining a clean, dry environment that ensures long component life [34]. More than one
loudspeaker (two or four connected to a single output from the controller) can be used, both to provide
extra output power and for redundancy. Industrial systems are more often judged by performance on
tones and are not limited by the length of systems. Protection of the loudspeakers and the microphones
from awet and/or dirty environment is essential for long term performance.

Active noise control is typically limited to low-frequency noise; therefore, when HVAC duct
cross-sections are large, hybrid active-passive techniques (which use sound-absorptive lining inside the
duct wall with the active components built into the absorptive duct section) are needed to attenuate noise
over the full audible range. The electronics unit can be mounted either on the duct or on a nearby wall.
The passive absorption al so hel psto reduce feedback from the canceling speaker to the input microphone.

43

To apply active noise control techniques to compressor noise in appliances such as refrigerators, the
machine compartment structure in the appliance must be changed into aduct form [35, 36], asillustrated
in Figure 22. With the noise source (compressor) is located in the duct, the low-frequency noise radiates
like a plane wave. The machine chamber is sealed, excluding the opening for the heat radiation of the
compressor. Sound radiation from the compressor can also be effectively reduced by controlling the shell
vibration using piezoelectric actuators bonded to the surface of the compressor shell [37].

Accelerometer

¥ Error Microphone
[Compressor i
/ Canceling Speaker

e

A

ANC
Controller

A

Figure 22. ANC System in Duct-Like Machine Chamber

Automatic Gain Controller

The block diagram of the TM S320C25-based hardware system is shown in Figure 23. The hardware is
designed to accept two input signals, one from the input microphone and one from the error microphone.
The output signal is converted to analog form to drive a canceling loudspeaker using a power amplifier.
Since the DSP has a fixed-point data format, one analog automatic gain controller (AGC) must be used
at each input to take advantage of the ADC's dynamic range and to avoid input saturation.

~Input | Memory I
Microphone
A
o—>—>— AGC LPF
— L

\ 4

Y

Preamplf;rs MUX |—»| ADC »—{TMS320C25
o—>—>— AGC B LPF
Error
Microphone
D]«—<} LPF | DAC |
Cé%ggilg;g Power Amplifier

Figure 23. TMS320C25-Based ANC System Hardware

Theinput and error signals have dlightly different requirements. When the noise cancellation mode starts,
the error signal decreases substantially. In some systems, the input signal may increase slightly due to

44

acoustic feedback from the canceling speaker. Signal statistics also affect usable dynamic range; the
maximum amplitude of a broadband signal that does not saturate a given system is less than the
corresponding value for a sinusoid.

In general, an L-hit ADC typically has adynamic range of 6L dB. If the input changes by more than that
amount, a high-resolution ADC can be used, or an AGC can be used to keep the analog signal within the
usable dynamic range of the existing ADC.

T T T T T 7
| |
\ 24 dB \
Xt | 8-Bit [: Ly
‘ DAC ‘
| |
| 4 |
| |
} Buffer }
| 1 |
R |
8
TMS320C25

Figure 24. Block Diagram of an AGC

To account for the large dynamic range of sound pressure levels measured by microphones, the AGC can
beimplemented by using an 8-bit multiplying DAC. The analog output system has the same requirements
as the analog input system, except that instead of programmable gain A, there is usually programmable
attenuation. The block diagram of the AGC is shown in Figure 24, where an 8-bit DAC is used as an
attenuator with a48-dB dynamic range. The gain of the AGC is software-controlled by the TM S320C25,
which writes an 8-bit value into the buffer of the 8-bit DAC. The algorithm of the AGC sets the gains
on theinput and the output signals. The implementation of the AGC maximizesthe ADC signal-to-noise
ratio and maintains the overall system dynamic range when used in different environments.

Antialiasing and Reconstruction Analog Filters

As shown in equation (74), to recover the original time-domain waveform from its sampled form, the
original signal spectrum must be entirely constrained within a bandwidth of less than half the sampling
rate. If the band limitation is not sufficient, the signal component over one half of the sampling frequency
is folded into the signal band. This phenomenon is called aliasing, which cannot be isolated after
sampling. Even if the input signal is naturally band limited, an antialiasing filter is still advisable to
reduce out-of-band noise aliasing into the wanted frequency band.

Ideally, the antialiasing filter should have a flat amplitude and linear phase response over the bandwidth
of the signal and infinite attenuation at half the sampling rate and beyond. In ANC systems, since the
sampling rate islow (1 kHz to 2 kHz), a very-high-order antialiasing filter must be used. Unfortunately,
these high-order filters have long group delays, as shown in equation (81). This can create a causality
problem inthe ANC system, particularly for broadband noise control in short ducts. The duct length from
input microphone to canceling speaker must be increased to account for the extra delay.

45

If alow-order filter with a better phase responseis used, such as a Butterworth filter, alower group delay
can be achieved. However, the filter transition to high attenuation occurs more slowly, thus a higher
sampling rateisrequired. Thismethod is known as oversampling and can be used if sufficient processing
timeisavailable. The decimation and interpol ation methods can be used to reduce the internal processing
rate; however, multirate signal processing increases complexity of the algorithm. Otherwise, the higher
sampling rate puts more demand on the processor and al so shortens the model length of the digital filter,
degrading its ability to model the unknown system. High-order adaptive filters can be used to counteract
this effect if there is sufficient processor power and memory available.

Furthermore, if some small negative dc component is present in the measured error signal e(n), an
adaptive algorithm can gradually increase its output in an attempt to cancel the dc error component.
However, the physical secondary path generally has no response to dc because of the frequency response
of the loudspeaker and microphone. This dc output to the control source can reach alevel high enough
to saturate the controller and power amplifier. When the LMS algorithm is implemented using
fixed-point arithmetic, a bandpass filter can be used to prevent dc and low-frequency elements from
growing in the filter coefficients during the updating process. This dc offset can also be eliminated by
an adaptive bias canceler [4], which is simply afirst-order recursive high-pass filter.

A continuous signal can be recovered without distortion from its ideally sampled version by low-pass
filtering. The ideal reconstruction filter has a flat gain response and linear phase characteristic in the
passband, extending from dc to half of the sampling frequency, and infinite attenuation in the stopband
and beyond. Any departure of the filter characteristic from the ideal introduces spectral distortion.
Furthermore, due to the high levels of low-frequency noise, the very large, high-power amplifiers are
required. High-pass filters may be required to prevent very low-frequency energy from overdriving the
loudspeaker and causing premature failures.

Analog Interface

Interfacing a DSP to an anal og environment involves awaveform conversion asillustrated in Figure 23.
There are two main types of ADCs and DACs: parallel and serid. If the system requires more than one
analog input, there are two types of architecture to consider. Figure 23 shows a multiplexed system in
which the ADC is shared among the input channels. The input and error signals are sampled
simultaneously and multiplexed using an analog multiplexer.

The digital ANC system assumes that the sampling period between samples is uniform. The spectrum
distortion caused by the sampling jitters results in line broadening, or spectral smearing. In an adaptive
ANC system, the performance loss can be significant and in severe cases may result in instability. One
way to reduce sampling jitters is to initiate the anal og-to-digital and digital-to-analog conversions with
hardware instead of software. This hardware-initiated conversion is standard practice today.

46

ANC SYSTEM SOFTWARE

The test hardware is designed so that the system function is determined principally by the software,
allowing the system to be modified and improved without hardware redesign. The software
implementation of ANC comprises three stages: initialization, off-line secondary-path modeling or
off-line secondary-path and feedback path modeling, and on-line active noise cancellation. A
software-based start-up procedure is automatically performed by the system when it is turned on. This
procedure includes processor initialization and gain adjustment of all input and output signals, and
secondary-path modeling using additional white noise, which is discontinued after the on-line noise
control begins.

The program is coded in assembly language and is optimized to minimize computation time and
maximize the number of filter weights. An additional constraint isto yield a sampling rate high enough
to give good resolution in the models and afilter length sufficient to model the real plants.

Implementation Considerations

In discrete-time signals and systems, the digital filter structures and algorithms are derived on the basis
of infinite-precision arithmetic. However, when these filters are implemented in digital hardware, only
finite precision is available. These effects can either cause deviations from the original design criteria
or create an effective noise at the filter output. The differencein performance between adigital filter and
itsdiscrete model issaid to be dueto finiteword length effects (or quantization effects). Previous sections
dealt principaly with the mathematical development of adaptive filtering and did not really address
many practical details. This section discusses some practical considerations of the implementation of
adaptivefiltersin digital hardware systems.

Quantization Effects in Digital Adaptive Filters

Finite word length effects are found in many forms. In general, the mgjor finite word length effects that
result in degradation of digital adaptive filter performance can be broadly categorized into the following
classes:
* Quantization errors
— Input quantization
— Coefficient quantization
e Arithmetic errors
— Roundoff (or truncation) noise
— Overflow

An excellent treatment of these topicsisavailablein digital signa processing books by Oppenheim [41]
and Jackson [24].

In the digital implementation of adaptive algorithms, the filter coefficients and the computational results
are quantized to a certain limited precision. This quantization error leads to degradation in the
performance of the adaptive filter from the theoretically expected performance of an infinite-precision
implementation. Therefore, digital adaptive filter implementation in limited precision requires specia

47

attention. The goal is to minimize the potential accumulation of quantization errors in the filter
coefficient adaptation algorithm computation so that they do not reach unacceptable levels. Effects of
finite precision in adaptive filters have been reported in the literature [38, 39, 40].

Assuming that the input data samples are properly scaled, their values lie between —1 and 1. Each data
sample and its filter coefficient are represented by B + 1 bits. The quantizer can be modeled as
introducing an additive noise to the unquantized value x'. Thus, the following equation can be written:

x(n) = Qx'(M] = x'(n) + v(n) (82)

where x'(n) is an unquantized value and the associated quantization error y(n) isauniformly distributed
random noise with zero mean (that is, E[y(n)] = 0) and a variance of:

o = 22 (83)

Therefore, the longer the word length, the smaller the quantization noise. Each additional bit in the ADC
resultsin a 6-dB gain of signal-to-quantization noise ratio or dynamic range.

Assuming that the input sequences and filter coefficients have been properly normalized, thereisno error
introduced in addition. However, the sum can become larger than 1; this is known as overflow. The
technique used to inhibit the probability of overflow is scaling; that is, constraining the signal at each
node within a digital filter to a magnitude less than unity. Since reducing the amplitude of the signal
reduces the signal-to-noise ratio, which can cause early termination of the adaptive algorithm [39], the
signals must be kept as large as possible.

For adaptive filters, the feedback path makes scaling far more complicated. The dynamic range of the
filter output is determined by the time-varying filter coefficients, which are unknown at the design stage.
For the LMS transversal filter, the scaling of the filter output and coefficients is set by scaling of the
desired signal d(n) [40]. Figure 25 shows a block diagram of the traditional LMS algorithm using
fixed-point arithmetic. This scaling technique uses the scale factor s, where 0 < s< 1, implemented by
a shift to the right of the desired signal (instead of the input signal) to prevent the overflow of filter
coefficients during the weight updating. Reducing the power of d(n) reduces the gain demand on the
filter, therefore reducing the magnitude of the tap values. Usually, the required value of sis not expected
tobevery small. Since s scalesthe desired signal, it does not affect the rate of convergence. An alternative
method to prevent the occurrence of overflow isto usetheleaky LM Salgorithm, as discussed previously.

S
d(n)

X y(n) 1/s

Figure 25. Fixed-Point Arithmetic Model of the LMS Algorithm

From Figure 10, the digitally implemented FXLMS agorithm is summarized as follows:
y(n) = Qw (nx(n)]

(84)
= Q| > wi(x(n — i)

i=0

x'(n) = Q[cTx(n)]

: Q[Z_cix(n - i)] (85)

wn + 1) = w(n) — Que(n) x'(n)] (86)
or
wi(n + 1) = wi(n) - Q[Quem)|x'(n-i}, i =0, 1..., N-1 (87)

where Q[x] denotes fixed-point quantization of the quantity x.

Assuming a scaling factor 5 is used to scale the reference input x(n) to prevent overflow during the
computation of x’(n) in equation (85), the output x’(n) can be bounded as:

KM= s

Mz_lcix(n - 1)‘ = S Xmax Mz_l|ci| <1 (88)

i=0
where x(n —i) is replaced by its maximum value, X,a¢, and due to the fact that the magnitude of a sum
islessthan or equal to the sum of magnitudes.
From equations (86) and (87), a scaling factor s is chosen to satisfy:
N
M-1
(89)
Xmax z |Ci|

i=0

5 <

where ¢; can be determined at the end of the off-line modeling. Scaling the input in thisway assures that
overflow never occurs at any of the nodesin thefilter.

Assuming that the input signal is anarrowband signal, overflow can be avoided for all sinusoidal signals
if theinput is scaled [42] by:

-1
5= X max|C(e¥)|’ o = = (90)

49

As mentioned earlier, for the traditional LMS transversal filter, the scaling of the entire process (filter
output and coefficients) is set by scaling of the desired signa d(n), which is inaccessible in an ANC
system. The same effect can be achieved by scaling e(n). This scaling technique uses the scaling factor
s, where 0 < s< 1, to prevent overflow. To compensate for the power loss, the compensation factor 1/s
isinserted in the filter output to drive the control source. This schemeis equivalent to scaling the desired
signal by afactor s. Note that scaling on x(n), e(n), and y(n) by the scaling factors can be implemented
in AGC blocks shown in Figure 23.

When the convolution sum in equations (84) and (85) is calculated using a multiplier with an internal
double-precision accumulator, the internal quantization noiseis avoided. When the product istransferred
out of the accumulator, the result is quantized to single precision and a roundoff error is produced if the
rounding operation is used. When updating weights according to equations (86) and (87), the product of
ue(n) produces a double-precision number, and this is quantized and multiplied by x(n —i). This result
is quantized again and then added to the original stored weight value, w;(n), to form the updated value,
wij(n+ 1).

Real-Time Software Implementation Process

The adaptive structures and algorithms described previously can be implemented on the’ C25. Figure 26
shows the flowchart of a process that can be used to minimize the amount of time spent on finite
word-length effects analysis and real-time debugging.

In the first stage, algorithm design and study is performed on the general-purpose computer in a
nonreal-time environment. Once the algorithm is understood, the filter isimplemented using ahigh-level
C program or MATLAB with double-precision coefficients and arithmetic. This filter is considered an
ideal filter.

In the second stage, the C program is rewritten on the general-purpose computer in away that emulates
the same sequence of operations with the same parameters and state variables as will be implemented
on the 'C25. It is carefully redesigned and restructured, tailoring it to the architecture, the 1/O timing
structure, and the speed and memory constraints of the 'C25. This program then serves as a detailed
outline for the ' C25 assembly language program, or it can be compiled using the TM S320 fixed-point
DSP C compiler.

Inthethird stage, the’ C25 assembly program is devel oped, assembled, and tested on the general -purpose
computer, using the ' C2x software simulator with test datafrom adisk file. Thistest datais either ashort
version of the data used in the second stage that can be internally generated from the program or digitized
data emulating a real application environment. Output from the ssimulator is saved as another disk file
and is compared with the equivalent output of the C program from the second stage. Since the simulator
requires data to be in some particular finite precision format, certain precision is lost during data
conversion. Once an agreement is obtained between these two outputs within atolerable range, the DSP
assembly program is essentially correct.

The final stage is to download this assembled and linked program into the target hardware and bring it
to real-time operation. Thus, the real-time debugging process is primarily constrained to debugging the
I/O timing structure of the algorithm and testing the long-term stability of the algorithm. Once the
algorithm is running, the parameters can be tuned again in areal-time environment.

50

Algorithm Analysis
and C Program
Implementation

\ 4

A

Rewrite C Program
to Emulate 'C25 DSP

A

Y

'C25 Assembly Program
Implementation and
Testing by Simulator

A

Real-Time Testing in
Target System

P
“

Figure 26. Adaptive Filter Implementation Process

Implementation of Adaptive Filters With the TMS320C25

The complexity of an adaptive filter is usually measured in terms of its multiplication rate and storage
requirement. However, when these algorithms are implemented on commercially available DSP chips,
data flow and handling considerations are also major factorsin efficiently implementing adaptive filter
systems. The parallel hardware multiplier, the pipeline architecture, and the amount of fast on-chip
memory are important. High-speed parallel and serial ports enable fast data flow on and off chip.
Implementation can be made more efficient by taking advantage of these attributes in the DSP's
architecture. Adaptivetransversal filterswith the two most widely used algorithmsin active noise control
(LMS and leaky LMS) areimplemented here using the ’ C25.

The ' C25 has 544 words of fast on-chip data RAM divided into three blocks: BO (256 words), B1 (256
words), and B2 (32 words). Block BO is configurable as either data memory or program memory. To
produce the fastest possible adaptive filtering routine, all data buffer memories and filter coefficients are
stored in data RAM. In general, BO is used to store adaptive weights, B1 is used as data buffer memory,
and B2 is used for constants and temporary storage.

51

Thetransversal filter generatesits output y(n) by performing a convolution (or inner product) operation:

N-1

yn) = > wimx(n - i) (91)

i=0

The implementation of equation (91) isillustrated using C language as:

y[nl = 0;

for (i=0; i<N, i++)

{y[n] += wn[i]*xn[i]; }

where wn[i] represents w;(n) and xn[i] represents x(n —i).

The architecture of the 'C25 is optimized to implement a sum of products, such as an FIR filter. The
MACD instruction enables complete multiply/accumulate, data move, and pointer update operations to

be accomplished in asingleinstruction cycle (80 ns) if the filter coefficients are stored in on-chip RAM.
An N-weight transversal filter can be implemented as:

LARP

LRLK ARn, LASTAP ; point to the x(n-N+1)

RPTK N-1 ; repeat next instruction N tines
MACD COEFFP, *— ; mul ti ply/accumul ate

APAC

where ARnN is an address register that pointsto x(n —N + 1) and the prefetch counter (PFC) points to the
last weight, wy _;(n). When the MACD instruction is repeated, the coefficient address contained in the
PFCisincremented by 1 during its operation. Therefore, the components of weight vector w(n) are stored
in BO, as shown in Figure 27. The MACD in repeat mode also copies data pointed to by ARn, the next
(higher) on-chip RAM location. The buffer memories of the transversal filter are stored as shown in
Figure 27.

In general, roundoff noise occurs after each multiplication. However, the 'C25 has a 16-bit multiplier
and a 32-bit accumulator, so there is no roundoff when summing the set of product terms. All
multiplication products are presented in full precision, and rounding is performed after they are summed,
so that we get y(n) from the accumulator with only one roundoff, which minimizes the roundoff noise
in the output y(n).

The most widely used LM S algorithm is expressed as:

wi (n+ 1) = w; (n) + ne(nx(n - i) (92)

fori =0,1,...,N—1. Since ue(n) isconstant for N weight updates, the error signal e(n) isfirst multiplied
by U to get pe(n). This constant can be stored in the T register and then multiplied by x(n —i) to update
w;(n). An implementation method in C of the LMS algorithm in equation (92) isillustrated as
uen = u*e[n];
for (i=0; i<N, i++)

{wn[i] += uen * xn[i]; }
where €[n] represents e(n).

52

BO B1
Low Address Low Address
—>»— wN-1(n) x(n)
PFC
wN —2(n) x(n-1)
wl(n) x(n—N+2)
wO(n) X(n=N+1) <+—
ARnN
High Address High Address

Figure 27. Memory Layout of Weight Vector and Data Vector

The 'C25 provides two powerful instructions to perform the updates in equation (92). The ZALR
instruction loads a data memory value into the high-order half of the accumulator and rounds the value.
This rounding occurs by setting bit 15 of the accumulator to 1 and clearing bits 0-14 of the accumulator
to 0s. The MPYA instruction accumulates the previous product in the P register and multiplies the
operand with the data in the T register. Assuming that ue(n) is stored in the T register and the current
address pointer is ARS, the adaptation of each weight is shown in the following instruction sequence:

LRLK
LRLK
LRLK

LARP
MPY
ADAP ZALR

MPYA *

SACH
BANZ

AR1, N-1

AR2, COEFFD

AR3, LASTAP+1

| oad | cop counter

poi nt to Equation

point to x(n-N+1), since MACD al ready nove

el ements of current x(n — i) to the next higher
| ocation

P = ue(n) * x(n-N+1)

| oad Equati on

ACC = P+Equati on

store Equation

| oop again if counter not expired

53

Figure 28 shows the architecture of the ' C25's central arithmetic logic unit, including the multiplier, the
accumulator, and the T and P registers.

) Program Bus
16 16
Data Bus 1
16
Y
16
\ MUX
16
Y
1 T Register (16)
16 16
Shifter Multiplier -
SXor0 —b (0-16) <—0 P
P Register(32)
sx —>{ Shifter(-6, 0, 1, 4) | +—— 0
y
; MUX7
32
SX
32 or0
|
16
y
»I AccH(16) | AccL(16) 0
32
y
| SFL(0-7
16 16
Data Bus X (

Figure 28. TMS320C25 Central Arithmetic Logic Unit (CALU)

Theleaky LM S agorithm used in many fixed-point implementations has the form:

wi(n + 1) = vw;(n) + ue(n)x(n — i) (93)

wherev isdlightly lessthan 1. Another way to realizethisalgorithmistoletv = 1—cand c << 1, which
gives:

wi(n + 1) = wi(n) — cw;(n) + ne(n)x(n — i) (94)

The barrel shifter can be used to implement this modification of the leaky LMS algorithm efficiently.

To achieve the highest throughput using ZALR and MPYA, cw;(n) can be implemented by right-shifting
w;(n) M bits, where 2-M js close to c. Since the length of the accumulator is 32 bits and the high word
(bits 16 to 31) is used for updating w;(n), shifting w;(n) right M bits can be implemented by loading w;(n)
and shifting left 16 — M hits. The sequence of ' C25 instructions to implement equation (94) is:

LRLK AR1, N-1 ; load | oop counter
LRLK AR2, COEFFD ; point to Equation
LRLK AR3, LASTAP+1 ; point to x(n—Nt+1)
LT ERRF ; T = ERRF = u*e(n)

MPY *— AR2
ADAPT ZALR *, AR3
MPYA *— AR2
SUB *, LEAKY ; LEAKY=16—-M
SACH *+,0, ARL
BANZ ADAPT, *—, AR2

Using the TMS320C2x Simulator to Observe Noise Cancellation

TI’s debugging tools can be an invaluable asset in understanding the operation of the included code. The
'C2x simulator providesthe ability to single-step through a program and observe the contents of registers
and memory locations and the states of status bits as they change from step to step. The simulator also
provides features for watching variables, for viewing code simultaneously in both C and assembly
language, and for setting breakpoints. Stepping through the provided code and observing the state of the
DSP dictated by the program flow hel ps provide a quicker and deeper understanding of the programming
involved in an ANC system.

Thesimulator has afeature that allows the programmer to send datato an output file. The ANC code uses
thisfeature and creates an output file containing the error signal. Thissignal istheresidual noise left after
the original noise source has been summed with the canceling wave. If the code isworking properly, this
signal should get smaller and smaller asthe noiseis canceled.

The advantage of creating an output file stems from the ability to display the information graphically.
Thefile created from the simulator isin the form of a stream of hexadecimal numbers. This data can be
displayed in a variety of ways. For example, converting the file into binary (using TISIMDAT.EXE)
allows the data to be displayed on the monitor using a program called SG (for Show Graphics; contact
the DSP lab at Northern Illinois University at 815-753-9967 for a copy). Even more useful isto convert
thefileinto ASCII and thenload it into MATLAB. Oncethere, the data.can not only be plotted graphically
but can aso be imported easily into documents and manipulated mathematically with MATLAB'’s
extensive capabilities. Figure 29 shows a plot of the error signal as obtained using MATLAB.

55

gM ,mm&mw-mm{

Amplitude

Il

\ \ \ W=>512 _

"0 200 400 600 800 1000

Time

Figure 29. The Error Signal Imported From MATLAB

Understanding How Individual Parameters Affect Algorithm Performance

It is important to investigate how certain parameters affect the performance of the algorithm. For
example, the value of p alone can drastically affect the results of the system. | is the step size of the
adaptive filter used in active noise control. The size of p determines the stability and convergence rate
of the algorithm. As the step size of the filter increases, the algorithm converges more rapidly. However,
if the step size is too large, the system may not converge at all. Even if the system avoids divergence,
too large a 4 value may produce an intolerable amount of residual error on the signal. The error signal
shown in Figure 29 was generated using a1 value of 512. Notice the difference between it and the signal
shown in Figure 30, which was generated using a 1 value of 2048. Notice that the convergence is much
quicker with the increased step size.

M isjust one of the many parameters that can be changed to vary performance. The role of each and how
it affects the performance of the system must be investigated for any individual application.

0.8
0.6 _
0.4}
021§
of
—0.2 il
—0.4ff !
06

08 ; \ \ \
0 200 400 600 800 1000

Amplitude

Time
Figure 30. Error Signal Generated With p = 2048

56

Understanding the function of the parameters and tracing through the code on the simulator allows the
user to gain enough knowledge about the program to implement basic changesin the codeitself. The code
can be manipulated to implement active noise control in dightly different ways. Experiments can be done
and performance can be optimized. In short, the code can now be customized to perform in various
applications.

Asan example of asimple modification, consider that the code created for the simulator allowsfor 16-bit
precision on the data stream. What happens to the signal and the performance of the system if a lower
precision ADC were used instead? How does the performance vary with precision? One way to find out
isto modify the included code so that when the ADC is being used, alower precisionisfedin. Thiscan
be done by placing the following line of codein the appropriate placesin the FIR filter and when updating
the coefficients.

ANDK OFFCOh, 15 ; Takes the 10 nost significant bits

The hexadecimal number in the ANDK instruction determines the number of bits of precision to be
obtained. In the example line of code above, the precision is set for ten bits. By taking alogica AND
with OFFCOh (equivalent to binary 1111 1111 1100 0000), the ten most significant bits are preserved and
the rest are set to zero.

This and other modifications can be tested and debugged on the simulator to aid in the evaluation and
optimization of the alteration done.

57

PHYSICAL SETUP OF EXPERIMENTAL ANC SYSTEM IN AN ACOUSTIC DUCT

The acoustic duct system has been widely used for modeling the acoustic cavity in many applicationssuch
as exhaust systems, HVAC, and the motor/generator housings. The three feedforward ANC algorithms
discussed previously are used for noise attenuation: the filtered-X LMS (FXLMYS) agorithm [3], the
filtered-X LM Salgorithmwith feedback cancellation (FBFXLMS) [15], and thefiltered-U recursive LM S
(FURLMS) algorithm [12]. The coefficients of the adaptive filters in these algorithms are modified with
the leakage factor [5] to reduce the effect of the overflow and quantization errors.

The simplest experimental system to set up is a one-dimensional duct system such as as that shown in
Figure 2 on page 10. However, in addition to the components shown in the figure, several other pieces of
eguipment are necessary in order to make the system functional. The success of an ANC system strongly
depends on the ability to manipulate the gain of the involved signals. Thus, it is vitally important to run
the signals detected with the microphones through a preamplifier whose gain can be controlled. It isalso
necessary to have a power amplifier to control the strength of the antinoise sent through the canceling
speaker. The gains of these amplifiers must be carefully adjusted if maximum performance of the system
isto be achieved.

The entire setup of thissimple ANC system is shown in Figure 31. The two microphone-detected signals
arefedinto the preamplifier beforethey are sent to the ANC hardware. The adaptivefiltering occursinthe
ANC hardware, resulting in the creation of the antinoisewaveform. Thissignal isoutput through the power
amplifier before being sent through the speaker to cancel theincoming noisesignal. Inthistest system, the
noise signal is created using a function generator and is passed through the power amplifier before
emerging from the speaker.

This experimental ANC duct system isrealized using the low-cost 16-bit fixed-point TM S320C25 DSP.
Single- and multiple-tone sinusoids of different frequencies are applied to the system as the input noise
source signals. The performance of the DSP-based system for each algorithm is analyzed. The
experimental results are compared and practical factors in achieving high level of noise attenuation are
discussed. It is shown that the best noise attenuation at a reasonable overhead to the DSP is obtained by
using the FBFXLMS agorithm. The system using the FBFXLMS algorithm provides a feedback-free
reference signal, which improves the system performance in the range where strong frequency response
existsin the feedback path.

The 8-order Butterworth low-pass filters have a 500-Hz bandwidth. For the schematic diagram of this
low-pass filter, refer to Appendix E. Because 500 Hz is the highest frequency of interest in ANC
applications, the function of these low-pass filtersis to eliminate the aliasing problem and the unwanted
harmonics. The Ariel DSP board has two input and output ports, each using 16-bit ADCs and DACs,
respectively.

For a complete description of the system setup and alist of the components used, see Appendix F, ANC
Unit System Setup and Operation Procedure.

59

Error

Noise ;
~ Loudspeaker Mlcrol_phone
S—
Q
Input , : —
Microphone
Canceling
Loudspeaker
Preamplifier
Function rUENELN 1IN
Generator i >
a a a . Signal
NEZCVNENEIN 1IN Analyzer
Power > -~ o Power o
Supply ; Amplifier
1IN -~ PC
1 B +
Ariel
N »| Board
v _
Low-Pass Filter (ANC System)

Figure 31. Experimental Setup of the One-Dimensional Acoustic ANC Duct System

OPTIMIZATION OF THE EXPERIMENTAL SYSTEM

Theprocessof optimization beginswhenthedesigned hardware systemisworking asexpected. Thesystem
parameters must be manipulated so that maximum performance is achieved. The key variables to be set
for the system are the value of |, the gain of the preamplifier, and the value of LEAKY. Datais gathered
while varying one of these variables and holding all others at a constant value to best isolate its effect on
the system. Unless otherwise noted, all datafor this example were obtained with the following parameter
values:

Preamplifier gain = 36 dB
Input noise = 2V sinewave (before power amplifier)

* Error-path filter C(z) order (NCz) = 127
* FIRfilter W(2) order (NW2z) = 127

e LEAKY =2

e p(off) =128

Determining the Value of p

W wasthefirst parameter that was checked to see how it affected the performance of the system. Theability
of the noise cancellation unit to reduce sound was measured at three different input levels: —=30 dB, —26 dB,
and —22 dB. The quietest setting was —30 dB, and —22 dB was the loudest. The frequency of the origina
noise source and the gain of the power amplifier for the canceling speaker were adjusted to get the
maximum performance possible at each setting (see Table 2).

Table 2. Performance of the System as a Function of p

dB REDUCTION FOR dB REDUCTION FOR dB REDUCTION FOR
-30dB INPUT —26 dB INPUT —22 dB INPUT

64 21.19 29.57 34.94
96 2291 30.05 34.85
128 24.68 30.32 30.70
160 30.42 37.45 41.01
192 32.21 37.98 40.35
224 32.52 37.27 39.18
256 34.38 38.42 40.14
288 34.38 38.01 37.86
320 37.95 40.68 40.66
352 38.35 39.25 37.94
384 36.96 38.27 37.27
416 37.26 38.62 37.23
448 39.08 38.64 37.58
480 33.85 33.07

512 34.93 34.15 33.15

The values of p represent a filter step size for a 16-bit processor. The data in Table 2 is represented
graphically in Figure 32.

61

Asthevalue of P increased from thelow value of 64, the performance of the system increased at first, then
leveled off somewhat at higher p values. As i increased further, the performance of the system tended to
decline. Onething that can be seen from Table 2 isthat the system did not have alinear dependence onthe
step size of the adaptive filter.

40 1
= 1
T 35 1
P 1
2
T
=} +
g 30 ;
<
,
1 ,
25 1 ,’
20 ‘ ‘ ‘ ‘ !
64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
Value of p
Legend
°°°°° Attenuation @ —30 dB ——— Attenuation @ —26 dB Attenuation @ —22 dB

Figure 32. Level of Attenuation of the Noise Source Versus u

The peak performancelevel at each sound level (settings—22 dB, —26 dB, and —30 dB on the preamplifier)
isdifferent. Atthelowest tested sound level (—30dB), ap of 448 drew the best performance, and highlevels
of attenuation were obtained at 1 values of 352 and 320, as well. When the sound was increased from
—30 dB to—26 dB, it wasthe 1 value of 320 that yielded the best system performance. At the highest sound
level tested, the u value of 160 reduced the original signal by the largest amount, with a 1 value of 320
performing nearly aswell.

Therefore, depending on which noise level is most relevant in the application, a different value of i is
chosento optimizethe system. If the systemisto be optimized at all sound levels, thep valuethat performs
highly in all three sound levelsis considered the best for the system. Because the i value of 320isthe only
value in the top three performances at each level, it seemsto be the logical choice. But isthere away to
better determine how the performances compare?

The most important column to look at in the datatableis the reduction of the original signal that is given
for apower amplifier setting of —22 dB. Thiscolumn showshow well the system cancelsloud noise, which
isthe noise generally chosenfor canceling. Notethat the performance of the system isgreatest at thisnoise
rangefor ap value of 320 and less, but at higher 1 valuesthe system actually performsbetter at lower noise
levels. Thisindicates that to attenuate loud noise, the system must have a1 value of 320 or less.

62

However, the system should not be characterized by how well it eliminates |oud noises a one; the ability
to eliminate loud noises should be weighted more heavily to emphasize that these are the noises most in
need of attenuation, but other factors are also important. A crude way to evaluate the overall system
performance isto apply the following formulato the data obtained.

reduction @ —30 dB + 1.5(reduction @ —26 dB) + 2(reduction @ —22 dB) = overall performance (95)

Thisformulatakesinto account performance over all ranges, but it places more emphasis on the ability to
eliminatethelouder noise sources. Theresultsof thiscalculation are showningraphical formin Figure 33,
which shows that ap value of 320 is verified as the best choice.

185 7

175 7

165 T

155 7

Performance Rating

145 7

135 7

125
64 96 128 160 192 224 256 288 320 352 384 416 448 512

Value of p

Figure 33. Overall Performance as a Function of Equation (95)

Determining the Value of LEAKY

The LEAKY parameter is used as part of a small forcing function that tends to bias each filter weight
towards zero. This report previously described how this variable is used. The value of LEAKY can be
chosenasO0, 1, or 2, which isthe value of ¢ for wj(n) = (1—-c)w;j(n—1) + pe(n)x(n).

Thereisno reason to test the effect of the LEAKY parameter for all of the values of . It was determined
that 320 was the best value of 1. However, the best value of LEAKY cannot be determined merely by
selectingtheva uethat yieldsthebest resultsat aparticular pvalue. A pvalueof 320yieldedthebest results
withaLEAKY value of 2, but that does not necessarily mean that it will also yield the best resultswith a
LEAKY valueof 1. Care must betaken to ensurethat the best results of each LEAKY value are compared
against each other.

For thisreason, the following values of 1 were chosen to be tested: 160, 256, 320, and 352. Thetop three
valuesaccording tothe performancerankingswereall tested, aswell asthevaluewith thehighest reduction
at the loudest setting (U = 160). These four values of 1 form abasic starting point that can be expanded
if the data gathered indicates that the optimum system performance is achieved outside of these values.

63

Asthevalueof LEAKY wasvaried for thefour different p values sel ected, it became apparent that avalue
of LEAKY = 2yielded the superior performance. This can be seen from agraphic of asample of thedata
gathered, shown in Figure 34. At every u value tested, the system using LEAKY = 2 outperformed the
same system using alower LEAKY value.

40

35

30

Attenuation (dB)

25 71 B

20

LEAKY =0 LEAKY =1 LEAKY =2

Legend: B3 M =160 P lifier @ —22 dB)
. ower amplifier @ —
h=256 p

] =320
|:| p =352

Figure 34. Noise Reduction of System as a Function of LEAKY

Determining the Gain of the Preamplifier

The last of the parameters that needs to be adjusted for this simple ANC system is the gain of the
preamplifier. Asin the previous section, the data was recorded for four different p values: 160, 256, 320,
and 352. The LEAKY value used was 2, because it was clearly the best choice for this system.

The best value for the microphone preamplifier was found to be a setting of 36 dB, as shown from the data
graphed in Figure 35. This setting on the preamplifier proved to be the best setting on three of the four p
values tested. As [decreased, the gain on the preamplifier was increased in order to achieve a high
performancelevel. At higher 1 values, however, too high asetting on the preamplifier saturated the system
and caused thefilter to diverge. Preamplifier settings of 48 and 52 dB could not be measured for | greater
than 320 because of this, although these settings produced good performance when using a smaller step
size.

50

45

40

35

30

Attenuation (dB)

25

20

15

Legend

S

32

B8 =160
i = 256
[w=320
[u=3s2

36

40

Gain of the Preamplifier

44

Figure 35. Noise Reduction of the System as a Function of Preamplifier Gain

65

Single-Tone Sinusoidal Noise Source Case

When the noise source is a 200-Hz single-tone sinusoid, the order of both W(z) and C(2) is 64, the
adaptation step size of W(z) is 0.01 (/32768 for a 16-bit processor), and the LEAKY value is 2 [5].
Figure 36 showsthe error spectrareceived at the error microphone while the ANC system is both turned
on (dashed line) and turned off (solid line), using on the FXLM S algorithm.

Status: Paused

200 Hz -
10 A RMS: 10
dBV I I I , I I I I I
i A R
o L] | E S
dB ‘ ‘ ‘ ; ‘ ‘ ‘ ‘ ‘
DIV 1 1 1 1 1 1 1 1 1
; 1 1 1 A 1 1 1 .‘ 1
R EEEEEEEERTEEEE - R R PEREE
I I I '\ I I I '| I
. { P |
| | | | | | L | |
T / | | | | \A\ on
70 M’\ N T AN J
Start: 0 Hz BW: 4.7743 Hz Stop: 500 Hz

X:200Hz Y:-2.04 dBV

Legend: ®==e=== ANCoON
ANC off

Figure 36. Error Spectra for FXLMS Algorithm, Noise Source Is a 200-Hz
Single-Tone Sinusoid

Figure 36 showsthat a41.65-dB noise attenuation can be achieved when the ANC systemisturned on. To
evaluate the ability of the system setup, the noise frequency was varied from 100 Hz to 500 Hz in 50-Hz
steps and the three different algorithms were tested. The noise attenuation data obtained are listed in
Table 3.

66

Table 3. Noise Attenuation for a Single-Tone Sinusoidal Noise Source

NOISE SOURCE ATTENUATION PER ALGORITHM (dB)
FREQUENCY (Hz) FXLMS FBFXLMS FURLMS
100 36.73 45.38 38.71
150 35.88 43.07 38.40
200 41.65 46.88 48.29
250 25.78 43.67 28.04
300 3.93 4.14 3.29
350 50.06 51.92 53.58
400 53.33 52.91 53.81
450 56.86 57.70 63.82
500 33.51 34.71 35.73
Order of Filters \(I:V((Zz))g: \éV((ZZ))gj gg;gg
’ D(z):64 C(2):63

As shown in Table 3, the attenuation achieved by the ANC system varied at different frequencies. The
reason for this phenomenon is that every signa path has a different gain contribution at different
frequencies of the signal; therefore, it is necessary to observe the transfer function of all the signal paths.
White noise was used asthe excitation signal to drive thetarget loudspeaker, and the signal from thetarget
microphonewas connected to the signal analyzer. A hard copy of thefreguency response onthe screenwas
obtai ned using the plotter. Thefrequency response of thetransfer functionsof primary path P(z), secondary
path H(z), and feedback path F(z) are shown in Figure 37, Figure 38, and Figure 39, respectively. P(2) is
thetransfer function between the noiseloudspeaker and the error microphone; H(z) isthetransfer function
between the canceling loudspeaker and the error microphone; and F(z) isthe transfer function between the
canceling loudspeaker and the input microphone.

Asshown inthefigures, the frequency response of H(z) was attenuated at approximately 300 Hz, but P(z)
was amplified. Hence, if the primary noise to be canceled contains a frequency component in this range,
the performance of the ANC system degrades, because the antinoise signal magnitude is constrained.

67

RMS: 10

Status: Paused

300 Hz

10
dBv

=70

Stop: 500 Hz

BW: 4.7743 Hz

Start: 0 Hz

Figure 37. Frequency Response of Primary Path P(z)

RMS: 10

Status: Paused

300 Hz

10
dBvV

Stop: 500 Hz

BW: 4.7743 Hz

Start: 0 Hz

Figure 38. Frequency Response of Secondary Path H(z)

68

10 Status: Paused RMS: 10
dBV

oL A

|
|}
Start: 0 Hz BW: 4.7743 Hz 300 Hz Stop: 500 Hz

Figure 39. Frequency Response of Feedback Path F(z)

Asshownin Figure 39, the frequency response of feedback path F(z) of the experimental setup isstronger
in therange of 100 Hz—250 Hz than in the range of 250 Hz-500 Hz. This means that the contamination of
the reference signal due to the feedback signal is stronger in the lower frequency range. As shown in
Table 3, the FBFXLMS agorithm provides better noise attenuation (about 10 dB on average) than the
FXLMSalgorithminthe 100 Hz-250 Hz range. Thisshowsthe contribution of thefeedback compensation
filter D(2) in the ANC system when a strong feedback signal is present. Table 3 also showsthat the use of
the FURLM S agorithm resulted in only afew dB improvement over the FXLMS agorithmin our ANC
system.

Multiple-Tone Sinusoidal Noise Source Case

For the case in which the primary noiseis a3-tone sinusoidal signal, Figure 40, Figure 41, Figure 42, and
Figure 43 show the spectra of the error signal at the error microphone with the ANC system turned on
(dashed line) and turned off (solid line). Thefrequencies of the primary noise are 200 Hz, 350 Hz, and 450
Hz. Thestepsizeandthevalueof LEAKY arethesameasfor thesingle-tonecase, but theorder of thefilters
varies as shown in Table 4.

Table 4. Filter Orders for 3-Tone Sinusoidal Noise Source

FIGURE 40 FIGURE 41 FIGURE 42 FIGURE 43
ALGORITHM
FXLMS FXLMS FBFXLMS FURLMS
W(z):64 W(z):127 W(z):64 A(z):63
Order of Filters C(z):64 C(z):127 C(z):64 B(z):63
D(z):64 C(z):63

69

Theresultsshown inthesefiguresindicatethat the FXLMS, the FBFXLMS, and the FURLM S algorithms
areall effectivefor real-time ANC applications. Each of them showsthat at |east 40 dB of noiseattenuation
can be achieved for every frequency component. From Figure 40, Figure 42, and Figure 43, the same
conclusionscan be obtained asin the experimentsusing asingle-tone noise source; that is, the ANC system
shows better performance (200-Hz component) in the range that has a strong frequency response of the
feedback path if the FBFXLMS algorithm is used instead of the FXLMS algorithm, and the FURLMS
algorithm can help the ANC system to achieve higher noise attenuation than the FXLMS algorithm.
Figure 40 and Figure 41 show that very slight improvement isachieved when the order of both filtersW(z)
and C(z) was increased from 64 to 127 in the FXLMS algorithm.

10 Status: Paused RMS: 10

dBv l l l l
0 L]

dB ‘ ‘ ‘

/DIV ! ! !
,____: ______ A i ,___‘__A_:_____

| :: ~ !

' ¥ - !

| : & |

_70 I I
Start: 0 Hz BW: 5.9678 Hz Stop: 625 Hz

X:350Hz Y:-8.79 dBV

Legend: eeeee ANCoON ANC off

Figure 40. Error Spectra for FXLMS Algorithm, Noise Source Is a 3-Tone Sinusoid,
Order of W(z) = 64, Order of C(z) =64

70

RMS: 10

Status: Paused

10

dBv
—70

71

Stop: 625 Hz

127, Order of C(z) = 127

ANC off

BW: 5.9678 Hz

ANC on
Order of W(z2)

X:350Hz Y:-8.68 dBV

Start: 0 Hz

Legend:
Figure 41. Error Spectra for FXLMS Algorithm, Noise Source Is a 3-Tone Sinusoid,

RMS: 10

Status: Paused

Stop: 625 Hz

BW: 5.9678 Hz

ANC off

ANC on

64, Order of D(z) = 64

Order of W(z) = 64, Order of C(2)

10

dBV
—70

X:350Hz Y:-8.68 dBV

Start: 0 Hz
Figure 42. Error Spectra for FBFXLMS Algorithm, Noise Source Is a 3-Tone Sinusoid,

Legend:
72

RMS: 10

Status: Paused

10
dBvV

- gl - A

Stop: 625 Hz

BW: 5.9678 Hz

X:350Hz Y:-8.68 dBV

Start: 0 Hz

ANC off

eeeee ANCON

Legend:

63, Order of B(z) = 63, Order of C(z) = 63

Figure 43. Error Spectra for FURLMS Algorithm, Noise Source Is a 3-Tone Sinusoid,
Order of A(2)

73

74

CONCLUSION

Each of the three algorithms can help an ANC system a high level of noise attenuation regardless of the
type of sinusoidal noise source (single-tone or multiple-tone). The feedback compensation filter D(z) of
the FBFXLMS agorithm can be used to get a feedback-free reference signal, which results in better
performance than using the FXLMS algorithm in the frequency range that is affected by the feedback
signal. The FURLM Salgorithm can achieve an average of 3 dB more attenuation inthe ANC system than
the FXLMS agorithm.

The optimum parameter settingsfor thissimple ANC systemarept = 320, LEAKY = 2, and preamplifier
gain = 36. Themethodsused in optimizing thissystem aresimilar to those needed for other ANC systems.
Each parameter was looked at individually, and then its interrelation with the other parameters was
considered to determine the best values. In this way, optimizing a complex and interrelated set of
parameters can be greatly simplified into awell organized and structured procedure.

75

76

NP

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

REFERENCES
Nelson, P A., and S. J. Elliott, Active Control of Sound, Academic Press, San Diego, CA, 1992.
Lueg, P, “Process of Silencing Sound Oscillations,” U.S. Patent No. 2,043,416, June, 1936.
Burgess, J. C., “Active Adaptive Sound Control inaDuct: A Computer Simulation,” J. Acoust.
Soc. Am,, Vol. 70, No. 3, Sept. 1981, pp. 715-726.
Widrow, B., and S. D. Stearns, Adaptive Sgnal Processing, Prentice-Hall, Englewood Cliffs,
NJ, 1985.
Kuo, S. M., and C. Chen, “Implementation of Adaptive Filters with the TMS320C25 or the
TMS320C30,” Digital Sgnal Processing Applications with the TMS320 Family, Volume 3,
edited by P. Papamichalis, Prentice-Hall, Englewood Cliffs, NJ, 1990, pp. 191-271.
Olson, H. F, and E. G. May, “Electronic Sound Absorber,” J. Acoust. Soc. Am., Vol. 25, No. 6,
Nov. 1953, pp. 1130-1136.
Olson, H. F, “Electronic Control of Noise, Vibration, and Reverberation,” J. Acoust. Soc. Am.,
Vol. 28, No. 5, 1956. pp. 966-972.
Morgon, D. R., “ A Hierarchy of Performance Analysis Techniquesfor Adaptive Active Control
of Sound and Vibration,” J. Acoust. Soc. Am., Vol. 89, No. 5, May, 1991, pp. 2362—2369.
Nishimura, M., “ Some Problems of Active Noise Control for Practical Use,” Proc. Int. Symp.
Active Control of Sound and Mibration, Tokyo, 1991, pp. 157-164.
Roure, A., “Self-Adaptive Broadband Active Sound Control System,” J. of Sound and
Vibration, Vol. 101, No. 3, 1985, pp. 429-441.
Morgan, D. R., “Analysis of Multiple Correlation Cancellation Loop With a Filter in the
Auxiliary Path,” IEEE Trans. on ASSP, Vol. ASSP-28, No. 4, August, 1980, pp. 454—467.
Eriksson, L. J., “ Devel opment of the Filtered-U Algorithm for Active Noise Control,” J. Acoust.
Soc. Am,, Vol. 89, No. 1, January, 1991, pp. 257—-265.
Elliott, S. J., I. M. Stothers, and P. A. Nelson, “A Multiple Error LMS Algorithm and Its
ApplicationtotheActive Control of Soundand Vibration”, IEEE Trans. on ASSP, Vol. ASSP-35,
No. 10, Oct., 1987, pp. 1423-1434.
Tichy, J., and G. E. Warnaka, “ Effect of Evanescent Waves on the Active Attenuation of Sound
in Ducts’, Proc. of Inter-Noise, 1983. pp. 435-438.
Poole, L. A., G. E. Warnaka, and R. C. Cutter, “The Implementation of Digital Filter Using a
Modified Widrow-Hoff Algorithm for the Adaptive Cancellation of Acoustic Noise,” Proc.
ICASSP, San Diego, CA, 1984. pp. 21.7.1-21.7.4.
Kuo, S. M., and J. Chen, “Multiple-Microphone Acoustic Echo Cancellation System with the
Partial Adaptive Process,” Digital Signal Processing, Vol. 3, No. 1, January 1993. pp. 1-10.
Eriksson, L. J., M. C. Allie, and R. A. Greiner, “The Selection and Application of an IIR
AdaptiveFilter for Usein Active Sound Attenuation,” IEEE Trans. on ASSP, Vol. ASSP-35, No.
4. April 1987. pp. 433-437.
Feintuch, P. F., “ An Adaptive Recursive LM SFilter,” Proc. of IEEE, Vol. 64, No. 11, November
1976. pp. 1622-1624.
Chaplin, G. G. B., and R. A. Smith, “Waveform Synthesis - The Essex Solution to Repetitive
Noise and Vibration,” Proc. Inter-noise 83, pp. 399-402.
Elliott, S. J., and P. Darlington, “ Adaptive Cancellation of Periodic, Synchronously Sampled
Interference,” IEEE Trans. on ASSP, Vol. ASSP-33, No. 3, June 1985. pp. 715-717.

7

78

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

35.

36.

37.

38.

39.

40.

Widrow, B., et al, “ Adaptive Noise Canceling: Principlesand Applications’, Proc. of IEEE, Vol.
63, No. 12, Dec. 1975. pp. 1692-1716.

Ziegler, E. W., “ Selective Active Cancellation System for Repetitive Phenomena,” U.S. Patent,
No. 4,878,188. Oct. 1989.

Morgan, D.R.,andJ. Thi, “ A Multitone PseudocascadeFiltered-X LM SAdaptiveNotch Filter,”
|EEE Trans. ASSP, Vol. 41, No. 2, Feb. 1993. pp. 946-956.

Jackson, L. B., Digital Filters and Sgnal Processing, 2nd Edition, Charter 13, Kluwer
Academic Publishers, Norwell, MA. 1989.

Glover, J.R., Jr., “ Adaptive Noise Canceling Applied to Sinusoidal Interferences,” |EEE Trans.
on ASSP, Vol. ASSP-25, No. 6, Dec. 1977. pp. 484-491.

Pfaff, D. D., N. S. Kapsokavathis, and N. A. Parks, “Methodsfor Actively Attenuating Engine
Generated Noise,” US Patent 5,146,505. Sept. 1992.

Wheeler, P. D., and D. Smeatham, “On Spatia Variability in the Attenuation Performance of
Active Hearing Protectors,” Applied Acoustics, Vol. 36, 1992. pp. 159-162.

Kuo, S. M., and D. Vijayan, “ Feedback Active Noise Control Systems,” Proc. Int. Conf. Signa
Processing Applications and Technology, 1993. pp. 132-141.

Allie, M. C., C. D. Bremigan, and L. J. Eriksson, “Hardware and Software Considerations for
Active Noise Control,” Proc. ICASSP-88, New York, April 1988. pp. 2598-2601.

Goodman, S. D., “Electronic Design Considerations for Active Noise and Vibration Control
Systems,” Proc. Recent Advancesin Active Control of Sound and Vibration, Blacksburg, VA,
1993. pp. 519-526.

Goodman, S. D., and S. S. Wise, “A Discussion of Commercial Experience with Active Noise
Control on Industrial Fans and Air Handlers Used for Heating, Ventilating and Air
Conditioning,” Proc. Inter-noise, 1990. pp. 797—-800.

Olson,D. A., A.D. Halstrom, and S. S. Wise, “Active Noise Control Systemsand Air Moving
Devices,” Proc. Inter-noise 1989. pp. 475-478.

Nishimura, M., “ Some Problems of Active Noise Control for Practical Use,” Proc. Int. Symp.
Active Control of Sound and Vibration, Tokyo, 1991. pp. 157-164.

Burlage, K., et a., “An Update of Commercial Experience in Silencing Air Moving Devices
with Active Noise Control,” Proc. Noise-Con., 1991. pp. 253-258.

Suzuki, S, et. d., “ A Basic Study on an Active Noise Control System for Compressor Noisein
a Refrigerator,” Proc. Int. Symp. Active Control of Sound and Vibration, Tokyo, 1991. pp.
255-260.

Elliott, S. J,, |. M. Stothers, P. A. Nelson, A. M. McDonald, D. C. Quinn, and T. Saunders, “ The
Active Control of Engine Noise Inside Cars,” Proc. Inter-Noise, 1988. pp. 987-996.

Kuo, S.M.,and B. M. Finn, “A General Multi-Channel Filtered LM S Algorithmfor 3-D Active
Noise Control Systems,” Second Int. Con. on Recent Developments in Air- And
Structure-Borne Sound and Vibration, 1992. pp. 345-352.

Gitlin,R. D., H. Meadors, and S. B. Weinstein, “ The Tap-L eakage Algorithm: An Algorithmfor
the Stable Operation of aDigital Implemented, Fractionally Adaptive Spaced Equalizer,” Bell
System Tech. J., Oct. 1982. pp.

Gitlin,R.D., J. E.Mazo, and M. G. Taylor, “Onthe Design of Gradient Algorithmsfor Digitally
Implemented Adaptive Filters,” IEEE Trans. Circuit Theory, Vol. CT-20, March 1983. pp.
125-136.

Caraiscos, C., and B. Liu, “ A Roundoff Error Analysisof theLMS Adaptive Algorithm,” |EEE
Trans. on ASSP, Vol. ASSP-32, No. 1, Feb. 1984. pp. 34-41.

45,

46.

47.

48.

. Oppenheim, A. V., and R. W. Schafer, Discrete-Time Sgnal Processing, Prentice-Hall,

Englewood Cliffs, NJ. 1989.

. Texas Instruments, TMS320C2x User’s Guide, 1993.

Crochier, R, R. Cox, and J. Johnson, “Real-Time Speech Coding,” |EEE Trans.
Communications, April 1982. pp.

Elliott, S. J., P A.Nelson, |. M. Stothersand C. C. Boucher, I n-Flight Experimentsonthe Active
Control of Propeller-Induced Cabin Noise, Journal of Sound and Vibration, Vol. 140, No. 2,
1990. pp. 219-238.

Mélton, D. E.,andR. A. Greiner, Adaptive Feedforward Multiple-I nput, Multiple-Output Active
Noise Control, Proc. ICASSP, 1992. pp. 11-229-232.

Guicking, D., and M. Bronzel, Multi-Channel Broadband Active Noise Control in Small
Enclosures, Proc. Inter-Noise, 1990. pp. 1255-1258.

Garcia, D., Precision Digital Sne-Wave Generation with the TMS32010, Chap. 8 in Digital
Sgnal Processing Applications with the TMS320 Family, vol. 1, edited by K. S. Lin, Texas
Instruments, 1989.

Texas Instruments, TMS320C2x DSP Starter Kit User’s Guide, 1993.

79

80

APPENDIX A: PSEUDO RANDOM NUMBER GENERATOR

Two basi ¢ techniques can be used for pseudo random number (white noise) generation. Thefirst technique
isthe table look-up method using arandom set of stored samples, and the second techniqueis based on a
shift register with feedback. Both techni ques generate apseudo random number sequence: asequencethat
repeatsitself after afinite period andis, therefore, not truly random for all time. Thelength of the sequence
for the table look-up method is determined by the number of stored data samples, while the shift register
technique’s length is determined by the length of the register.

A shift register with feedback from specific elements can generate a continuous, repetitive random
sequence. The algorithm of the 16-bit generator is shown in Figure 44, where XOR denotes the
exclusive-OR logic operation. The maximum sequence length L before repetition is:

L =21

whereM isthenumber of bitsinthe shift register. An output from the sequencegenerator istheentire M-bit
word of the register.

Shift Left

A

b15| bl4 | b13 | bl12 | bll o b3 | b2 | bl | bO

XOR

XOR

A 4

XOR

Y VY

Figure 44. Pseudo Random Number Generator, 16-Bit Case

The assembly program implementation of this white noise generator on the TMS320C25 is given in
Appendix C, TMS320C25 Ariel Board I mplementation of ANC Algorithms.

81

82

APPENDIX B: DIGITAL SINE-WAVE GENERATOR

Similar to the pseudo random number generation, there are two commonly used techniquesfor sine-wave
generation. The first technique is the table look-up method using a set of stored sine-wave samples, and
the second technique is based on adigital filter.

Table Look-Up Method

The sine-wave generation using the table look-up technique is a more conceptually simple method of
generating agiven periodic waveform. Thetechniqueinvolvesthereading of aseriesof stored datavalues
representing discrete sampl es of the waveform to be generated. The datavalues can be obtained either by
sampling the appropriate anal og waveform or, morecommonly, by computing the desired val ues. Provided
that enough samples are stored to represent one complete period of the waveform accurately, continuous
signals are generated by repeatedly cycling through the data memory locations.

The sine-wave table contains N sample values equally spaced in time over one period of the waveform.
The values are easily computed by evaluating the function:

x(n) = sin (nx 3‘,5\?°) n=0 1.. N-1

A sinewave is generated by stepping through the table at a constant rate, wrapping around at the end of
the table whenever 360° is exceeded. The frequency f of the sine wave depends on the sampling period T
andthestep size A. That is.

f(inHz)=.|_§N

There are two sources of error that cause harmonic distortion in the table look-up agorithm:
¢ Quantization error is introduced by representing the sine wave table values by M-bit binary
numbers.
¢ Larger errors are introduced when points between table entries are sampled.

This harmonic distortion occurs when A is not an integer. The longer the table is, the less significant the
second error sourceis. To decrease the harmonic distortion for agivetablesize N, aninterpolation scheme
can be used to compute the sine-wave val ues between table entries more accurately. Linear interpolation
isthe simplest method to implement. Theimplementation of asine-wave generator using thetablelook-up
method on the TM S320 was developed by Garcia[47].

83

Digital Oscillator

A very useful method of generating sinewavesfor agiven frequency isto useamarginally stabletwo-pole
resonator for which the complex-conjugate poleslie onthe unit circle. Thisrecursive oscillator isthe most
accurate and efficient method of generating sinusoidal waveforms, particularly if quadrature signals(sine
and cosine waves) are required. In this appendix, only the sine-wave generator is considered.

Consider an impulse response of the form:

hy(n) = Asin(w,n) X u(n)

where u(n) is the unit step function, A isthe amplitude of the generated sine wave, and w, isthe angular
frequency. The system transfer function (without the gain A) is:

H2) = X(@) 1-2cos(wgzt+ z2
This equation can be expressed as:

Y(2)[1 - ecos(wg)z? + 22| = X(2)[sin(we)z™]

Taking the inverse z-transform of both sides and rearranging both sides gives:
y(n) = 2cos(wg)y(n — 1) —y(n — 2) + sin(wg)x(n — 1)

Applying the unit impulse as x(n) for values of n > 2, y(n) can be calculated as:
y(n) = 2cos(wg)y(n — 1) —y(n - 2)

with initial conditions:
y(1) = sin(w,) and y(0) = 0

The TM S320C25 implementation of this sine-wave generator isgiven in Appendix C, TMS320C25 Ariel
Board Implementation of ANC Algorithms, and a more general implementation is given in Appendix D,
General Configurable Software for ANC Evaluation.

APPENDIX C: TMS320C25 ARIEL BOARD IMPLEMENTATION OF
ANC ALGORITHMS

The algorithms discussed in this application report can be implemented on the DSP-16 Plus Algorithm
Development Board (from Ariel Corporation, 908-249-2900) with thecodeincludedinthisappendix. The
codeiswell commented to aid understanding. As mentioned in the report, the code is written in modular
form, breaking the algorithms down into small, easily understood parts. Code written in this manner
decreases the amount of time and effort necessary to understand DSP noise control solutions.

Reading through the code is an excellent method for becoming familiar with the software aspects of an
ANC system.

The Filtered-X LMS Algorithm

FI LE NAME : FXLMS. ASM

Rk I O O I R b S S S S R R I kR R

L I I S R S R R R S R I R N R R R T R

Thi s program has been nodified to run on the Ariel’s DSP-16
Pl us TMS320C25 DSP Board.

Kai - M ng Chung
Cct. 1994

Rk I S S o S R S S O I R

Fi | e: ANCFXLMS. ASM

One-di nensi onal Adaptive Active Noise Control System Using
Filtered-X LMS (FXLMS) Al gorithmon TM5320C25

Sen M Kuo , Fall 1993

Rk S R R Rk R S S S S R ok b R SRR S b S e S R R R I b R S S R R R R S S R

SYSTEM CONFI GURATI ON:

; x(n)
;YoM > |
; | I
; | Adaptive FXLM5 ANC | y(n)
; e(n) [System | —————> antinoi se out put
[——> | |
I I

s 3

x(n) — signal fromthe input m crophone

e(n) — signal fromthe error m crophone

y(n) — antinoise to drive the canceling | oudspeaker (noise
cancel | ati on node), or
the training signal (off-line nodeling node)

85

ECIE I T TR N N T I R R I R I N R B . I S N

E

TRNTIM EQU 30000

)]

Ports: x(n) frominput port B
e(n) frominput port A
y(n) to output port A
The flow of programis:

C25 initialization —> off-line secondary-path nodeling —>
on-line active noi se control

A Of-line nodeling:

| ——> Speaker . error MC —> |
y(n) ---| |
| —————————2(n) - + |
| —> z) |——>(51|m) <] e(n)
< L. e’ (n)

wher e:
y(n) is an internally generated white noise
C(z) is an adaptive nodeling filter, updated by LMs al gorithm

B. On-line noise control:

__________ y(n) e(n) fromerror MC
X() ——————> Wz) |-—>
—————————— to speaker |
_______ : |
| A2)] : |
| ———>| FXLNMS | <
X' (n) —_—

where: C(z) is a fixed FIRfilter from previous training node
Wz) is an adaptive noise control filter, updated by FXLMS

R S S S G O O

define constants (can be nodified for different applications)

X EQU 2000 ; assune sanpling rate is 2 kHz.
training tine = 15 seconds

NCZ: EQU 64 ; order of C(z), max = 127

NWZ: EQU 64 ; order of Wz), max = 127

MJ: EQU 4096 ; coef. update stepsize, off-line nodeling

MUL: EQU 328 ; coef. update stepsize, on-line active noise
;. control

MASK: EQU 8805h ; to mask off bits 0,2,11,15

SEED: EQU 12357 ; seed for white noise generator

LEAKY: EQU 2 ; leaky factor

- %

- x
s

¥ 0% ok X X F %

86

Rk S I R IR S ok bk S S R R b o S R R R R R R R o b I O SRk R b b O

Menory map:

B2: page 0 — data I/O buffer

BO: page 4 - coefs of AF C(z) : ci(n), i=0,1,..,(NCzZ-1)
(rmodeling filter) NCZ <= 127

BO: page 5 - coefs of AF Wz) : wi(n), i=0,1,..,(NZ-1)
(noi se control filter) NWZ <= 127

E I I R R R R

Bl: page 6 — data buffer for C(z) : y(n-i), i=0,1,..,(NCZ-1)

During of f-line nodel i ng, buffer contains training
si gnal
During on-line canceling, buffer contains filtered
version of x(n) by C(z), x'(n), n=0,1,..(N\Z-1)

y(n=i), i=0,1,..,(NCZ-1)

Bl: page 7 — data buffer for Wz) : x(n-i), i=0,1,..,(N\-1)

R R R S I Sk O O O

;* PAGE 0 (nenory-napped regs and B2) DATA MEMORY ALLOCATI ON
-k

%

*

PODM EQU 0 ; page 0 data RAM address

DAC: EQU 13 ; DAC I/ O port

ADC: EQU 0 ; Serial receive address

| VR EQU 4 ; Interrupt mask register

BUF1: EQU 96 ; Buffer for channel A input data
BUF2: EQU 97 ; Buffer for channel B input data
BUF3: EQU 98 ; Buffer for channel A output data
BUF4: EQU 99 ; Buffer for channel B output data
V\NO: EQU 100 ; storage for white noi se generator
WNL: EQU 101 ; "

TRNCTR. EQU 102
STSFLG ~EQU 103

trai ning node (off-line nodeling) counter
program status flag, 1 = training node

ONE: EQU 104 : ONE=1

VMU EQU 105 ; value of nu

VMUL: EQU 106 ; value of nul

ADCE: EQU 107 address of cN-1(n)

ADVIE: EQU 108 ; address of wN-1(n)

AYO: EQU 109 ; address for y(n)

AYE: EQU 110 ; address for y(n—N+1)

AXPE: EQU 111 ; address for x' (n—-N+1)

AXO: EQU 112 ; address for x(n)

AXE: EQU 113 ; end address for x(n—-N+1)
AXCE: EQU 114 ; end address for x(n—-NCZ+1)
;* data buffer for signals

TEMP: EQU 120 ; Tenporary storage | ocation
TSTO: EQU 121 Storage for STO

- %

%

*

;* PAGE 4 (B0) DATA MEMORY ALLOCATI ON

;* AF C(z): ci(n), 1i=0,1,2,..,NCz-1

- %

PADM EQU 512 ; PAGE 4 DATA MEM ADRS
P4PM EQU 65280 ; PAGE 4 PROG MEM ADRS

CE: EQU 0 ; ci(n), end of C(z) buffer
DA _CE: EQU PADWCE ; address of ci(n), i=NCZ-1 at CNFD
PA CE: EQU P4APWCE ; address of ci(n), " at CNFP
-k

%

*

;* Menmory map cN-1(n) | ow address <—— PA _CE, AR2, ADCE
;* cN-2(n)

- %

* c1(n)

;* cO(n) hi gh address

- %

%

87

- %

;* PAGE 5 (B0O) DATA MEMORY ALLOCATI ON

;Y AF Wz): wi(n), i=0,1,2,..,N\-1
- %
iDSDM EQU 640 ; PAGE 5 DATA MEM ADRS
P5P EQU 65408 ; PAGE 5 PROG MEM ADRS
V\E: EQU 0 ; wi(n), end of Wz) buffer
DA VE: EQU PS5DWWE ; address of WE at CNFD
PA VE: EQU P5PMWWE ; address of VE at CNFP
- %
-
*
;* Menmory map: WN-1(n) | ow address, ADVE
* WN-2(n)
3* wi(n)
;* wo(n) hi gh address
- %
-
*
:* PAGE 6 (Bl) DATA MEMORY ALLOCATION for C(z)
;* in off-line nodeling, y(n-i), i=0,1,...,NCZ-1
;* in on-line canceling, x (n-i), i=0,1,..., N\\Z-1
P6DM EQU 768 . PAGE 6 DATA MEM ADRS
YO: EQU O ; y(n)
YE: EQU NCz-1 ; y(Nn=NCZ+1)
XPE: EQU NWZ-1 ;X' (n—NWZ+1)
A YO: EQU P6DM+YO ; address of y(n)
A YE: EQU P6DWYE ; address of y(n-NCZ+1)
A XPE: EQU P6DWXPE ; address of y(n-NWZ+1) for x' (n)
- %
: *
*
* Mermory map: y(n) | ow address <— AYO
N y(n-1)
;* &/-('n—N+1) hi gh address <— AYE
L <— ARL
*
"
*
* PAGE 7 (Bl) DATA MEMORY ALLOCATION for W z)
;* x(n=i), i=0,1,...,N\\Z-1
i:’?DM EQU 896 ; PAGE 7 DATA MEMORY ADDRESS
X0: EQU 0 ;o x(n)
XE: EQU NWZ-1 7 X(N—=NWZ+1)
XCE: EQU NCzZ-1 ;. X(n—NCZ+1)
A _XO: EQU P7DW+X0 ; address of x(n)
A_XE: EQU P7DM+XE ; address of x(n-NWZ+1)
A_XCE: EQU P7DM+XCE ; address of x(n-NCZ+1)
. %
o
*
;* Menory map: x(n) ; <— AXO
;* x(n-1)
* X(N=N+1) ; <— AXE
LR R R R I R S R R R R I R

88

- %

p* | NTERRUPT BRANCHES

,
,
-
)
,

EEE Rk ok R R R R o ok R R R S o R R o kO R Rk o S R R

s

RESET: B 32
ORG 4

| NT1: B 1000
ORG 6

| NT2: B 2000
ORG 26

RCV: B 3000

- %
s

’
’
’
’
- %
’

’

- %
’

NIT: ORG 32

LDPK O ; Load page O
LALK 2EOOH ; 0010 1110 0000 0000 in binary
SACL TEMP ; Initialize STO
LST TEMP ;0 —> DP
; 1 —=> INTM interrupts disabled
;1 —> OUWM
0 —> oV
;1 —> ARP
SPM 1 ; Preg. output shift left 1 bit
x I NI TI ALI ZE PAGE 0
.k
LARP AR1 ; ARl as address pointer
LARK AR1, 96 ; LOWEST PAGE 0 LOCATION —> ARL
ZAC . 0 —> ACC
RPTK 31 ; REPEAT NEXT | NSTRUCTI ON 32 TI MES
SACL *+ ; ZERO PAGE 0
LACK 1 . ACC <- 1
SACL ONE : ONE <- 1
SACL STSFLG ; STSFLG=1, training node first

LALK TRNTI M
SACL TRNCTR

On hardware reset go to INIT
On INT1 go to interrupt 1 service routine
On INT2 go to interrupt 2 service routine

On RINT go to ADC service routine

ACC <— # of training sanples
training time = 3 seconds = 4500 sanpl es

p* PROCESSOR | NI TI ALI ZATI ON ROUTI NE

seed

ADCE

ADVE

LALK MJ ; ACC <— nu

SACL VMJ ; value of nu

LALK MJL ; ACC <— nuil

SACL VM ; value of nul

LALK 22 ;. ACC <— 22

SACL I MR ; Enable INT1 , INT2 & RINT

LALK SEED ; ACC <— SEED

SACL WNO ; initial white noise =
;* I NI TI ALI ZE ADDRESS PO NTERS

LALK DA CE

SACL ADCE ; address of CN-1(n) in

LALK DA VE

SACL ADVE ; address of wN-1(n) in

LALK A YO

SACL AYO ; address of y(n)

EEE R ok R kR R b o o kR R Ok R Rk S o R R b kR SRR ok kb o S R R SRR O S o

EEE R S S O R R I O S

89

LALK A YE

SACL AYE ; address of y(n—-N+l)
LALK A XPE
SACL AXPE ; address of x’ (n-N+1)
LALK A X0
SACL AXO0 ; address of x(n)
LALK A XE
SACL AXE ; address of x(n—N+t1)
LALK A XCE
SACL AXCE ; address of x(n-NCzZ+1)

* CLEAR PAGES 4, 5, 6, and 7
LARP AR1 ;1 —> ARP
LRLK AR1, 512 ; LONEST PAGE 4 ADDRESS —> ARl
ZAC . 0 —> ACC
RPTK 255
SACL *+ ; zero pages 4 & 5
RPTK 255
SACL *+ ; zero pages 6 & 7
El NT ; ENABLE | NTERRUPTS

B LOOP ; Branch to LOOP,wait for interrupts

EEE Rk o R R R o o kO R R R o kR Sk R R R Ik Rk R b o O R R

BRI R R S I R R R I R R

L CYCLE START ROUTI NE

LAC STSFLG
BZ CANCEL

I f STSFLG = 0, branch to CANCEL
for next sanple, |oop forever

START LARP AR3 . 3 —> ARP
LAC BUF1 ; ACC <— frominput port A
SACL EN ; value of error signal fromerror mcrophone
LAC BUF2 ; ACC <— frominput port B
SACL XN ; value of reference signal frominput nicrophone
LAC YN ; ACC <— YN
SACL BUF3 ; value of antinoise signal to output port A
LAC TN ; ACC <— TN
SACL BUF4 ; value of concerned signal to output port B

*
IR E R E R RS SRR R R R R R R R R R R R R R R R R E R R R EEEEEEEEEREREEES]
*

where the initial value of WNO (b15..b0) = seed

* Trai ni ng node (off-line nodeling of secondary path)

-k

-

-

v White noi se generator:

* Al gorithm

* rotate left 1-bit

;* bls . Dbll < b2 . bO < |
X | | | | —> |
P | | | ———- > XOR —>| |
o | | I I
X | | ————> - |
P | > XOR > XOR ——>|
-

-

-

90

TRAIN LAC

ANDK
SACL
ADD
ADD
ADD
ANDK
ADDH
SACH
LAC
SACH

- %

- %

VNO
MASK
VN1
WNL, 4
WNL, 13
WNL, 15
MASK
VNO
VRO, 1
VWO, 11
YN

Load noi se sequence

Mask of f feedback bits

Save tenmporary

conbine bits 11 and 15

conbine bit 2 with result
conbine bit O with result

reuse mask to nask off MSB
conbi ne MSB wi th sequence

save result (and shift out MSB)
scal e WNO

out put white noise to excite secondary path

R SRR R R R R R R R R RS R R SRR E R EREEEEEEEEEEEEES

:* Adaptive Of-line Secondary-Path Mdeling

*

:* | ——> Speaker ... error MC ——>|

o * y(n) —>| I

e v z(n)— + I

M | —> dz) |-—>(sum<——— | e(n)

s T |

p* < e’ (n)

*

x wher e

;* y(n) is internally generate white noise

*

’**

L NCZ-1

;* A Conputes z(n) = sum ci(n) * y(n-i)

- I =

,*

l*
LARP ARl ; ARl as current address reg

FIRC MPYK O ; P=0
LAR AR1, AYO ; ARL pointing to y(n)
SACH *, ARl ; inject white noise to buffer of C(z)
LAR AR1, AYE ; ARL pointing to y(n—-NCZ+1)
LAC ONE, 15 : round-of f offset to ACC
CNFP
RPTK NCzZ-1 ; for i = NCZ-1,NCz-2,...,0
MACD PA CE, *- ; ci(n) * y(n-i) + ACC —> ACC
CNFD ; also nove data y(n-i)
APAC ; P+ ACC —> ACC = z(n)

.- %k

-

"%

;* B. conputes error signals e (n):

- %

o e(m) = e(n) - z(n)

- %

%

-
NEG ; ACC = — z(n)
ADDH EN ; ACC (e’ (n) = e(n) — z(n)
SACH ZN ;z(n) = e (n)

- %

-

;* C. update coefficients of C(z) using LMS Al gorithm

- %

91

;* ci(n+l) =ci(n) + u*e’ (n)*y(n-i)
.k
;* ARl — point to data buffer, y(n-i)
x AR2 — point to AF coefs, ci(n)
%
o
LT ZN ; T=¢€e(n
MPY VWU ; P = mure’ (n)
PAC ; ACC <— P
ADD ONE, 15 ; roundi ng
SACH ZN ; ZN = nmu*e’ (n)
' LARK AR3,NCZ-1 ; initialize AR3 as | oop counter
LAR ARL, AYE
MAR *+ ; ARL pointing to y(n—-N+1) due to
; MACD data nove effect
LAR AR2, ADCE ; AR2 pointing to cN-1(n)
LT ZN ;T = mure’ (n)
MPY *— AR2 ; P = mu*e’ (n)*y(n-i)
- %
ADAP_C ZALR *, ARl ; load ACCwith ci(n) and round
MPYA *— AR2 ; ci(n+l) =ci(n) + P
; P = mure (n)*y(n-i) for next i
SACH *+,0, AR3 ; store ci(n+l)
BANZ ADAP_C, *—, AR2; go back to loop if counter (AR3) > 0
- %
"%
%
;* check if end of training node
- %
"%
%
LAC TRNCTR ; ACC <- training counter
SUBK 1 ; decrenment training counter
SACL TRNCTR ; save counter
B&Z LOoP
- %
’ ZAC ; end of training node, ACC=0
SACL STSFLG ; STSFLG <— 0, now in noi se control node
LARP ARl ; make sure AR1 is address pointer
LAR AR1, AYO ; ARL pointing to y(n)
RPTK NCZ ; repeat NCZ+1 tinme
SACL *+ ; clear C(z) buffer for x’(n) in noise
; control node
B START ; end training, go to noise control node

*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

92

frominput MC

Noi se control nobde:

IR R R E R RS S R R R R R R R R R R R R R R R R R R E R EEEEEEEEEEEEEREREEES]

to speaker fromerror MC
—————————— y(n) e(n)
X() —————> Wz) |-—> |
q2)| : |
| ————>| FXLMB | <
x’ (n) —_—_—

Rk S Rk kI S S S IRk S b R R IR Sk S S e S R R R o b kS S S AR R S b S R

CANCEL LAC XN ; inject reference input x(n) fromport B
; (input MQ into x(n)

LARP AR1 i ARP <— 1
LAR AR1, AX0 ; ARL point to x(n)
SACL *
LARP ARL

*

,*

;* 1. Filtered-X, filtering x(n) by C(z) to get x'(n)

- %

Lx N-1

x X' (n) =sumci * x(n-i)

P 3 '=

L !

D * where ci, i=0,1,..,N-1 are fromtraining node filter C(z)

%

"

" x

FX C MPYK 0O ; P<-0

LAR ARL, AXCE ; ARL point to x(n—NCZ+1)
LAC ONE, 15 ; roundi ng

CNFP
RPTK NCZ-1
MAC PA CE, *-—
CNFD

APAC

LAR ARL, AYO
*

for i=N-1, .., 1, O
ACC <— ACC+ci (n)*x(n—i)

ACC <— ACC+P = x’(n)
ARLl point to x'(n)

SACH ; inject x'(n) into buffer

- %k

"%

Lk

;¥ 2. Filter x(n) by Wz) to get y(n), the antinoise

- %

x N-1

* y(n) = sumwi (n) * x(n-i)

. % ':

L !

"%

FIRW MPYK O S P<0
LAR AR, AXE ; ARL point to x(n—Nt1)
LAC ONE, 15 ; roundi ng
CNFP
RPTK Nwz-1 ; for i=N-1, .., 1, O
MACD PA VI, *— ; ACC = ACC + wi (n)*x(n—i)
CNFD
APAC ; ACC = y(n)

- %

" SACH YN ; YN <= y(n), antinoise to output port A

%

%

"

;* 3. FXLMS Algorithmto update coefficients of Wz)

;* wi(n+l) = wi(n) —ue(n) x(n-i), for i=0,1,..,N-1

- %

;* Not e: using "-" when updating Wz) in noise control node

;* instead of "+” when updating C(z) in training node

- %

;* ARl pointing to x' (n-i) data buffer

;* AR2 pointing to wi (n) coefs buffer

- %

93

LT
MPY
PAC
ADD
SACH

LARK
LAR
LAR

LT
LARP
MPY
ADAP_WZALR
MPYS

DVOV
SUB

SACH
BANZ

B

LOOP: I DLE
I DLE
B

- %

ADAP_W *—, AR2

LOoP

LOCP

T = e(n)
P=m * e(n)
ACC <- P
roundi ng
EN = mu * e(n)

initialize AR3 as | oop counter
ARL point to X' (n—Nt1)
AR2 point to wN-1(n)

T=mu * e(n)

P=m * e(n) * x’ (n-N+1)

ACC <— wi (n) and roundi ng

w (n+tl) =w(n) — P

P=m* e(n) * x"(n-i) for next

update x' (n) buffer

w (n+1) =wi (n+1) —(2exp(LEAKY-16)) *wi (n+1)
wi (n+l) <— ACC

go back to loop if (AR3) > 0

EEE Rk o R R ok kR SRR R o kR R b o R b R Rk o

-k

-k

EEE R R S R R R R S L

s

ORG
SST
LDPK
out
LST
NOP
SXF
El NT
RET

- %

1000
TSTO

0

BUF3, DAC
TSTO

;* INT1 Interrupt Service Routine

Channel A interrupt
Save STO

Cut put buffer to DAC
Restore STO

Set external flag bit

EEE Ik R O S O R S kR S O

- %

s

CEE R O S I O O S O I R O O O O O O I o I

- %

ORG
SST
LDPK
out
LST
NOP
RXF
El NT
B

- %

*

94

2000
TSTO

0
BUF4, DAC
TSTO

START

;* I NT2 Interrupt Service Routine

Channel B interrupt
Save ST 0O

Qut put buffer to DAC
Restore STO

Reset external flag bit

SRR I S S I S S S O O

- %

RINT Interrupt Service Routine

EE R O o I O R o O O o O R R I o O O I o O O O I

s

- %

L I I S R B T SR T G I R R I N T G

- %

ORG 3000 ; ADC i nterrupt

LDPK O

SST TSTO ; Save STO

LAC ADC ; Read fromserial port

BIOZ [IN2 ; Skip if channel B

SACL BUF1 ;. Move data to channel A buffer
LST TSTO ; Restore STO

El NT

RET

SACL BUF2 : For channel B, save data in channel B buffer
LST TSTO ;. Restore STO

El NT

RET

Filtered-U RLMS Algorithm

;* FILE NAME : FURLMS. ASM

RS SRR R R R R R R R R R R RS R R SRR R EEEEEEEEEEEEEEEEEE RS

Thi s program has been nodified to run on the Ariel’s DSP-16
Pl us TMS320C25 DSP Board

Kai -M ng Chung

Cct. 1994

R S S O I G S S O

Fil e: FURLMS. ASM

One-di mensi onal Adaptive Active Noise Control System Using
Filtered-U RLM5 (FURLMS) Al gorithm on TMS320C25

Sen M Kuo , Fall 1993

EE R R S S O S R I o O S o

SYSTEM CONFI GURATI ON:

x(n)
* >| |
| I
| Adaptive FURLMS ANC | y(n)
e(n) | System | ——— > anti noi se out put
M|] |
I
wher e

x(n) — signal fromthe input mcrophone

e(n) — signal fromthe error nicrophone

y(n) — antinoise to drive the canceling | oudspeaker, or
the training signal in the off-line nodeling node

Ports:
x(n) frominput port B
e(n) frominput port A
y(n) to output port A

The flow of programis:

95

C25 initialization —> off-line Secondary-Path nodeling —>
on-l i ne active noi se control

A. Of-line nodeling:

| ——> Speaker error MC ——>|
y(n) — I
—————————— z(n) - +
|1 &2 [———>(sum <———fe(n)
< e’ (n)
wher e

y(n) is an internally generated white noise
) is an adaptive nmodeling filter, updated by LNM5

B. On-line noise control:

to speaker fromerror MC

frominput MC — OR o

() T A Tt |
o : I |
SO | <—I B(2) |<—I

e TN
[————>| LMB | e I
x(n) ___l____ | LMB | <—

| |

where C(z) is a fixed FIRfilter from previous nodel i ng node
A(z) and B(z) are adaptive noise control filters,
updat ed by FURLMS

E o I R R R I R I I N N S T R R R R

Rk Ik I S R IR S ok bk S S R R I b o S R R S kR R R R R R R S O R

define constants (can be nodified for different applications)

m*****

n--

: EQU 2000 ; assume sanpling rate is 2 kHz.
TRNTI M EQU 30000 training tine = 15 seconds

NCZ: EQU 63 ; order of C(z), max = 63

NAZ: EQU 63 ; order of A(z), max = 63

NBZ: EQU 63 ; order of B(z), max = 63

MU EQU 4096 ; coef. update stepsize for off-line nodeling
MUL: EQU 328 ; coef. update stepsize for Wz)

MASK: EQU 8805h ; to mask off bits 0,2,11, 15

SEED: EQU 12357 ; seed for white noise generator

LEAKY: EQU 2 ; leaky factor

s
ckkkkkhkkkkkkkkhkhkkkkhhkkkkhhkkkhkkkkkhkkkkkhkkkkkhhkkkhkkkkkkhkkkkkkkkkkkk ok k% % %
- x

:* Menory map:

;* B2: page O — data I /O buffer

:* BO: page 4 — coefs of AF C(z) : ci(n), i=0,1,..,(NCz-1)
;* (rmodeling filter) NCZ <= 63

96

Lo R B I R R R RN R I I

— coefs of AF A(z) : ai(n), i=0,1,..,(NAZ-1)
(direct filter) NAZ <= 63

BO: page 5 - coefs of AF B(z) : bi(n), i=0,1,..,(NBzZ-1)
(feedback filter) NBZ <= 63

Bl: page 6 — data buffer for C(2z)

During off-line nodeling, buffer contains training
signal y(n-i), i=0,1,..,(NCZ-1)

During on-line canceling, buffer contains:
1. filtered version of x(n) by C(z), i.e., X' (n)
2. filtered version of y(n) by C(z), i.e., y (n)

Bl: page 7 — data buffer for A(z) : x(n-i), i=0,1,..,(NAZ-1)
data buffer for B(z) : y(n-i), i=1,2,..,NBZ

Rk I R Rk I S o S R R S o Sk S R R R S S S e S R R R kR R R S S e T

PAGE 0 (nenory-napped regs and B2) DATA MEMORY ALLOCATI ON

*

PODM EQU 0 ; page 0 data RAM address

DAC: EQU 13 ; DAC I/ O port

ADC: EQU 0 ; Serial receive address

| MR EQU 4 ; Interrupt nmask register

BUF1: EQU 96 ; Buffer for channel A input data
BUF2: EQU 97 ; Buffer for channel B input data
BUF3: EQU 98 ; Buffer for channel A output data
BUF4: EQU 99 ; Buffer for channel B output data
ANO: EQU 100 o st or age for whi t e noi se generator
VNL: EQU 101

TRNCTR: EQU 102 ; tra| ni ng node (Off-line rmdel i ng) counter
STSFLG EQU 103 ; program status flag, 1 = training node
ONE: EQU 104 ; HOLDS 1

VMU EQU 105 ; value of nu

VMUL: EQU 106 ; value of nul

ADCE: EQU 107 ; address of cN-1(n)

ADAE: EQU 108 ; address of aN-1(n)

ADBE: EQU 109 ; address of bN-1(n)

AXPO: EQU 110 ; address of x’ (n)

AXPE: EQU 111 ; address of x’ (n N+1)

AYPO: EQU 112 ; address for y (n)

AYPE: EQU 113 ; address for y' (n—Nt1)

AXO: EQU 114 ; address for x(n)

AXE: EQU 115 ; address for x(n—N+1)

AXCE: EQU 116 ; address for x(n-NCZ+1)

AYO: EQU 117 ; address for y(n)

AYE: EQU 118 ; address for y(n—Nt1)

AYCE: EQU 119 ; address for y(n-NCZ+1)

;* data buffer for signals

XN: EQU 120 7 X(n), frominput MC

EN: EQU 121 ; e(n), fromerror MC

ZN: EQU 122 ; z(n) in training node

YN: EQU 123 ; buffer for y(n)

TN: EQU 124 ; to output port B

TEMP: EQU 125 ; Tenporary storage for channel A
TSTO: EQU 126 ; Storage for STO

97

- %
f* PAGE 4 (B0) DATA MEMORY ALLOCATI ON

;* AF C(z): ci(n), i=0,1,2,..,NCz-1

- %

P4DM EQU 512 ; PAGE 4 DATA MEM ADRS
P4PM EQU 65280 ; PAGE 4 PROG MEM ADRS

CE: EQU 0 ; ci(n), end of C(z) buffer
DA CE: EQU P4Divi-CE ; address of ci(n), i=NCZ-1 at CNFD
PA CE: EQU P4PM+CE ; address of ci(n), " at CNFP
.- %k

Cx

" x

;* Menmory nap cN-1(n) | ow address <— PA CE, AR2, ADCE
p* cN-2(n)

-k

* c1(n)

;* cO(n) hi gh address

- %

" x

"%

;¥ AF A(z): ai(n), i=0,1,2,..,NAZ-1

- %

AE: EQU 64 ; ai(n), end of A(z) buffer
DA AE: EQU P4DMW+AE ; address of ai(n), i=NAZ-1 at CNFD
PA_AE: EQU P4PM+AE ; address of ai(n), " at CNFP
- %k

"

*

;* Menmory map: aN-1(n) | ow address <— PA_AE, ADAE
px aN-2(n)

- %

E* al(n)

p* ao(n) hi gh address

- %

"

*

;* PAGE 5 (B0) DATA MEMORY ALLQOCATI ON

;* AF B(z): bi(n), i=0,1,2,..,NBZ-1

- %

P5DM EQU 640 ; PAGE 5 DATA MEM ADRS
P5PM EQU 65408 ; PAGE 5 PROG MEM ADRS

BE: EQU 0 ; bi(n), end of B(z) buffer
DA BE: EQU P5DMW+BE ; address of BE at CNFD
PA_BE: EQU P5PM+BE ; address of BE at CNFP

-k

" x

*

;* Menory map: bN-1(n) | ow address, ADBE

px bN-2(n)

- %

E* bl(n)

* bO(n) hi gh address

- %

"%

f* PAGE 6 (Bl) DATA MEMORY ALLOCATION for C(2z)

D * X" (n-i), i=0,1,...,NCzZ-1

;* y'(n-i), i=0,1,..., NCZ-1

P6DM EQU 768 ; PAGE 6 DATA MEM ADRS

XPO: EQU 0 ;X' (n)

XPE: EQU NCZ-1 7 Y(n=NCZ+1)

A _XPO: EQU P6 DIVi-XPO ; address of x'(n)

98

Rk Ik I R R S S R kR R b S Rk kO bk kR Rk kO R R

A XPE EQU P6 DVi-XPE ; address of x' (n—-NCZ+1)
.k

o

-

;* Menory map: X' (n) | ow address <— AXPO
;* x' (n-1)

P e

* X" (n—N#1) hi gh address <— AXPE
"%

o

YPO: EQU 64 7y (n)

YPE: EQU YPO+NCZ-1 ; y’ (n—NCZ+1)

A _YPO: EQU P6DWYPO ; address of y'(n)

A _YPE: EQU P6DWYPE ; address of y’ (n—NCZ+1)

- %

"%

o

;* Menory map: y' (n) | ow address <— AYPO
P * y’ (n-1)

P - e

P * y’' (n=N+1) hi gh address <—— AYPE
- %

-

"%

;* PAGE 7 (Bl) DATA MEMORY ALLOCATION for A(z) and B(z)
D * x(n-i), i=0,1,...,NAZ-1

p* y(n-i), i=0,1,...,NBZ-1

- %

P7DM EQU 896 ; PAGE 7 DATA MEMORY ADDRESS
X0: EQU 0 ; address of x(n)

XE: EQU X0+NAZ-1 7 X(n—NAZ+1)

XCE: EQU X0+NCZ-1 i X(n—=NCZ+1)

A _XO0: EQU P7DW+X0 ; address of x(n)

A XE: EQU P7DM+-XE ; address of x(n—-NAZ+1)
A XCE EQU P7DwWXCE ; address of x(n-NCzZ+1)
-k

-

-

;* Menory nmap: x(n) ; <— AXO

px x(n-1)

P D

;* x(n=N+1) ; <— AXE

%

-

YO: EQU 64 ; address of y(n)

YE: EQU YO+NBZ-1 ;. y(n=NBZ+1)

YCE: EQU YO+NCZ-1 ; y(n—=NCZ+1)

A_YO: EQU P7DM+YO ; address of y(n)

A YE: EQU P7DW+YE ; address of y(n-NBZ+1)
A _YCE EQU P7DwWYCE ; address of y(n-NCzZ+1)

- %

-

f* Mermory map: y(n) ; <— AYO

;* y(n-1)

;x .

;* y(n—N+1) ;. <— AYE

. %k

-

-

"%

| NTERRUPT BRANCHES

99

- %

’
EEE R S S S R R O I
’

RESET: B 32 ; On hardware reset go to INIT
ORG 4

INT1: B 1000 ; On INT1 go to interrupt 1 service routine
ORG 6

| NT2: B 2000 ; On INT2 go to interrupt 2 service routine
ORG 26

RCV: B 3000 ; On RINT go to ADC service routine

-k
R R R R R R R R R R R R R e e e e &4
-k

;* PROCESSOR | NI TI ALl ZATI ON ROUTI NE

s

)
’
’
’
’
CE R O O S I O O I O S O I O R O S O O O I
’
- %

’

NI T: ORG 32
LDPK 0 ; Load page O
LALK 2EOOH ; 0010 1110 0000 0000 in binary
SACL TEMP ; Initialize STO
LST TEMP . 0 —> DP
;1 —=> INTM interrupts disable
1 —> OUWM
;0 —> oV
1 —> ARP
SPM 1 ; Preg. output shift left 1 bit
-k
;* I NI TI ALI ZE PAGE 0
- %
LARP AR1 ; ARl as address pointer
LARK AR1, 96 ; LONEST PAGE 0 LOCATI ON —> AR1
ZAC : 0 —> ACC
RPTK 31 ; REPEAT NEXT | NSTRUCTI ON 32 TI MES
SACL * 4 ; ZERO PAGE 0
LACK 1 ; ACC <- 1
SACL ONE . ONE <— 1
SACL STSFLG ; STSFLG=1, training node first
LALK TRNTI M ; ACC <— # of training sanples
SACL TRNCTR ; training time = 3 sec = 4500 sanpl es
LALK MJ ;. ACC <— nu
SACL VW ; value of mu
LALK MU1 : ACC <— nul
SACL VML ; value of nul
LALK SEED ; ACC <— SEED
SACL VWNO ; initial white noise = seed
LALK 22 : ACC <— 22
SACL I MR ; Enable INT1, INT2, & RINT
;* initialize address pointers
LALK DA CE
SACL ADCE ; address of cN-1(n) in ADCE
LALK DA AE
SACL ADAE ; address of aN-1(n) in ADAE
LALK DA BE
SACL ADBE ; address of bN-1(n) in ADBE
LALK A_XPO
SACL AXPO ; address of x’(n)
LALK A _XPE
SACL AXPE ; address of x' (n—N+1)
LALK A _YPO
SACL AYPO ; address of y’'(n)

100

*

LALK A _YPE

SACL AYPE :
SACL AYO ;
LALK A YE

SACL AYE :
LALK A YCE

SACL AYCE :
LALK A X0

SACL AXO0 ;
LALK A XE

SACL AXE ;
LALK A XCE

SACL AXCE ;
CLEAR PAGES 4, 5, 6,
LARP AR1

LRLK AR1, 512 :
ZAC :
RPTK 255

SACL * 4 :
RPTK 255

SACL * +

El NT :
B LOOP

address of y’ (n-N+1) LALK A YO
address of y(n)

address of y(n-N+1)
addr ess of y(n-NCzZ+1)
address of x(n)
address of x(n-N+1)

address of x(n-NCZ+1)
and 7

LOVNEST PAGE 4 ADDRESS —> ARl
0 —> ACC

zero page 4 & 5

zero page 6 & 7
ENABLE | NTERRUPTS

EE R I O I o O O I I O O R I o O R O I O O O O I

*
*
*

CYCLE START RQUTI NE

R I S S I S S S R O S S

START LARP

*

LAC
SACL
LAC
SACL
LAC
SACL
LAC
SACL

LAC
BZ

AR3 ;
BUF1 ;
EN ;
BUF2 ;
XN :
YN ;
BUF3 ;
TN ;
BUF4 ;

STSFLG;
CANCEL ;

3 —> ARP

ACC <— frominput port A

val ue of error signal fromerror mcrophone
ACC <— frominpit port B

val ue of reference signal frominput mnicrophone
ACC <-YN

val ue of anti-noise signal to output port A
ACC <— TN

val ue of concerned signal to output port B

I f STSFLG = 0, branch CANCEL
for next sanple, |oop forever

ER R bk kS R Rk kS o R O Rk O kR S o R R R Sk S R Rk kI e o o

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Trai ning node (off-line nodeling of error path)

VWi te noise generator:

Al gorithm
rotate left 1-bit
bl5 . bl1l < b2 . b0 < |
| | | > I
| | | —— > XOR —>| |
I I I I
! | ————> | > |
[> XOR > XOR —>|

where the initial value

of WNO (bl5..b0) = seed

101

-k
TRAIN LAC WNO ; Load noi se sequence

ANDK MASK Mask of f feedback bits
SACL VN1 Save tenporary

ADD W1, 4 conbine bits 11 and 15
ADD WAL, 13 conbine bit 2 with result

ADD WAL, 15 conbine bit O with result

ANDK MASK re-use mask to mask off MSB

ADDH WNO conbi ne MSB with sequence

SACH WNO, 1 save result (and shift out MSB)

LAC VWO, 11 scal e WNO

SACH YN out put white noise to excite secondary path

*
SRR I S S kS O R S
*

Adaptive O f-line Secondary-Path Mdeling

| ——> Speaker ... error MC ——>|
y(n) —>| I
—————————— z(n)-— +
|1 A7) > (sum < | e(n)
<o e’ (n)
wher e

y(n) is internally generate white noise
khkkhkkhkhkhkkhkkhkhhkhkhkkhhhhkhkhdhhhhkdhhhhhkdhhhhkddhhhhdhhhkddhhkhhdhhhddhhkhhdhkrxrdddrhrhhkdhxkxdx*x
NCZ-1 _
A. Conputes z(n) = sum ci(n) * y(n-i)

Lo I R I I R I R R

LARP AR1 ; ARLl as current address reg
FIR_ C MPYK 0 ; P=0
LAR AR1, AYO ; ARL pointing to y(n)
SACH * ARL ; inject white noise to buffer of C(z)
LAR AR1, AYCE ; ARL pointing to y(n—-NCZ+1)
LAC ONE, 15 ; round-off offset to ACC
CNFP
RPTK NCZ-1 ; for i = NCZ-1,NCZ-2,...,0
MACD PA_CE, *— ; ci(n) * y(n-i) + ACC —> ACC
CNFD ; also nove data y(n-i)
APAC ; P+ ACC —> ACC = z(n)
- %
"%
"%
;* B. conputes error signals e’ (n):
- %
* e’ (n) = e(n) - z(n)
%
" x
NEG ; ACC = — z(n)
ADDH EN ; ACC (e’ (n)) = e(n)-z(n)
SACH ZN ;oz(n) = e'(n)

102

;* C. update coefficients of C(z) using LMS Al gorithm
p* ci(n+tl) = ci(n) + u*e’ (n)*y(n-i)
;* ARl — point to data buffer, y(n-i)
;* AR2 — point to AF coefs, ci(n)
-k
" x
;*
LT ZN ; T =2¢€e(n)
MPY VW ; P = mu*e’ (n)
PAC ; ACC <- P
ADD ONE, 15 ; roundi ng
SACH ZN 7 ZN = mu*e’ (n)
. %k
LARK AR3, NCZ-1 ; initialize AR3 as | oop counter
LAR AR1, AYCE
MAR *+ ; ARl pointing to y(n—-N+1) due to
;. MACD data nove effect
LAR AR2, ADCE ; AR2 pointing to cN-1(n)
LT ZN ;T = nmu*e’ (n)
MPY *— AR2 7 P =mure (n)*y(n-i)
- %
ADAP_C ZALR * ARL ; load ACC with ci(n) and round
MPYA *— AR2 ; ci(n+l) =ci(n) + P
; P =mu*e (n)*y(n-i) for next i
SACH *+, 0, AR3 ; store ci(n+1)
BANZ ADAP_C, *—, AR2; go back to loop if counter (AR3) > 0
-k
%
;*
;* check if end of training node
. %
;*
LAC TRNCTR ; ACC <- training counter
SUBK 1 ; decrenent training counter
SACL TRNCTR ;. save counter
B&Z LOOP
- %
ZAC ; end of training node, ACC=0
SACL STSFLG ; STSFLG <— 0, now i n noise control node
LARP ARl ; make sure ARL is address pointer
LAR AR1, AYO ; ARL pointing to y(n)
RPTK NCZ ; repeat NCZ+1 tine
SACL *+ ; clear C(z) buffer for x’(n) in noise
; control node
B START ; end training, go to noise control node

103

EEE R S Rk S b o b S R R o kR R o Sk kS S R R o S O R R A R

;* Noise control node:

*

;*) to speaker fromerror MC
;* frominput MC ——m—— z(n) y(n) | e(n)

;¢ x(n) ———————>| A(z) | >(+)

;¥ I —— I

,; — L)) |

M | C(2)] : | <—| B(z) |<—]

P x I : : | z) |

* e . e

,* | ——> s |

.* X' (n) | LMB | <——]

* | —

i I I

*

,*
,********~k*************~k***************~k***~k*********************************
*

CANCEL LAC XN

LARP AR1 : ARP <— 1
LAR AR1, AXO ; AR1 point to x(n)
SACL *

-k

-

-

:* 1. Filtered-U:

-k

;* filtering x(n) by C(z) to get x'(n)

- %

D N-1

P * x'(n) =sumci * x(n-i)

. % ':

" !

D * where ci, i=0,1,...,N-1 are fromtraining node filter C(z)

- %

-

FXC MYK 0 . P< 0
LAR AR1, AXCE ; ARL point to x(n—Nt1)
LAC ONE, 15 ; roundi ng
CNFP
RPTK NCzZ-1 ; for i=N-1, .., 1, O
MAC PA_CE, *— ; ACC <— ACCtci (n)*x(n-i)
CNFD
APAC ; ACC <— ACC+P = x’ (n)
LAR AR1, AXPO ; ARL point to x'(n)
SACH * ; inject x'(n) into buffer

- %

"%

-

;* 2. Filter x(n) by A(z) to get z(n)

D N-1

x z(n) = sumai(n) * x(n-i)

;* i =0

"%

-

FIRA MPYK O i P<-0

LAR AR1, AXE ; ARL point to x(n-N+1)

LAC ONE, 15 ; roundi ng

CNFP

RPTK NAZ-1 ; for i=N-1, .., 1, O
MACD PA _AE, *— ACC = ACC + ai (n)*x(n-i)
CNFD

APAC

SACH ZN

3. LM5S Algorithmto update coefficients of A(z)
ai(n+l) = ai(n) —u e(n) x (n-i), for i=0,1,..,N-1

Not e: using ”"-" when updating A(z) and B(z

noi se control node
i nstead of ”"+” when updating C(z t

in
in training node

~——

L I B R T R

LT EN T = e(n)
MPY VMUL P=nu* e(n)
PAC ACC <- P
ADD ONE, 15 rou ndl ng
SACH EN EN = nmu * e(n)
LARK AR3, NAZ-1 initialize AR3 as |oop counter
LAR AR1, AXPE ARl point to x' (n—N+1)
LAR AR2, ADAE AR2 point to aN-1(n)
LT EN ; T =m * e(n)
MPY *— AR2 7 P=mu * e(n) * x'(n-N+1)
ADAP_A ZALR *, ARl ; ACC <— ai (n) and rounding
MPYS *, ARL ;a(n)—ai(n)—P
= rm* e(n) * x’(n-i) for next i
DMV *— AR2 update X' (n) buffer
SUB * LEAKY al (n+l) = ai (n+l) — (2exp(LEAKY-16)) * ai(n+l)
SACH *+,0, AR3 ai (n+l) <— ACC
BANZ ADAP_A, *— go back to loop if (AR3) > 0
- %
-
;* 4. Filtered-U
- %
‘* filtering y(n-1) by O(z) to get y’ (n-1)
- %
* N-1
;x y'(n=-1) = sumci * y(n—-j-1)
o j =0
- %
P where ci, i=0,1,...,N-1 are fromtraining node filter C(z)
- %
%
"
FY_ MPYK O P<-0
LAR AR1, AYCE ARL point to y(n-N+1)
LAC ONE, 15 roundi ng
CNFP
RPTK NCzZ-1 for i=N-1, .., 1, O
MACD PA_CE, *-— ACC <— ACC+ci (n)*y(n—i)
CNFD
APAC ACC <— ACC+P = y’ (n)
LAR AR1, AYPO ARL point to y' (n)
SACH * inject y'(n) into buffer

105

5. Filter y(n) by B(z) to get z' (n)

M
z'(n) = sumbj(n) * y(n-j-1)

% 3k 3k X X X X F X X F

e

i=1
R B LAR AR1, AYE ; ARL point to y(n-N+1)
LAC ONE, 15 ; roundi ng
CNFP
RPTK NBz-1 ; for i=N-1, .., 1, O
MAC PA_BE, *— ; ACC = ACC + bi(n)*y(n-i)
CNFD
APAC ; ACC = y(n)
ADDH ZN ; z(n) + 2’ (n)
SACH YN ;o y(n) = z(n) + z'(n)
- %k
-
" x
;* 6. LMS Algorithmto update coefficients of B(z)
- %
E* bj (n+1) =bj (n)-ue(n)y’ (n-j), for j=1,2,..., M
- %
x
-
LARP ARl ; ARl as address pointer
LARK AR3, NBZ-1 ; initialize AR3 as | oop counter
LAR AR1, AYPE ; ARL point to y' (n-N+1)
LAR AR2, ADBE ; AR2 point to bN-1(n)
- %
' LT EN T =m * e(n)
MPY *— AR2 ;o P=mu * e(n) * y (n-N+1)
ADAP_B ZALR *, AR1 ; ACC <— bi(n) and rounding
MPYS *, ARL ; bi(n+l) = ai(n) - P
i P=mu * e(n) * y' (n-i) for next i
DOV *— AR2 ; update y’'(n) buffer
SUB * | LEAKY ; bi(n+l) = bi(n+l) — (2exp(leaky-16)) * bi(n+1)
SACH *+,0, AR3 ; bi(n+l) <— ACC
BANZ ADAP_B, *—, AR2; go back to loop if (AR3) > 0
-k
' LAC YN . ACC <— y(n)
LAR AR2, AYO ; AR2 point to y(n)
SACL *, ARl ; inject y(n) into y(n) buffer, it
; is delayed by 1 now
B LOoP
LOOP: |IDLE
I DLE
B LOooP

EEE R S S R O O S S

’
- %
)

- %
’
’
’

- %

ORG
SST
LDPK
out
LST

106

INT1 Interrupt Service Routine

1000
TSTO

0

BUF3, DAC
TSTO

1

1

EEE Rk O Rk kI IR S ok bk S R R R I b o kR R S o S b S R R R R I SRk S

Channel
Save STO

A interrupt

Qut put buffer to DAC
Restore STO

NOP
SXF
El NT
RET

Reset external flag bit

EEE I S R R I O Rk O R S S

- %

s

CEE R O O I I O O O S O O I

ORG
SST
LDPK
ouTr
LST
NOP
RXF
El NT
B

2000
TSTO
0

BUF4, DAC

TSTO

START

;* INT2 Interrupt Service Routine

Channel B interrupt
Save STO

Cut put buffer to DAC
Rest ore STO

Reset external flag bit

EEE R S O S O R R O O I O

’
- %
’

- %
’
’
)

s

ORG
LDPK
SST
LAC
Bl OZ
SACL
LST
El NT
RET

I N2: SACL
LST
El NT
RET

File:

L I R O RN R I R

FI LE NAME :

RINT I nterrupt Service Routine

3000
0
TSTO
ADC

I N2
BUF1
TSTO

BUF2
TSTO

FBFXLMS. ASM

Rk I I O R I S R R b Ok R R S

FXLMSFC. ASM

One-di nensi onal

Sen M Kuo ,

SYSTEM CONFI GURATI ON:

EEE R o Rk R R b o S R S o o S R Ik O R R Rk Ik S b o o R R kS b R S S o

ADC i nterrupt

Save STO

Read from serial port

Skip if channel B

Move data to channel A buffer
Rest ore STO

For channel B, save data in channel B buffer
Restore STO

Filtered-X LMS Algorithm With Feedback Cancellation

This program has been nodified to run on the Ariel’s DSP-16
pl us TM5320C25 DSP Boar d.

Kai -M ng Chung
Cct. 1994

Rk I S S I G o S R S S O O

Adaptive Active Noise Control System Using
FXLM5S Al gorithmwith Feedback Cancellation on TMS320C25

R R O S o O O O o O O I o O O S O O I O O O

107

108

L I I B T R R R R R R R S T N I R R R R S A T R N I N I R A T R I

x(n)
L :
| Adaptive FXLMs ANC | y(n)
e(n) | Syst em | ——— > anti noi se out put
e I
I
wher e

x(n) — signal fromthe input mnicrophone

e(n) — signal fromthe error nicrophone

y(n) — antinoise to drive the canceling | oudspeaker
(noi se cancel | ati on node), or
the training signal (off-line nodeling node)

Ports: x(n) frominput port B
e(n) frominput port A
y(n) to output port B
The flow of programis:

C25 initialization —> off-line secondary path and feedback
path nodeling —> on-line active noise control

A. Of-line nodeling:

input MC to Speaker error MC
: :
|+ () |z =+]
| —>(S) <—— | D(2) I<———1 —>| (2) |—————>(|S)<—————| e(n)
el(n)......... > y(n) <ol e2(n)
wher e

y(n) is an internally generate white noise
z) and D(z) are an adaptive nodeling filter,
both are updated by LMS al gorithm

B. On-line noise control:

frominput MC

H - f(n) ——————
(9 B2 |
__________ [y(n) e(n) fromerror MC
|—> W2) |-——————— > |
——— t o speaker 1
| 2)| : |
| —— > FXLMS | <
x' (n) —_—

where C(z) is a fixed error path nodeling filter fromtraining node
D(z) is a fixed feedback canceling filter fromtraining node
Wz) is an adaptive noise control filter, updated by FXLMS

Rk S R Rk I S S Sk R R o Sk S R R R I S kR S S R I S S ok R R R R R

;* define constants (be nodified for different applications)
*

! *

ok

FS: EQU 2000 ; assume sanpling rate is 2 kHz.
TRNTI M EQU 30000 ; training time = 15 seconds

NCz: EQU 64 order of C(z), max = 64

NDZ: EQU 64 order of D(z), max = 64

NWZ: EQU 64 order of Wz), max = 94

MJ: EQU 4096 coef. update stepsize for off-line nodeling

MUL: EQU 328 coef. update stepsize for Wz)
MASK: EQU 8805h to mask off bits 0,2,11, 15
SEED: EQU 12357 seed for white noise generator
LEAKY: EQU 2 | eaky factor

- %

ok kkkkkkkkkkkkkkkkkkhkhkhkkkkkkkkkkhkhkkkkkkhkkkkkkhkkkkkkkkkkkkkhkkkkkkk ko k ok & k%
- %

Menory map:
B2: page 0 — data I/O buffer
BO: page 4 - coefs of AF C(z) : ci(n), i=0,1,..,(NCZ-1)
(error path nodeling filter), NCZ <= 64
— coefs of AF D(z) : di(n), i=0,1,..,(NDzZ-1)
(feedback path nmodeling filter), NDZ <=64

BO: page 5 - coefs of AF Wz) : wi(n), i=0,1,..,(N\Z-1)
(noise control filter) NZ <= 94

Bl: page 6 -— data buffer for C(z) and D(z):

During of f-line nodeling, buffer contains training
signal y(n-i), i=0,1,..,(NCZ-1)

During on-line canceling, buffer is for D(z),
y(n-i), i=0,1,...(NDzZ-1)

833-895 data buffer for x'(n)

Bl: page 7 -— 896-927 data buffer for x'(n)
928-1023 data buffer for Wz) : x(n-i), i=0,1,...,(NZ-1)

LR R R R R R R S R R R R R R RS R R R R EEEEEEEEEEEEEEEEEEEEEE

PAGE 0 (nenory-mapped regs and B2) DATA MEMORY ALLOCATI ON

E I T N SRR T T T I I N R G

- %

PODM EQU 0 ; page 0 data RAM address
DAC: EQU 13 DAC |/ O port
ADC: EQU 0 Serial receive address

| VR EQU 4 I nterrupt nmask register

BUF1: EQU 96 Buffer for channel A input data

BUF2: EQU 97 Buf fer for channel B input data

BUF3: EQU 98 Buf fer for channel A output data
BUF4: EQU 99 Buf fer for channel B output data
WNO: EQU 100 storage for white noise generator
WANL: EQU 101 "

TRNCTR: EQU 102
STSFLG EQU 103

trai ning node (Off-line nodeling) counter
program status flag, 1 = training node

ONE: EQU 104 ONE =1
VMU EQU 105 val ue of nu
VMUL: EQU 106 val ue of nul

109

ADCE: EQU 107 ; address of cN-1(n)

ADDE: EQU 108 ; address of dN-1(n)

ADVE: EQU 109 ; address of wN-1(n)

AYO: EQU 110 ; address for y(n)

AYE: EQU 111 ; end address for y(n-N+1)
AXO: EQU 112 ; address for x(n)

AXE: EQU 113 ; end address for x(n—N+1)
AXCE: EQU 114 ; end address for x(n-NCZ+1)
AXPO: EQU 115 ; address for x'(n)

AXPE: EQU 116 ; end address for x' (n—-N+1)
;* data buffer for signals

YN: EQU 117 ; y(n), to | oudspeaker

XN: EQU 118 ; x(n), frominput MC

EN: EQU 119 ; e(n), fromerror MC

ZN: EQU 120 ; z(n), output fromWz)
FN: EQU 121 ; f(n), output fromDz)
TN: EQU 122 ; to output port B

TEMP; EQU 123 ; Tenporary storage |l ocation
TSTO: EQU 124 ; Storage for STO

- %

"%

* PAGE 4 (B0) DATA MEMORY ALLOCATI ON

*

x AF O(z): ci(n), i=0,1,2,..,NCZ-1
A
P4DM EQU 512 . PAGE 4 DATA MEM ADRS

P4P| EQU 65280 ; PAGE 4 PROG MEM ADRS

CE: EQU 0 ; ci(n), end of C(z) buffer

DA CE: EQU P4Divi-CE ; address of ci(n), i=NCZ-1 at CNFD
PA_CE: EQU P4PM+CE ; address of ci(n), " at CNFP
%

%

;* Menmory map: cN-1(n) | ow address <—— PA CE, ADCE

- %

* cN-2(n)

P P

;* cl(n)

* c0(n) hi gh address

-k

'

D * AF D(z): di(n), i=0,1,2,..,NDz-1

- %

DE: EQU 64 ; di(n), end of D(z) buffer

DA _DE: EQU P4 DV DE ; address of di(n), i=NDZ-1 at CNFD
PA DE: EQU P4PM+DE ; address of di(n), " at CNFP
. %k

Cx

;* Menmory map: dN-1(n) | ow address <—— PA DE, ADCE

* dN-2(n)

.k

3* di(n)

p* do(n) hi gh address

%

%

* PAGE 5 (B0) DATA MEMORY ALLOCATI ON

D * AF Wz): wi(n), i=0,1,2,..,N\Z-1

.k

110

P5DM EQU 640 ; PACE 5 DATA MEM ADRS
P5P EQU 65408 ; PAGE 5 PROG MEM ADRS
VE: EQU 0 ; wi(n), end of Wz) buffer
DA WE: EQU P5DVFVE ; address of WE at CNFD
PA VE: EQU P5PM+-VE ; address of WE at CNFP
- %k

o

-

;* Menory map: WN-1(n) | ow address, ADWE

p* WN-2(n)

- %

7 wi(n)

* wo(n) hi gh address

. %

-

-

;¥ PAGE 6 (Bl1) DATA MEMORY ALLOCATION for C(z)

p* x'(n-i), i=0,1,...,NCZ-1

-k

P6DM EQU 768 . PAGE 6 DATA MEM ADRS
YO0: EQU 0

YE: EQU YO+NDZ-1 ; y(n—-NDZ+1)

A _YO: EQU P6DIVIYO ; address of y(n)

A YE EQU P6DMW+YE ; address of y(n-NDzZ+1)
- %

o

-

;* Menory map: y(n) | ow address <— AYO
* y(n-1)

P D

;x y(n—N+1) hi gh address <— AYE
%

-

-

XPO: EQU 65 ; X' (n), (64+1), |eave one space for y(n)
XPE: EQU XPO+NWZ—-1 ; X’ (n—NWZ+1)

A _XPO: EQU P6 DIVi-XPO ; address of x’(n)

A XPE: EQU P6 DIvi- XPE ; address of x' (n—NWZ+1)
- %

]

;* Menory map: X" (n) | ow address <— AXPO
;* x" (n=1)

;* X’ .(n—N+1) hi gh address <—— AXPE
- %

-

"%

;* PAGE 7 (Bl) DATA MEMORY ALLOCATION for Wz)

P x(n-i), i=0,1,..., N\\WZ-1,

;* part of this page is for x'(n) (896-927).
%

P7DM EQU 896 ; PAGE 7 DATA MEMORY ADDRESS
X0: EQU 32 7 x(n)

XE EQU X0+NWZ—-1 7 X(n—=NWZ+1)

XCE: EQU X0+NCzZ-1 ;7 X(n—=NCZ+1)

A _XO0: EQU P7Dvi+X0 ; address of x(n)

A XE: EQU P7DMW+XE ; address of x(n—-NWZ+1)
A_XCE: EQU P7DM+XCE ; address of x(n-NCzZ+1)
-k

-

*

;* Menory map: x(n) ; <— AXO0

111

x(n-1)
x(N=N+1) <— AXE

R I S O S S S G O O R S O O

* % X 3k Ok X X F

I NTERRUPT BRANCHES

Rk R b kR R Rk S b o I S S R kS R R b o R R Rk kR Rk R I b O

RESET: B 32 ; On hardware reset go to INIT
ORG 4

INT1: B 1000 ; On INT1 go to interrupt 1 service routine
ORG 6

INT2: B 2000 ; On INT2 go to interrupt 2 service routine
ORG 26

RCV: B 3000 ; On RINT go to ADC service routine

ER R bk R R R Rk R S b o I b S R Sk R R Ok R R R O kR o R R R R S Sk R
*

* PROCESSOR | NI TI ALI ZATI ON ROUTI NE

*

SRR R S S S R I S S S S R S
*

NIT: ORG 32

LDPK O ; Load page O
LALK 2EOOH ; 0010 1110 0000 0000 in binary
SACL TEWP o Initialize STO
LST TEMP : 0 —> DP
; 1 —=> INTM interrupts disabled
;1 —> OWM
;0 —> oV
1 —> ARP
SPM 1 ; Preg. output shift left 1 bit
- %
;x I NI TI ALI ZE PAGE 0
- %
LARP ARL ; ARl as address pointer
LARK AR1, 96 ; LOWEST PAGE 0 LOCATI ON —> ARL
ZAC : 0 —> ACC
RPTK 31 ; REPEAT NEXT | NSTRUCTI ON 32 TI MES
SACL * 4 ;. ZERO PAGE 0
LACK 1 : ACC <- 1
SACL ONE . ONE <— 1
SACL STSFLG ; STSFLG=1, training node first
LALK TRNTI M ; ACC <— # of training sanples
SACL TRNCTR ; training time = 3 seconds = 4500 sanpl es
LALK MJ ;. ACC <— nu
SACL VMJ ; value of nu
LALK MJ1 : ACC <— nul
SACL VMUL ; value of nul
LACK 22 : ACC <— 22
SACL I MR ; Enable INT1, INT2 & RINT
LALK SEED . ACC <— SEED
SACL V\NO ; initial white noise = seed

;* initialize address pointers

LALK DA CE
SACL ADCE ; address of cN-1(n) in ADCE
LALK DA DE
SACL ADDE ; address of dN-1(n) in ADDE

112

LALK DA VEE
SACL ADVE
LALK A YO
SACL AYO
LALK A YE
SACL AYE
LALK A X0
SACL AXO0
LALK A XE
SACL AXE
LALK A_XPO
SACL AXPO
LALK A XPE
SACL AXPE
LALK A XCE
SACL AXCE
P * CLEAR PAGES 4, 5, 6,
LARP ARL
LRLK AR1, 512
ZAC
RPTK 255
SACL * 4+
RPTK 255
SACL *+
El NT
B LooP

- %

address of wN-1(n) in ADVWE
address of y(n)

address of y(n-N+1)
address of x(n)

address of x(n-N+1)
address of x’(n)

address of x’ (n-N+1)

address of x(n-NCzZ+1)
and 7

LOWEST PAGE 4 ADDRESS —> ARl
0 —> ACC

zero page 4 & 5

zero page 6 & 7
ENABLE | NTERRUPTS

CEE R S kI b o bk R R O R R O R R b o Sk R R R Rk I b o S R R R R S

s

- %

EEE R S S S R R O O S S

- %

START LARP
LAC
SACL
LAC
SACL
LAC
SACL
LAC
SACL

LAC
BZ

*

*

‘% CYCLE START ROUTI NE

AR3
BUF1
EN
BUF2
XN
YN
BUF3
TN
BUF4

STSFLG
CANCEL

3 —> ARP

ACC <— frominput port A

value of error signal fromerror mcrophone
ACC <— frominput port B

val ue of reference signal frominput mnicrophone
ACC <— YN

val ue of anti-noise signal to output port A
ACC <— TN

val ue of concerned signal to output port B

if STSFLG = 1, goto CANCEL
for next sanple, |oop forever

EE R R S S I R S I

f* Trai ning node (of f-line nodeling of secondary path and feedback path)
" x

o

;* White noise generator:

;* Algorithm

.k

* rotate left 1-bit

p* b15 . bl1 < b2 . b0 < |
v | | —> |
P I | ——— > XOR —>| |
M I | |
; I | —Mm8m——> - |
; | > XOR > XOR —>|
.k

113

;* where the initial value of WNO (bl15..b0) = seed

-k

-

TRAIN LAC VANO ; Load noi se sequence
ANDK MASK : Mask off feedback bits
SACL WAL ; Save tenporary
ADD VW1, 4 ; conmbine bits 11 and 15
ADD W1, 13 ; conbine bit 2 with result
ADD WN1, 15 ; conbine bit O with result
ANDK MASK ; re-use mask to nmask of f MSB
ADDH WNO ; conbine MSB with sequence
SACH WNO, 1 ; save result (and shift out MSB)
LAC WAO, 11 : scale WNO
SACH YN ; output white noise

- %

-k

EEE Rk O R O kR S Rk b Sk kO R I O S O R

:* Adaptive Of-line Secondary-Path and Feedback Path Mdeling
- %
:* input MC to Speaker error MC
() | |
o = () | ———z(n) =+]
e | X2) Je] ==l A7) | () < e()
fx o el(n). ..., >, y(n) . e2(n)
*
:* wher e
x y(n) is an internally generate white noise
p* C(z) and D(z) are an adaptive nodeling filter,
x both are updated by LM al gorithm
*
,**
*
* NCZ-1
;* A Conputes z(n) = sum ci(n) * y(n-i)
* H =
' |
' LARP AR1 ; ARl as current address reg
FIR C MPYK 0 . P=0
LAR AR1, AYO ; ARL pointing to y(n)
SACH *, ARl ; inject white noise to buffer y(n)
LAR AR1, AYE ; ARL pointing to y(n—-NCZ+1)
LAC ONE, 15 ; round-of f offset to ACC
CNFP
RPTK NCZ-1 ; for i = NCZ-1,NCZ-2,...,0
MAC PA_CE, *— ; ci(n) * y(n-i) + ACC —> ACC
CNFD ;
APAC ; P+ ACC —> ACC = z(n)
- %k
"%
%
;* B. conputes error signals el(n):
- %
;* el(n) = e(n) — z(n)
- %
%
%
NEG ; ACC = — z(n)
ADDH EN ; el(n) = e(n) — z(n)
SACH ZN ;oz(n) = el(n)

114

C. update coefficients of C(z) using LM5S Al gorithm
ci(n+l) = ci(n) + u*el(n)*y(n-i)
ARl — point to data buffer, y(n-i)

EE R R R B

AR2 — point to AF coefs, ci(n)

LT ZN ;T = el(n)
MPY VWJ 7 P = mu*el(n)
PAC . ACC <- P
ADD ONE, 15 ; roundi ng
SACH ZN 7 ZN = mu*el(n)

LARK AR3, NCZ-1 ;
LAR AR1, AYE

LAR AR2, ADCE

LT ZN ;
LARP ARl

MPY *—, AR2 ;

. %
ADAP C ZALR *,ARL
MPYA *_, AR2

SACH *+,0, AR3
BANZ ADAP_C, *—, AR2

initialize AR3 as | oop counter
ARL pointing to y(n—-N+1)

AR2 pointing to cN-1(n)

T = mu*el(n)

P = nu*el(n)*y(n-i)

load ACCwith ci(n) and round
ci(n+tl) =ci(n) + P

P = nu*el(n)*y(n-i) for next i

store ci (n+l)

go back to loop if counter (AR3) > 0

- %
-
p* NDZ-1
;* D. Conputes f(n) = sum di(n) * y(n-i)
. % H =
" !
"%
LARP AR1 ; ARl as current address reg
FIR D MPYK 0O ; P=0
LAR AR1, AYE ; ARL pointing to y(n—NDZ+1)
LAC ONE, 15 ; round-off offset to ACC
CNFP
RPTK NDzZ-1 ; for i = NDZ-1,NDZ-2,...,0
MACD PA DE, *— ; di(n) * y(n-i) + ACC —> ACC
CNFD ; al so nove data y(n-i)
APAC ; P+ ACC —> ACC = f(n)
- %
"%
%
;* E. conputes error signals e2(n):
%
;* e2(n) = x(n) - f(n)
- %
-
' NEG . ACC = - f(n)
ADDH XN ; e2(n) = x(n) — f(n)
SACH ZN ; ZN = e2(n)
"%
-
;* F. update coefficients of D(z) using LM5s Al gorithm
- %

115

;* di (n+l) = di(n) + u*e2(n)*y(n-i)
.k
;* ARl — point to data buffer, y(n-i)
* AR2 — point to AF coefs, di (n)
%
Cx
LT ZN ;T = e2(n)
MPY VWJ ; P = mu*e2(n)
PAC ; ACC <- P
ADD ONE, 15 ; roundi ng
SACH ZN 7 ZN = mu*e2(n)
' LARK AR3, NDZ-1 ; initialize AR3 as | oop counter
LAR AR1, AYE
MAR *+ ; ARL pointing to y(n—-N+1) due to
; MACD data nove effect
LAR AR2, ADDE ; AR2 pointing to dN-1(n)
LT ZN ;T = mu*re2(n)
MPY *— AR2 ; P = mu*e2(n)*y(n-i)
%
ADAP D ZALR *,ARL : load ACC with di(n) and round
MPYA *— AR2 ; di(n+l) =di(n) + P
; P = mure2(n)*y(n-i) for next i
SACH *+, 0, AR3 ; store di(n+1)
BANZ ADAP_D, *—, AR2 ; go back to loop if counter (AR3) >0
- %
"
%
;* check if end of training node
- %
"%
%
LAC TRNCTR ; ACC <— training counter
SUBK 1 ; decrement training counter
SACL TRNCTR ; save counter
B&Z LOOP
- %
’ ZAC ; end of training node, ACC=0
SACL STSFLG ; STSFLG <— 0, now in noi se control node
LARP ARl ; make sure ARl is address pointer
LAR AR1, AYO ; ARL pointing to y(n)
RPTK NCZ ; repeat NCZ+1 tine
SACL *+ ; clear C(z) buffer for x’(n) in noise
; control node
B START ; end training, go to noise control node

*

IR R R E R RS S R R R R R R R R R R R R R RS E R R R EEEEEEEEEREREEES]

*

116

* Noi se control node:

*

* frominput MC

*

" H o= ()

: (<] 2) ||

o | y(n) e(n) fromerror MC
- |—> W2) | ————— |
T to speaker I
% o : |
* | A2)| : I
* : |
* | —— > FXLMS | <

x'(n) =~ —————

where C(z) is a fixed error path nodeling filter fromtraining node
D(z) is a fixed feedback canceling filter fromtraining node
Wz) is an adaptive noise control filter, updated by FXLM5

R I S O R G S S S O R

In real-time x(n) is frominput mcrophone

E o I R R

CANCEL LAC XN

LARP ARl 7 ARP = 1
LAR AR1, AXO
SACL =
- %
"%
"
;* 1. conpute feedback free input for adaptive filter Wz)
- %
1 x(n) = x(n) - f(n)
-k
" x
"%
LAC XN ; x(n) —> ACC
SUB FN ;ox(n) = f(n)
LAR AR1, AX0 ;o x(n) = x(n) = f(n)
SACL *
- %
"
"
;* 2. Filtered—X, filtering x(n) by C(z) to get x'(n)
. %
L N-1
i x'(n) = sumci * x(n-i)
p* i =0
-k
D * where ci, i=0,1,..,N-1 are fromtraining node filter C(z)
- %
-
FXC WMPYK O . P<-0
LAR AR1, AXCE ; ARL point to x(n—-NCZ+1)
LAC ONE, 15 ; roundi ng
CNFP
RPTK NCZ-1 ; for i=N-1, .., 1, O
MAC PA CE, *— ; ACC <— ACC+ci (n)*x(n-i)
CNFD
APAC ; ACC <— ACC+P = x’ (n)
LAR AR1, AXPO ; ARL point to x'(n)
SACH * ; inject x'(n) into buffer
%
" x
" x
;* 3. Filter x(n) by Wz) to get y(n), the anti-noise
%
Lx N-1
P * y(n) = sumw (n) * x(n-i)
o =
"%
"%
FIRW MPYK O i P<-0

117

LAR AR, AXE ; ARL point to x(n—N+1)
LAC ONE, 15 ; roundi ng
CNFP
RPTK NwWZ-1 ; for i=N-1, .., 1, O
MACD PA_VE, *— ; ACC = ACC + wi (n)*x(n—i)
CNFD
APAC ; ACC = y(n)
LAR AR1, AYO ;
SACH * ; inject y(n) into y(n-i) buffer
SACH YN
- %
-
f* 4. FXLMS Al gorithmto update coefficients of Wz)
-k
;* W (n+l) = wi(n) —ue(n) x(n-i), for i=0,1,..,N-1
.k
;* Not e: using "-" when updating Wz) in noise control node
x i nstead of "+” when updating C(z) in training node
- %
;* ARl pointing to x'(n-i) data buffer
p* AR2 pointing to wi (n) coefs buffer
- %
-
"%
LT EN ;T = e(n)
MPY VML ;7 P=mu * e(n)
PAC ; ACC <- P
ADD ONE, 15 ; roundi ng
SACH EN ; EN=nmu * e(n)
- %
’ LARK AR3, N\\Z-1 ; initialize AR3 as | oop counter
LAR AR1, AXPE ; ARL point to X' (n—N+l)
LAR AR2, ADVEE 7 AR2 point to wN-1(n)
- %
' LT EN T =m * e(n)
LARP AR1
MPY *— AR2 7 P=mu * e(n) * x'(n-N+1)
ADAP_WZALR *, ARl ; ACC <— wi (n) and rounding
MPYS *, AR1l ; Wi (n+tl) =w(n) - P
i P=m * e(n) * x’(n-i) for next i
DMV *— AR2 ; update x’ (n) buffer
SuB *, LEAKY ; W (n+l) = w (n+l) — (2exp(LEAKY=16)) * wi (n+1)
SACH *+,0, AR3 ;W (n+l) <— ACC
BANZ ADAP_W*— AR2; go back to loop if (AR3) > 0O

*

*

R bk S R R R S b o I S S S R kS b o S R R R R O kR R R Sk S R Rk I o o

;* 5. Filter y(n) by D(z) to get f(n), the feedback from anti-noi se
;* speaker to input m crophone.
- %
D NDZ—1
x f(n) = sumdi * y(n-i)
o * i=
-
-
FD MPYK O c P<-0
LAR ARI, AYE ;. ARL point to y(n-N+1)
LAC ONE, 15 ; roundi ng
CNFP
RPTK NDz-1 ; for i=N-1, .., 1, O
MACD PA_DE, *— ; ACC = ACC + di (n)*y(n-i)

118

LOooP

CNFD
APAC
SACH

B

| DLE
I DLE
B

FN
LOCP

LOCP

; ACC = f(n)
; f(n) —> FN

CEE R O O I O O O S O O S I I

’
- %
’

-k
’
)
’

- %

INT1 Interrupt Service Routine

ORG
SST
LDPK
out
LST
NOP
SXF
El NT
RET

1000
TSTO

0

BUF3, DAC
TSTO

EEE I o R R I S O R O R I kR

Channel A interrupt
Save STO

Qut put buffer to DAC
Restore STO

Set external flag bit

EEE R o R R R o ok Rk Ik S R Rk O b kS SRR o o S R R S O R R

’
-k
’

- %
)
’
’

s

I NT2 Interrupt Service Routine

ORG

SST

LDPK
ouT

LST

NOP

RXF

El NT
B

2000
TSTO

0

BUF4, DAC
TSTO

START

EEE R S S O S S R R I O S O

Channel B interrupt
Save STO

Qut put buffer to DAC
Restore STO

Set external flag bit

EEE I S O R R O R S S

’
- %
’

-k
’
’
’

- %

RINT I nterrupt Service Routine

ORG
LDPK
SST
LAC
Bl Oz
SACL
LST
El NT
RET
SACL
LST
El NT
RET

3000
0
TSTO
ADC
I N2
BUF1
TSTO

BUF2
TSTO

EEE R I Rk S b o Sk R R o bk S S R R R o Sk S R SRR O o S O Ik kS O R S Rk o

; ADC interrupt

Save STO

Read from serial port

Skip if channel B

Move data to channel A buffer
Restore STO

; For channel B, save data in channel B buffer
;. Restore STO

119

120

APPENDIX D: GENERAL CONFIGURABLE SOFTWARE FOR ANC EVALUATION

These software modules together provide an easy way to evaluate a number of one-dimensional ANC
algorithms using any of several tools. A configuration moduleisincluded that allows the user to specify
different algorithms, adaptive filter characteristics, and simulation model characteristics. The conditional
assembly capability of T’ sfixed-point macro assembler and linker i sused to construct acustom executable
filethat can berun on asimulator, an evaluation module (EVM), or atarget system. The software modules
described in this section run on any TM S320C2x DSP.

Each major function performed by the softwareiscoded in aseparatemodule. A list of themodulesisgiven
here with abrief functional description of each. The configuration file (config.asm) is described in more
detail, and assembly-language program code listings for al of the modules follow.

ANC.ASM Contains training and cancellation routines. This is where the body of the ANC
algorithm resides.

CONFIG.ASM Contains software configuration settings. This is the only module that must be
modified to change the characteristics of the executablefile.

GLOBALSASM Containsglobal constant and variable definitions.

INIT.ASM Contains processor and algorithm initialization routines.

MACROS.ASM Contains special macro routines.

MAIN.ASM Contains code to control program flow through the different software modules.
MEMORY.ASM Contains memory configuration directives that allocate data and program memory.
MODEL.ASM Contains simulation transfer-function models and waveform generator code.
VECTOR.ASM Containsinterrupt vectors and unused interrupt traps.

ANC26.CMD Linker command file for 'C26-based simulator or EVM. Modifications to the
memory map must be madeif adifferent target systemisusedto runthea gorithmsor
if achange to the default data and program space definitions is desired. The default
memory map assigns the memory locations 8000h through 0f9ffh to external data,
which is used for the trace buffer function if it is enabled.

MAKE.BAT Batch file that assembles and links software modules into an executable file after
changes have been made in the configuration file CONFIG.ASM.

EVMINIT.CMD Control filethat containsthe memory configuration to be used by the HL L debugger
when running the ANC code on the ’C2x EVM. The memory configuration must
match the memory map defined in the linker command file. A similar configuration
file called SIMINIT.CMD is required if the software simulator is used to run the
executable code.

121

Configuration File (config.asm) Description

Section 1 of the configuration fileis used to configure the softwarefor different 1/0, adaptivefilter forms,
and adaptation methods. It also alows acoustic channel simulation and trace buffersto be enabled. Some
of the switch settings in Section 1 determine which constants are active in Section 2. Explanations of the
settings are summarized in Table 5 and more detail follows the table.

Table 5. Section 1 of the Configuration File

S’\\:\Q"{'/ICEH SETTINGS MEANING OF EACH SETTING
PROCESSOR (C26 Target processor is TMS320C26
C25 Target processor is TMS320C25
TIMEBASE timer Onboard timer controls sample rate
external External interrupt #0 controls sample rate
freerun Run as fast as possible (simulator)
SIMULATION yes Simulation mode enabled
no Simulation mode disabled
TRACE in_out Trace algorithm input and output
out Trace algorithm output only
none No trace
GENERATOR white_noise White noise generator enabled
sinewave Sine-wave generator enabled
ALGORITHM fxIms Filtered-X LMS enabled (FXLMS)
fbfxims FXLMS with acoustic feedback enabled (FBFXLMS)
furlms Filtered-U recursive LMS enabled (FURLMS)
fanc Feedback ANC enabled
ADAPTATION Ims Standard LMS coefficient adaptation enabled
leaky_Ims Leaky LMS coefficient adaptation enabled

The PROCESSOR switch selects the target processor on which the softwareisto run.

The TIMEBA SE switch selects the method of controlling the effective sample rate of the algorithm. The
freerun selection speeds up execution in the simulator.

The SIMULATION switch enables the modeling of the acoustic channel response. This alows the
algorithm to be tested in an ideal acoustic environment prior to testing in the real world. Combined with
the TRACE switch, SIMULATION can provide performance information about the algorithm.

The TRACE switch enables atrace buffer for the error signal for both training and cancellation modes. If
in_out isselected, theinput signal for the cancellation modeisal so traced. Itisintended that thetrace buffer
beimplementedin external dataRAM likethat used onthe’ C2x EVM. A total of approximately 30K words
of memory are available with the default memory map defined in the module anc26.cmd. Thisfunctionis
intended to be used with the SIMULATION option.

The GENERATOR switch selectseither thewhite noise or the sine-wave generator. Thetraining modeand
most verification tests usethe white noise generator to produce abroadband input signal to the system. The
sine-wave generator produces asignal that is a summation of a 150-Hz and a 250-Hz signal (assuming a
1500-Hz samplerate).

122

The ALGORITHM switch selects one of the one-dimensional ANC algorithms described in this report.

The ADAPTATION switch selects either the standard LM S algorithm or the leaky LM S algorithm for the
coefficient adaptation routine. The leaky LMS algorithm is typically used with fixed-point processors to
prevent coefficient overflow.

Section 2 of the configuration file contains constants that define the characteristics of the algorithm and
simulation (if it is enabled). The constants and their values are summarized in Table 6 and more detail
followsthetable.

Table 6. Section 2 of the Configuration File

CONSTANT VALUE DESCRIPTION
CLKOUT 10000000 DSP instruction-cycle rate (in Hz)
FS 1500 Sample rate (samples/second)
TIME 3 Number of seconds to run training mode
NSAMPLES TIME*FS Number of samples processed in training mode
NTICKS (CLKOUT/FS)-1 TIMER period
vl 1024 Coefficient update step size
LEAKAGE 1 Shift value to control leak off
NAz 64 IIR feedforward filter order A(z)
NBz 64 IIR feedback filter order B(z)
NCz 64 Error path model order C(z)
NDz 64 Acoustic feedback model order D(z)
Nwz 64 FIR filter order W(z)
SIMLENGTH 4500 Cancellation routine simulation run time
Gs 2458 Noise source path gain: Gg = 0.6
Ts 10 Noise source path sample delay period
Ge 3277 Error path gain: Gg = 0.8
Te 2 Error path sample delay period
Gf 2867 Acoustic feedback path gain: Gf=0.7
Tf Ts—Te Acoustic feedback path sample delay period

CLKOUT definestheinstruction cyclerate of the DSP. It and the sample rate are used together to define
the onboard timer periodif the TIMEBASE switchin Section 1isset totimer. Thevaue of 10 MHz shown
above is the instruction cycle rate for a 40-MHz input clock; faster and slower system clocks exist and
depend on the particular DSP. The value for CLKOUT is obtained by dividing the system clock by 4.

FS defines the sampl e rate of the ANC system. It and the constant TIME are used to determine how long
the training mode runs. Also, if the TIMEBASE switch is set to timer, FS is used with CLKOUT to
determine the value to enter into the onboard timer’s period register. If the value of FSis changed and the
GENERATOR switchisset to sinewave, thetwo sine-wave frequencies generated are not 150 and 250 Hz.
Equations showing the rel ationship between FS and the sine-wave frequencies are given at the end of this
section.

TIME defines sets the number of seconds the training mode runs. The default value of 3 seconds allows
adequatetime for the adaptation routine to converge on thefilter coefficient valuesthat model the acoustic
channel error path (and the feedback path for the feedback FXLMS agorithm). If the error term has not
approached zero by the end of the period TIME, a problem islikely to exist.

123

NSAMPLES isthe product of training-mode run time (TIME) and the sample rate (FS). NSAMPLES is
used as aloop counter to control how many samples the training routine processes.

NTICKSisthevalueplacedintheonboardtimer’speriod register. Itiscomputed using the DSPinstruction
cyclerate CLKOUT) and the desired samplerate (FS). The value of NTICK Sisthe number of instruction
cycles (clock ticks) to elapse between timer interrupts, which is used to control the sample rate. This
constant is valid only when the TIMEBASE switch is set to timer.

Theconstant p definesthe step size of the adaptivefilter coefficient adaptation. It controlshow fast theerror
term causes the coefficientsto change and the minimum magnitude of the error term. The larger the value
of W, the faster the coefficients adapt and the larger the minimum error signal. If too large avalue of pis
used, the adaptation routing can become unstable. A value for p of lessthan /N, where N is the adaptive
filter order, should be used.

LEAKAGE is used when the ADAPTATION switch is set to leaky Ims. It controls how much of the
previous value of the adaptivefilter coefficient is used in the adaptation routine. LEAKAGE isused asa
shift value as shown in the eguation:

Wi + 1) = (1 = raikege Jwi() = ue(x(n) (98)

NAz through NWz define the order of each filter used in the ANC algorithm, where the filters are A(2),
B(2), C(2), D(2), and W(2). The setting of the ALGORITHM switch determines which of these constants
arevalid. Theseconstantsareal so used in the module memory.asmto define array sizesfor the coefficients
placed in block BO of the’ C2x DSP'son-chip RAM. Notethat al of the coefficient arrays must fit within
block BO, whichis 256 wordslong inthe’ C25, whileinthe’ C26it is512 wordslong. In the memory map,
all of thefilter coefficients, input signals, and output signals were allocated in the on-chip memory blocks
BO, BI, and B2 of the ' C25. Table 7 shows the coefficient arrays used with each algorithm and how to
computethetotal amount of memory used. Typically, the order of the adaptivefilter defined by NAz, NBz,
and NWz is greater than or equal to the fixed correction filters defined by NCz and NDz.

The’ C2x chip used wasa100-ns(single-cycleinstructiontime) ' C25 device. Therefore, therequired DSP
timefor the’ C25 to perform an algorithm in real timeis equal to the number of instruction cycles needed
times 100 ns. The sampling period between two sampling pointsis determined by the sampling frequency.
The higher the sampling frequency, the shorter the sampling period. The DSP overhead is the percentage
of the sampling period in which the algorithm is executed by the DSP. Hence, the calculation of DSP
overhead for each algorithm can be expressed as:

_ DSP execution time
DSP overhead = Sampling period X 100% 97)

Based on equation (97) and NWz = NAz = NBz = NCz = NDz = 64 from Table 6, the number of
instruction cycles, DSP execution time, and DSP overhead for the ANC setup using FXLMS, FBFXLMS,
and FURLMS algorithms at a 2000-Hz sampling frequency are calculated as shownin Table 7.

124

Table 7. Number of Instruction Cycles, DSP Execution Time, and TMS320C25 DSP
Overhead per Algorithm

ALGORITH | CALCULATIONFORNUMBER OF | \crolicrion | execution | - bsp
CYCLES TIME (us) OVERHEAD (%)
FXLMS 77 + NWz*9 + NCz * 2 781 78.1 15.62
FBFXLMS 102 + NWz*9+ NCz*2 + NDz * 2 934 93.4 18.68
FURLMS 107+ NAz*9+NBz*9+NCz*4 1515 151.5 30.3

For the detailed cal culations of the instruction cycles needed, refer to the application book Digital Sgnal
Processing Applications with the TMS320 Family, Volume 3 [5], published by TI.

SIMLENGTH defines the cancellation routine run time if the SIMULATION switch is set to yes.
SIMLENGTH is used as aloop counter to control the number of samples processed by the cancellation
routine. Thedefault value of 4500 allowsadequate timefor theerror signal to reach aminimum. If theerror
signal hasnot converged to almost zero by theend of thistime period, the other switch and constant settings
must be checked.

Gs through Tf define the characteristics of the acoustic channel model used to compute the
error-microphoneinput signal. Theseconstantsarevalid only if the SIMULATION switchissettoyes. The
basic form of the model is:

e(n) = Gx x s(n — TX) (98)

wherex = s, g, or f, and the specific constant is from Table 6.

Asshown in Figure 45, the constants Gs and Ts are used to model the transfer function between the noise
sourceand the error microphone. The constants Ge and Te are used to model the transfer function between
the output speaker and the error microphone. The constants Gf and Tf are used to model the transfer
function between the output speaker and the input microphone. Gf and Tf are valid only when the
ALGORITHM switch is set to fbfxIms. It is assumed that the feedback and error path delays must equal
the noise source delay (Ts— Te = Tf) and that Tf > Te. Also, the value of unity gain for Gs, Ge, and Gf
is4095 and not 32767, asmight be expected. Thisisbecausethe cal cul ation of the acoustic channel models
makes use of afeature on the’ C2x DSP that allows one of theinputsto the multiplier to be a13-bit signed
constant that is embedded in the instruction word. Using a 13-bit signed number makes the maximum
positive number equal to 212 — 1, or 4095.

125

Noise Source Acoustic Models

O Gs xs(n—Ts)

v

G‘)ﬁ Gf x s(n = Tf) Ge x s(n — Te) —C_D
& =1 &

Input Microphone Speaker Error Microphone

Figure 45. How Constants Are Used in Modeling Acoustic-Channel
Transfer Functions

The adaptivefilter order defined by the constants NAz through NWz and sample delay periods Tsthrough
Tf (if simulation of anacoustic channel isenabl ed) determinesthesize of theinput, intermediate, and output
signal arrays. These arrays are defined in the file MEMORY.ASM to allocate memory spacein block B1
of the’ C2x DSP'son-chip RAM. All of thearraysmust fit within block B1, whichisthe samesizeasblock
BO. Table 8 showswhich arraysare used with the different algorithms and how to computethetotal amount
of memory used. Thistable assumes that acoustic channel simulation is enabled.

Table 8. How Output Signal Arrays Are Used With Various Algorithms

ALGORITHM SIGNALS
FXLMS (NCz+ 1)+ (NWz+ 1)+ (Ts+1) +(Te + 1)
FBFXLMS (NCz + 1) + 2(NDz + 1) + (NWz + 1)
FURLMS 2(NAz + 1) + 2(NBz + 1) + 1 + (Ts + 1)
FANC (NCz + 1) + 2(NWz + 1) + (Ts + 1)

126

ANC Algorithm Module Listing (anc.asm)

L T o

: This code perfornms both the filter calculations and the coefficient
; adapt ati on.

L e A

; I NCLUDE FI LES

e o o S LS S A

.include config.asm
.include nacros.asm

.i f ALGORI THM == f x| s

.title”FXLMS Active Noise Control Algorithnf
.elseif ALGORI THM == f bf x| s

.title ”FBFXLMS Active Noise Control Algorithni
.elseif ALGORI THM == furl nms

.title”FURLMS Active Noise Control Algorithn
.elseif ALGORI THM == fanc

.title ”FANC Active Noise Control Algorithnf
.endif

' PROGRAM

. text

; O f—-Line Training Routine
.if TIMEBASE ! = freerun
Trai ni ng
idle
.el se
Tr ai ni ng
.endif

e A o e o 20 L T B

Y

L S A S

a2 T T o S

; Al. Generate the white noise signal and output to speaker

cal | Noi segen

.if SIMULATION == no
; Qutput white noise y(n) to speaker thru I/O port.
out wng, QUTPORT
.if ALGORI THM == f bf x| s

| dpk wnn ; Set DP to speaker output array
sach wnn, 1 ;Store wng to wn(n) array
.else
| dpk Xxn ; Set DP to speaker output array
sach xn, 1 ;Store wng to x(n) array
.endif

; Read sanple fromerror mcrophone: e(n) thru I/O port.
| dpk en ; Set DP to speaker output array
in en, | NPORT ; Save | atest value to nenory

.elseif SIMILATION == yes
; Use this for simulation of error path m ke input

| dpk yn ; Set DP to speaker output array
sach yn, 1 ; Save WNG out put to y(n)

.if ALGORI THM == f bf xl ns
| dpk wnn ; Set DP to speaker output array
sach wnn, 1 ; Store wng to wn(n) array

.el se
| dpk Xxn ; Set DP to speaker output array

127

sach xn, 1 ;Store wng to x(n) array
.endif

S1. Call error path response sinulation for error mcrophone

e(n) = G * y(n-Te)

cal | Error
.endif

A2. Model the error path response

NCZ-1
z(n) = sum ci(n) * x(n-i)

NOTE: Use wn(n-i) in place of x(n-i) for FXLMS al gorithm using
Acoustic Feedback (ALGORI THM == f bf x| ns)

i f ALGORI THM == f bf x| s

Irlk AR2, wain+NCz-1; I nitialize AR2 to end of wn(n) array
. el se

Irlk AR2, xn+NCz-1 ;lnitialize AR2 to end of x(n) array
.endif

larp AR2

zac ; Zero mat h channel

mpyk 0

rptk NCz-1 ; Compute filter output

macd PG, *— ; DMOV here. Use shifted array in Adapt
apac

| dpk zZn

sach zn

A3. Conpute the error path nodel error
el(n) = e(n) - z(n)

| ac en ; Conpute difference

sub zn ; ACC = e(n)-z(n)

sacl eln ; Save difference

if ((SIMILATION == yes) & (TRACE != no))

larp AR7 ;Store error in ttrace[] array in XDATA
sacl * +

.endif

A4. Update coefficients of C(z) with LMS (or Leaky LMS) Al gorithm
ci(n+l) = v*ci(n) + u*rel(n)*x(n-i), for i=0,1,..,N-1

Note: (1) use wn(n-i) in place of x(n-i) for FXLMs al gorithm
usi ng Acoustic Feedback (ALGORI THM == f bf x| nrs)
(2) use v*ci(n) for Leaky LMS, or use ci(n) for LMS
(3) use "+" when updating C(z) in training node

128

It eln ; Compute nmu*el(n) and store
mpyk MJ ;W @1 scaling
sph adapt enp

.if ALGORI THM == f bf x| s

Irlk AR2, wnn+1 ;AR = top of DMOV' d white noise array
.else
Irlk AR2, xn+1 ;AR = top of DMOV' d white noise array
.endif
Irlk AR3, G +NCz-1; AR3 = bottom (rev order) of C(i) array
I ark AR4, NCz-1 ; ARA = | oop counter
larp AR2
.if PROCESSOR == C26
conf 0 ; Put BO into DATA space
.elseif PROCESSOR == C25
cnfd ; Put BO into DATA space
.endif
It adapt enp ; T=mu*el(n)
Trnl
npy *+, AR3 ; P=mu*el(n) *y(n-i)
zalr * ; ACC=Ci (n) w/ rounding
.if ADAPTATION == | eaky_I ns
sub *, LEAKAGE ; ACC=(1-1/2715) *Ci (n)
.endif
apac ; ACC=Ci (n) +mu*el(n)*y(n-i)
sach *— AR4 ; Update G with new val ue
banz Trnl, AR2 ; Check if coefficient update done
.if PROCESSOR == C26
conf 1 ; Put BO i nt o PROGRAM space
.elseif PROCESSOR == C25
cnfp ; Put BO i nto PROGRAM space
.endif

.if ALGORI THM == f bf x| s

S2. Call acoustic feedback path response simulation for input
ni cr ophone

x(n) = & * y(n-Tf)

cal | Feedback

A5. Model the acoustic feedback path response

NDZ-1
f(n) = SEOm di(n) * wn(n-i)

NOTE: wn(n) array DMOV' d during z(n) calculation

Irlk AR2, win+NDz ;Ilnitialize AR2 to end of DMOV'd wn(n) array
larp AR2

zac ; Zero mat h channel

mpyk 0

rptk NDz-1 ; Compute filter output

nmac PDi , *— ; No DMOV here. Done in z(n) cal cul ation.
apac

| dpk fn

sach fn

129

A6. Conpute the acoustic feedback path nodel error
e2(n) = x(n) — f(n)

l ac Xxn ; Conmput e difference
sub fn ; ACC = x(n)-f(n)
sacl e2n ; Save difference
.if ((SIMIULATION == yes) & (TRACE != no))
larp ARG ;Store error in fbtrace[] array in XDATA
sacl *+
.endif

A7. Update coefficients of D(z) with LM5S (or Leaky LMS) Al gorithm
di (n+1) = v*di(n) + u*e2(n)*wn(n-i), for i=0,1,..,N-1

Note: (1) use v*ci(n) for Leaky LMS, or use ci(n) for LMS
(2) use "+" when updating C(z) in training node

It ez2n ; Comput e mu*e2(n) and store

mpyk MJ ;W @1 scaling

sph adapt enp

Irlk AR2, wnn+1 ;AR = top of DMOV' d white noise array

Irlk AR3, Di +NDz-1; AR3 = bottom (rev order) of D(i) array

| ark AR4, NDz-1 ; AR4A = | oop counter

larp AR2
.if PROCESSOR == C26

conf 0 ; Put BO into DATA space
.elseif PROCESSOR == C25

cnfd ; Put BO into DATA space
.endi f

It adapt enp ; T=mu*e2(n)

Trn2

nmpy *+, AR3 ; P=mu*e2(n) *wn(n—i)

zalr * ; ACC=Di (n) w/ rounding
.if ADAPTATION == | eaky_I ns

sub * LEAKAGE ; ACC=(1-1/ 2715) *Di (n)
.endif

apac ; ACC=Di (n) +mu*e2(n)*wn(n-i)

sach *— AR4 ; Update DI with new val ue

banz Trn2, AR2 ; Check if coefficient update done
.if PROCESSOR == C26

conf 1 ; Put BO i nto PROGRAM space
.elseif PROCESSOR == C25

cnfp ; Put BO i nt o PROGRAM space
.endif

.endif

; Check if TRAINI NG conpl ete

larp AR1 ;Activate counter ARP

banz Trai ni ng

.if TIMEBASE == tiner

di nt ; Di sabl e GLOBAL interrupt

.endif

ret ; Return to mai n when conpl ete

B e L o
: On—Li ne Noi se Control Routine

130

Contr ol

.if SIMJULATION == no
.if ALGORITHM ! = fanc

; Read sanpl e from noi se source m crophone x(n) thru 1/0 port

| dpk Xxn
in xn, | NPORT1 ; Save | atest val ue to beginning of array.
.endif
Read sanple fromerror microphone e(n) thru I/0O port
| dpk en
in en, | NPORT2 ; Save | atest value to nenory

.elseif SIMILATION == yes

S1. Sinul ate noi se source signal

.if GENERATOR == si newave

cal | Si newave ; Si newave gener at or
| dpk wnn ; Save generator output to wn(n) array
sach wnn
if ((ALGORI THM == fxlnms) | (ALGORI THM == furl ns))
| dpk Xxn ; Save generator output to x(n) array
sach Xxn
.endif
.elseif GENERATOR == white_noi se
call Noi segen ; Random nunber gener at or
| dpk wnn ; Save generator output to wn(n) array
sach wnn, 1
if ((ALGORITHM == fxlnms) | (ALGORI THM == furl ns))
| dpk Xxn ; Save generator output to x(n) array
sach xn, 1
.endif
.endi f
.if TRACE == in_out
larp AR7 ;Store input in gtrace[] array in XDATA
sach *+ 1
.endif
.endif

.if ALGORI THM == f bf x| s

S2. Sinul ate input mcrophone signal including acoustic feedback

x(n) = w(n) + & * y(n-Tf)

cal | Feedback1l

Al. Correct input signal for acoustic feedback

NDZ-1
x1(n) = x(n) — sum di * y(n-i)

Irlk AR2, yn+NDz-1 ;lnitialize AR2 to end of yn array
| arp AR2

zac ; Zero mat h channel

mpyk 0

rptk NDz-1 : Model acoustic feedback effect
macd PDi , *—

131

apac ; ACC = f(n)

neg ; ACC = —f (n)

addh xn ; ACC = x(n)-f(n)

| dpk x1ln ;Set DP to x1(n) array
sach Xx1n ; and store result
.endif

.if ALGORI THM == fanc

S2. Sinulate the acoustic channel response at the error mcrophone

e(n) = G * wn(n-Ts) + G * y(n-Te)

call Sour ce ;Call source+error path simulation

.if TRACE != none
larp ARG ;Store output in ctrace[] array in XDATA
sach *+, 3 ;W @8 shift

.endif

Al. Regenerate (extract) prinmary noise signal

NCZ-1
x(n) =e(n) — sum ci * y(n-i)

Irlk AR2, yn+NCz-1 ;lnitialize AR2 to end of yn array
larp AR2

mpyk 0 ;Zero P register

I al k 1,15 ; Set up roundi ng on x(n) calculation
rptk NCz-1 ; Model antinoise output at error mke
macd PG, *— ; DMOV yn here
apac

neg ; Extract xn from en=xn+yn
addh en ; Xn=en-yn

| dpk xn ;Set DP to extracted noi se source
sach Xn ; and store

endi f

.if ALGORI THM == furl s

Al. Cenerate the anti—-noise signal and output to speaker
NAZ— NBZ-1

y(n) = sumai(n) * x(n-i) + sumbj(n) * y(n-j)

i =0 j=1

Note: there is delay=1 in B(z)

132

Irlk AR2, xn+NAz-1 ;lnitialize AR2 to end of xn array
larp AR2

zac : Zero mat h channel

mpyk 0

rptk NAZz-1 ; Conput e anti noi se out put

nmac PA | *— ; Don"t DMOV xn here

Irlk AR2, yn+NBz-1 ;lnitialize AR2 to end of y(n-1) array
rptk NBz-1 ; Conput e anti noi se out put

macd PBi , *— ; DMOV y(n-1) array here
apac
.elseif ALGORI THM == f bf x| ns

A2. Cenerate the antinoise signal and output to speaker

NWZ—-1
y(n) = sumw (n) * x1(n-i)

Irlk AR2, x1n+Nw -1 ;lnitialize AR2 to end of x1n array
.elseif ALGORI THM == fxl ns

Al. Cenerate the antinoise signal and output to speaker

NWZ—
y(n) = sumwi(n) * x(n-i)

Irlk AR2, xn+NWz—1 ;Initialize AR2 to end of xn array
.elseif ALGORI THM == fanc

A2. Cenerate the antinoise signal and output to speaker

NWZ—-1
y(n) = sumw (n) * x(n-i)

Irlk AR2, xn+NW—-1 ;lnitialize AR2 to end of xn array
.endif
if ALGCORITHM !'= furl s
larp AR2
mpyk 0 ;Zero P register
.if ALGORI THM == fanc
I al k 1,15 ; Used for rounding
.endif
rptk NV -1 ; Conput e anti noi se out put
nmac PW , *— ;Don’t DMOV xn here
apac
.endif
| dpk yn ;Set DP to adaptive filter output
sach yn ; and store

.if SIMJULATION == no

; Qut put yn source to speaker

out yn, OQUTPORT

.elseif ((SIMILATION == yes) & (ALGORITHM ! = fanc))
.if ALGORI THM == f bf x| s

S3. Sinulate the acoustic channel response at the error m crophone

e(n) = G * wn(n-Ts) + G * y(n-Te)

.el se

133

S2. Sinulate the acoustic channel response at the error mcrophone

e(n) = G * wn(n-Ts) + G * y(n-Te)

.endif
call Sour ce ;Call source+error path simulation
.if TRACE != none
larp AR6 ;Store output in ctrace[] array in XDATA
sach *+ 3 ;w8 shift
.endif
.endif

.if ALGORI THM == f bf x| s

A3. Correct the input signal for error path del ay

NCZ-1
Xx2(n) = sumci * x1(n-i)

Irlk AR2, x1n+NCz-1 ;lnitialize AR2 to end of x1n array
.elseif ALGORITHM == furl ns

A2a. Correct the input signal for error path del ay

NCZ-1
x1(n) = sumci * x(n-i)

Irlk AR2, xn+NCz-1 ;Initialize AR2 to end of xn array
.elseif ALGORI THM == fxl ns

A2. Correct the input signal for error path del ay

NCZ-1
x1(n) = sumci * x(n-i)
i =0
Irlk AR2, xn+NCz-1 ;Initialize AR2 to end of xn array

.elseif ALGORI THM == fanc

A3. Correct the input signal for error path del ay

NCz-1
x1(n) = sumci * x(n-i)

134

Irlk AR2, xn+NCz-1 ;Initialize AR2 to end of xn array
.endif

larp AR2

mpyk 0 ;Zero P register

I al k 1,15 ; Set up rounding for x1(n) cal culation

rptk NCz-1 ; Conpute filter output

macd PG, *— ; DMOV i nput array here

apac

.1 f ALGORI THM == f bf xl ns

| dpk X2n

sach Xx2n ;Store x2(n) to top of array
.el se

| dpk x1n

sach x1n ;Store x1(n) to top of array
.endif

.if ALGORI THM == furl s

A2b. Correct the del ayed out put signal for error path del ay

NCZ-1
yl(n-1) = sumcj * y(n-j)
j=1

Irlk AR2, yn+NCz ;lnitialize AR to end of DMV d yn array
larp AR2

zac ; Zero mat h channel

npyk 0

rptk NCz-1 ; Compute filter output

nmac PG, *— ;Don"t DMOV yn array here

apac

| dpk yln

sach yln ;Store yl(n) to top of array

.endif

.if ALGORI THM == furl s

A3a. Update coefficients of A(z) with LMS (or Leaky LMS) Al gorithm
ai (n+l) = v*ai(n) — u*e(n)*x1(n-i), for i=0,1,..,N-1
Note: (1) use v*ai(n) for Leaky LMS, or use ai(n) for LMS

(2) use "-" when updating A(z) in noise control nobde
instead of "+" used to update C(z) in training node

| dpk en

It en ; Conpute mu*e(n) and store

mpyk MJ ; W @1 scaling

sph adapt enp

larp AR2

Irlk AR2, x1n+NAz-1; AR2 = bottom of x1(n) array

Irlk AR3, Ai ;AR3 = top/end (rev order) of Al array

| ark AR4, NAz-1 ; AR4A = | oop counter
.if PROCESSOR == C26

conf 0 ; Put BO into DATA space
.elseif PROCESSOR == C25

cnfd ; Put BO into DATA space
.endi f

It adapt enp ; T=nmu* e(n)

Control 1

my * ; P=mu*e(n) *x1(n—i)

dnov *— AR3 ; DMOV x1n array

zalr * ; ACC=Ai (n) w rounding
.if ADAPTATION == | eaky_I ns

sub *, LEAKAGE ; ACC=(1-1/ 2715) *Ai (n)

135

.endif

spac ; ACC=AI (n) —mu*e(n) *x1(n-i)

sach *+, AR4 ; Update Al with new val ue

banz Control 1, AR2 ; Check if coefficient update done
.if PROCESSOR == C26

conf 1 ; Put BO i nto PROGRAM space
.elseif PROCESSOR == C25

cnfp gt ; Put BO i nto PROGRAM space
.endi

A3b. Update coefficients of B(z) with LMS (or Leaky LMS) Al gorithm
bi (n+1) = v*bi(n) — u*e(n)*yl(n-i), for i=1,2,..,N-1
Note: (1) use v*bi(n) for Leaky LMS, or use bi(n) for LM5

(2) use "=" when updating B(z) in noise control nbde
instead of "+” used to update C(z) in training node

larp AR2

Irlk AR2, y1n+NBz-1 ; AR2 = bottom of yln array

Irlk AR3, Bi ;AR3 = top/end (rev order) of Bi array

| ark AR4, NBz-1 ; AR4 = | oop counter
.if PROCESSOR == C26

conf 0 ; Put BO i nto DATA space
.elseif PROCESSOR == C25

cnfd ; Put BO i nto DATA space
.endif

It adapt enp ; T=nu*e(n)

Control 2

nmpy * ; P=mu*e(n) *y1l(n-i)

dnov *— AR3 ; DMOV xn array

zalr * ; ACC=Bi (n) w/ rounding
.if ADAPTATION == | eaky_I ns

sub *, LEAKAGE ; ACC=(1-1/ 2715) *Bi (n)
.endif

spac ; ACC=Bi (n)—nu*e(n)*yl(n—i)

sach *+, AR4 ; Update Bi with new val ue

banz Control 2, AR2 ; Check if coefficient update done
.if PROCESSOR == C26

conf 1 ; Put BO i nto PROGRAM space
.elseif PROCESSOR == C25

cnfp d ; Put BO i nto PROGRAM space
.endi f

.elseif ALGORITHM != furlns
i f ALGORI THM == f bf x| s

Ad. Update coefficients of Wz) with LM5 (or Leaky LMS) Algorithm
wi (n+l) = v*wi (n) — u*e(n)*x2(n-i), for i=0,1,..,N-1
Note: (1) use v*w (n) for Leaky LMS, or use wi(n) for LMS

(2) use "-" when updating Wz) in noise control nbde
instead of "+" used to update C(z) in training node

.elseif ALGORI THM == fxl ns

136

A3. Update coefficients of Wz) with LM5S (or Leaky LMS) Al gorithm
W (n+l) = v*wi (n) — u*e(n)*x1(n-i), for i=0,1,..,N-1

Note: (1) use v*wi (n) for Leaky LMS, or use wi(n) for LM
(2) use "-" when updating Wz) in noise control nbde
instead of "+” used to update C(z) in training node

.elseif ALGORI THM == fanc

A4. Update coefficients of Wz) with LMS (or Leaky LMS) Al gorithm
wi (n+l) = v*wi(n) — u*e(n)*x1(n-i), for i=0,1,..,N-1
Note: (1) use v*wi (n) for Leaky LMS, or use wi(n) for LM

(2) use "—" when updating Wz) in noise control nobde
instead of "+" used to update C(z) in training node

.endif

| dpk en

It en ; Conpute nu*e(n) and store

mpyk MJ ;o W @1 scaling

sph adapt enp

larp AR2
.if ALGORI THM == f bf xl ns

Irlk AR2, x2n+NW-1 ; AR2 = bottom of x2n array
. el se

Irlk AR2, x1n+NW-1 ; AR2 = bottom of x1n array
.endi f

Irlk AR3, W ;AR3 = top/end (rev order) of W array

| ark AR4, NW-1 ;AR4 = | oop counter
.if PROCESSOR == C26

conf 0 ; Put BO i nto DATA space
.elseif PROCESSOR == C25

cnfd ; Put BO i nto DATA space
.endif

It adapt enp ; T=nu*e(n)

Control 1

.if ALGORI THM == f bf x| s
*

my ; P=mu*e(n) *x2(n-i)
. el se

nmpy * ; P=mu*e(n) *x1(n-i)
.endif

dnov *— AR3 ; DMOV x1n array

zalr * ; ACCEW (n) w/ roundi ng
.if ADAPTATION == | eaky_I ns

sub * LEAKAGE ; ACC=(1-1/ 2715) *W (n)
.endif
.if ALGORI THM == f bf xI ns

spac ; ACC=W (n) —nu*e(n) *x2(n—i)
.else

spac ; ACC=W (n) —nu*e(n) *x1(n-i)
.endif

sach *+, AR4 ; Update W with new val ue

banz Control 1, AR2 ; Check if coefficient update done
.if PROCESSOR == C26

conf 1 ; Put BO i nto PROGRAM space
.elseif PROCESSOR == C25

cnfp ; Put BO i nto PROGRAM space
.endi f

.endif

ret ;Return to nmain when conplete

137

ANC Linker Command File (anc.cmd)

o o s o e 2 e T B B B B o o o o e T B e e e e e e e |
/* ANC Li nker Conmmand File */
/* */
/* */
/* File: ANC. CVD Rev: 1.0 */
/* Last Change: 8/26/93 Start Date: 8/3/93 */
/* */
/* Processor: TMS320C25 */
/* Assenbl er Rev: 6. 40 */
/* */
/* Programmer: Thomas G Horner */
/* Tl — Dallas RTC */
/* (214) 917-5051 */

B L L T |

/* Linker command file for Active Noise Cancellation for TM8320C25 */
[* +++++H+ Y

/* | NPUT/ QUTPUT */

vect or s. obj

mai n. obj

init.obj

anc. obj

nmenory. obj

nodel . obj /* This nodule for simulation only. */

—Mm anc. nap
—0 anc. out

/* PHYSI CAL MEMORY DEFINITION */

MEMORY
PAGE 0 : XVECS: origin = 00000h, I|ength = 00008h
PVECS: origin = 00018h, |ength = 00008h
PROG origin = 00020h, Ilength = 07fdOh
PRAMBO: origin = 0fa00h, [|ength = 00200h
PRAMBL: origin = 0fc00h, |ength = 00200h
PRAMB3: origin = 0fe00h, |ength = 00200h
PAGE 1 : REGS: origin = 00000h, |ength = 00006h
RAMBO: origin = 00200h, |ength = 00200h
RAMB1: origin = 00400h, |ength = 00200h
RAMB2: origin = 00060h, |ength = 00020h
RAMB3: origin = 00600h, |ength = 00200h
XDATA: origin = 08000h, |ength = 07400h
}
/* S/ W MODULE ALLOCATI ON TO MEMORY */
SECTI ONS
{
X_Vecs : { > XVECS PAGE 0 /* External interrupt vecs */
p_vecs : { > PVECS PAGE O /* Internal interrupt vecs */
.text { > PROG PAGE 0 /* Code */
.data { > PROG PAGE 0 /* Data table */
traps { > PROG PAGE 0 /* Unused interrupt traps */
anc_pna: { > PRAMBO PAGE 0 /* Coeffcient arrays (PROG */
anc_coef: { > RAMBO PAGE 1 /* Coeffcient arrays (DATA) */
anc_vars: { > RAMBL PAGE 1 /* Input/Qutput arrays */
. bss { > RAMB2 PAGE 1 /* General purpose variables */
verify : {} > XDATA PAGE 1 /* Sinulation output */
}

138

ANC System Configuration File (config.asm)

.title” ANC System Configuration”

+++++H+
ANC Syst em Super vi sor

File: CONFI G ASM Rev: 1.0
Last Change: 10/13/93 Start Date: 10/13/93

Processor: TMS320C25
Language: Assenbl y
Assenbl er Rev: 6. 40

Programer: Thomas G Horner
TI — Dallas RTC
(214) 917-5051
++++++++H
Active Noise Cancel |l ation system configuration nodule. The settings
defined in this nodul e determ ne how the code is generated.
Condi tional assenbly allows easy configuration for different
processors, |/ O adaptive filter forns, and adaptati on nethods.
o s e o 0 e o S T R S S S A

L L L L L L A e L L At L L o S
I NCLUDE FI LES

+++++++++++H+H
.include globals.asm

L A A A L L L L L L L e A L L L L L oy S
CONFI GURATI ON SETTI NGS

++++++++H
This section is used to configure the SIWfor different 1/0O adaptive
filter fornms, and adaptati on nmethods. Set the follow ng constants to
the desired value to control the configuration. Explanations of the
constants and settings are given at the end of this nodul e.

PROCESSOR . set C26

TI MEBASE . set freerun
SI MULATI ON . set yes

TRACE . set i n_out
GENERATOR . set whi t e_noi se
ALGORI THM . set fxI ms
ADAPTATI ON . set | eaky_I nms

B L e o
; This section contains constants which define the characteristics of the
; algorithmand sinulation (if enabled).

CLKOUT . set 10000000 ; DSP instruction clock rate

FS . set 1500 ; Sanpl e rate (sanpl es/ sec)

TI ME .set 2 ; Number of seconds for error path coef training
NSAMPLES . set TIME*FS ; Nunber of sanples for error path coef training
NTI CKS .set (CLKQUT/FS)-1 ; TIMER period

MJ .set 1024 ; Coefficient update stepsize (@B1l): MXK1/ Nw
LEAKAGE . set 1 :Shift value to | eak of f 27-15 of coefficient
NAZ . set 64 ;1R feedforward filter order A(2z)

NBz . set 64 ;11 R feedback filter order B(z)

NCz . set 64 ; Error path nodel order C(z)

NDz . set 64 ; Acousti ¢ feedback nodel order D(z)

NV . set 64 FIRfilter order Wz)

S| MLENGTH . set 3000 ;Cancellation routine sinmulation run tine

; (number of | oops through the routine)

139

ASSUMPTI ON: Te<Tf and Ts=Te+Tf 11111111

Gs .set 2458 ; Noi se source path gain (Q7): 0.6*2712

Ge .set 3277 ;Error path gain (Q7): 0.8*2712

G .set 2867 ; Acoustic feedback path gain (@7): 0.7*2712
Ts .set 10 ; Noi se source path sanple del ay period

Te .set 2 ; Error path sanpl e delay period

Tf .set Ts-Te ; Acoust i c feedback path sanpl e delay period
: 1/O Port Definitions

| NPORT1 .set PAO ;I nput port for input mke defined

| NPORT2 .set PAl ;I nput port for error mke defined
QUTPORT .set PAL ; Qut put port for speaker defined

L L T o S

SW TCH SETTI NG EXPLANATI ONS

N L a2 T e L L B L

CONSTANT

PROCESSOR

TI MEBASE

SI MULATI ON

TRACE

GENERATOR

ALGORI THM

ADAPTATI ON

140

SETTI NGS MEANI NG

C26 Target processor is TMS320C26

25 Target processor is TMsS320C25
timer Onboard tiner controls sanple rate
ext er nal Ext interrupt controls sanple rate
freerun Run as fast as possible

yes Si nul ati on node enabl ed

no Sinul ati on node di sabl ed

i n_out Trace al gorithminput and out put
out Trace al gorithm output only

none No trace

whi te_noi se
si newave

Wi te noi se generator enabl ed
Si newave generator enabl ed

Filtered—X LMsS enabl ed

FXLMS w acoustic feedback enabl ed
Filtered-U recursive LM5 enabl ed
Feedback ANC enabl ed

Std LMS coef adaptation enabl ed
Leaky LMS coef adaptation enabl ed

o = S IS A S

TMS320C2x EVM Initialization Command File (evminit.cmd)

;Map File for EVMRX: PROG space 0-8K, DATA space 8K-16K

ma 0x0000, 0, 0x8000, ram ; ext ernal program nenory

ma Oxf a00, 0, 0x0600, ram ; program nmenory bl ock BO, Bl, and B3
ma 0x0000, 1, 0x0006, ram ; nenory mapped registers

ma 0x0060, 1, 0x20, ram ;data menory bl ock B2

ma 0x0200, 1, 0x0600, ram ; data nenory bl ock BO, Bl, and B3
ma 0x8000, 1, 0x7400, ram ; external data nenory

ma Oxf a00, 1, 0x600, ram ; program nmenory bl ock BO, Bl1l, and B3
ma 0x0000, 2, 16,ioport ;10 ports

map on

DASM PC

| oad anc

sconfig ancsimcfg
menl 0x200

men?2 0x400

men8 0x600

;ba Wit

;run

;take savenem bat

Global Constants and Variables (globals.asm)

.title "d obal Constants and Vari abl es”

I I L o L e I L o e I ot o o o
d obal Constants and Vari abl es

File: GLOBALS. ASM Rev: 1.0
Last Change: 11/9/93 Start Date: 8/3/93
Processor: TNVBE320C25

Assenbl er Rev: 6. 40

; Language: Assenbl y
; Programer: Thonmas G Horner
: Tl — Dallas RTC
; (214) 917-5051
I o o
: d obal constant and vari abl e decl arati ons.
i I o L o e I o
. mr egs
.fcnoli st

T e e 2 B B o I s

; CONSTANT DEFI NI TI ONS
L R S S

Onchi p nenmory bl ock addresses for TMB320C25/ C26

C2X BO .set 0200h ; Starting address of block BO for all
C25_B1 .set 0300h ; Starting address of block Bl for C25
C26_B1 . set 0400h ;St arting address of block Bl for C26
Cc2X B2 . set 060h ; Starting address of block B2 for all
C26_B3 .set 0600h ; Starting address of block B3 for C26
; Onchip nenmory bl ock | engths

C2X_SHORT .set 020h ;B2 length (32) — all

C25_LONG . set 100h ;B0 and Bl length (256) — C25
C26_LONG .set 200h ; BO, Bl and B3 length (512) — C26

; External DATA nenory bl ock description
XDATA _START .set 08000h ; Ext DATA RAM origin
XDATA_SI ZE .set 07000h ; Ext DATA RAM | ength

141

, Interrupt Mask Regl ster
ENABLE_ i nt0 .set 0Olh

DI SABLE int 0 . set Offfeh
ENABLE intl1 .set 02h

DI SABLE_int1 .set Offfdh
ENABLE int2 .set 04h

DI SABLE_l nt2 .set Offfbh
ENABLE tint .set 08h

DI SABLE tint .set Offf7h
ENABLE_r ec .set 010h

DI SABLE rec .set Offefh
ENABLE xmit .set 020h

DI SABLE_xmit .set Offdfh

C25 . set 25
C26 . set 26
timer . set 2
ext er nal . set
freerun . set 0
yes . set 1

no . set 0

i n_out . set 2
out . set 1
none . set 0
white_noi se .set 1
Si newave . set 0
fxl ms . set 3

f bf xI ns . set 2
furl ms . set 1
fanc . set 0

| ms . set 1

| eaky_| ns . set 0

; Random Nunber Gener at or

SEED .set 12357
SEED2 .set 53210
MASK . set 08805h

(I MR) enabl e/ di sabl e nasks

;OR value w IMR to enable ext interrupt #0

; AND value w I MR to disable ext interrupt #0
;OR value w IMR to enable ext interrupt #1

; AND value w I MR to disable ext interrupt #1
;OR value w IMR to enable ext interrupt #2

; AND value w I MR to disable ext interrupt #2
;OR value w IMR to enable tiner

;ANDvaIuew/ IMR to disable tiner

;OR value w I MR to enable serial port rec

; AND value w I MR to disable serial port rec
;OR value w IMR to enable serial port xmt

; AND value w IMR to disable serial port xmt

; System configuration constants
; Processor switch settings

;Sample rate / tine base control settings

; Simul ati on enable switch settings

; Trace buffer switch settings

; Wavef orm generator switch settings

; Al gorithmswitch settings

; Adapt ati on nethod switch settings

; Random nunber generator seed val ue (Train)
; Random nunber generator seed val ue (Sinul ate)
;Mask to extract bits 0, 2, 11, 15

; Sinewave generator coefficients(for fs=1.5 kHz and fd=0.15 kHz)
; Al 2=cos(2*pi *fd/ fs)=0.80902

Ald2 .set 0678dh
S10 .set 0 ;s(n-2)
S11 .set 04b3ch

IC=0

;s(n=1) IC =sin(2*pi*fd/fs)=0.58779
; Sinewave gener ator coefficients(for fs=1.5 kHz and fd=0.25 kHz)

A2d2 .set 04000h ;A 2= cos(2*p| *fd/fs)=0.5
S20 .set O s(n 2) IC=
S21 .set 06ed9h ;s(n— 1) | C =sin(2*pi *fd/fs)=0.86603

L L L T o o S

7 VARI ABLE DECLARATI ONS

S O e I O

; G obal constants for use in HLL debugger control

.global SI MLENGTH

. gl obal NAz
. gl obal NBz
. gl obal NCz
. gl obal NDz
. gl obal NV

. gl obal NSAMPLES

: A obal variabl es/constants for CONFI G ASM

. gl obal C26

142

. gl obal C25
. gl obal yes
. gl obal no
. gl obal i n_out
. gl obal out
. gl obal none
. gl obal whi t e_noi se
. gl obal si newave
. gl obal fir
. gl obal iir
. gl obal fxl s
. gl obal f bf x| ms
. gl obal furlnms
. gl obal fanc
. gl obal | ms
. gl obal | eaky_| ns
. gl obal PROCESSOR
. gl obal SI MULATI ON
. gl obal TRACE
. gl obal GENERATOR
. gl obal ALGORI THM
. gl obal FI LTER
. gl obal ADAPTATI ON
. gl obal | NPORT
. gl obal QUTPORT
. gl obal Gs
. gl obal Ge
. gl obal €]
. gl obal Ts
. gl obal Te
. gl obal Tf
d obal variabl es from VECTORS. ASM
. gl obal Reset ; Reset vector
. gl obal Int0O ; External interrupt #0
. gl obal Intl ; External interrupt #1
. gl obal I nt2 ; External interrupt #2
. gl obal Ti nt ; Serial port — transmit
. gl obal Ri nt ; Serial port — receive
. gl obal Xi nt ;Ti mer
. gl obal Trap ; Trap
d obal variabl es from MEM DEF. ASM
. gl obal Al
. gl obal Bi
. gl obal c
. gl obal Di
. gl obal W
. gl obal PAi
. gl obal PBi
. gl obal PCi
. gl obal PDi
. gl obal PW
. gl obal wnn
. gl obal Xxn
. gl obal x1n
. gl obal Xx2n
. gl obal yn
. gl obal yln
. gl obal en
. gl obal eln
. gl obal ez2n
. gl obal zn
. gl obal fn

143

. gl obal adapt enp

. gl obal wng
. gl obal ctrace
. gl obal gtrace
. gl obal ttrace
. gl obal fbtrace
; G obal variables from ANC. ASM
. gl obal Init
. gl obal Trai ni ng

. gl obal Rei ni t
. gl obal Contro
. gl obal Wi t

; dobal variables from MODEL. ASM
. gl obal Error
. gl obal Sour ce
. gl obal Feedback
. gl obal Feedbackl
. gl obal Noi segen

. gl obal Si nei ni t
. gl obal Si newave
. gl obal al

. gl obal sin_1
. gl obal sin_2
. gl obal a2

. gl obal s2n_1
. gl obal s2n_2

System Initialization File (init.asm)

.title”Intialization”

I I S S L T N Lot o o o o o o o
Processor Initialization

File: I NI T. ASM Rev: 1.0
Last Change: 12/9/93 Start Date: 8/3/93
Processor: TNVBE320C25

Assenbl er Rev: 6. 40

; Language: Assenbl y
; Pr ogr amer : Thonmas G Hor ner
; Tl — Dallas RTC
: (214) 917-5051
i o
; Processor, systemand algorithminitialization routines
L I L o e I o o
++++++++H A
: | NCLUDE FI LES
+++++H+ -+
.include config.asm
.include nmacros.asm

e T S

PROGRAM
L O T

. text

; PROCESSOR | NI TI ALI ZATI ON

144

I nit

; Disable all interrupts
| dpk 0 ; DP = mmr egs data page
| ack 0 ; Reset IMR bits to disable interrupts
sacl I MR
; Di sabl e OVERFLOW npbde (ACC won’t saturate)
rovm
; Setup P register shift node
spm 1 :Shift left 1 on PREG ==> ACC
; Enabl e sign extention node
sSsSXm
; Initialize Serial Port
fort 0 ; Set for 16-bit word operation
sfsm ; Set for franme sync control
rtxm ;Set for external Xmit frane sync

; Clear onchip nenory to initialize
.if PROCESSOR ==

mencl ear C26 :Macro call to clear C26 RAM bl ocks
conf 1 ; RAM B0 ==> PROGRAM space

.elseif PROCESSOR == C25

mencl ear C25 ;Macro call to clear C26 RAM bl ocks
cnfp ; RAM B0 ==> PROGRAM space

.endif

; SYSTEM I NI TI ALI ZATI ON

.if TRACE != none
; Clear external DATA RAM on C2x EVM

larp ARO
Irlk ARO, XDATA START ; ARO = Ext. DATA RAM poi nter
Irlk AR1, XDATA S| ZE-1 ; ARL = Menory bl ock size counter
zac
Agai n
sacl *+ ARL
banz Agai n, ARO
.endif

ALGORI THM | NI TI ALl ZATI ON

Initialize starting value for white noise generator.

| dpk wng ; Set DP for random nunber
| al k SEED Ilnitialize WNG w seed val ue
sacl wng
; Initialize sanple counter to set training period
Irlk AR1, NSAMPLES ;Initialize ARL for sanple count

.if ((SIMULATION == yes) & (TRACE != none))
; Initialize pointer to trace buffer for sinulation

Irlk AR7, ttrace ;AR7 = training error trace buffer pntr
.if ALGORI THM == fbfxl s

Irlk AR6, fbtrace ; AR6 = training feedback trace buffer pntr
.endif

.endif

.if TIMEBASE == tiner
; Initialize tiner period to set sanple rate

| dpk 0 ; Set DP for nenory mapped regs
I al k NTI CKS ;Initialize PERIOD register for Fs setting
sacl PRD

145

Enabl e tinmer interrupt

| ac I MR ;Load current Interrupt Mask Register setting
ork ENABLE_t i nt ; Set TIMER control bit

sacl I MR :Store back to I MR

.endif

.if TIMEBASE ! = freerun

Enabl e gl obal interrupt

ei nt
.endif

ret ; Return to main when conpl ete

e o S (L S S

SI GNAL ARRAY REI NI TI ALI ZATI ON

B o L o
Rei ni t
;Re—initialize input array to zero for cancellation node

.if ALGORI THM == f bf x| s

Irlk ARL1, wnn ;ARL = top of white noise array

.el se

Irlk ARL, xn ;ARL = top of white noise array

.endif

larp AR1

zac ;ACC = 0

rptk NCz ; Repeat (NCz+1)-1 tinmes where NCz<=255
sacl * 4 ; Clear input array

;Re—initialize output array to zero for cancel |l ati on node

146

Irlk ARL, yn ; ARL = top of speaker output array
larp AR1

zac ;ACC = 0

rptk Tf ; Repeat Tf+1 tines where Tf<=255
sacl * 4 ;Cear output array

.1 f SI MULATI ON == yes
nitialize systeminput generator (Wite Noise or Sine)
.i f GENERATOR == whi te_noi se

| dpk wng ; Set DP for white noise
I al k SEED2 ;lnit white noise generator w seed val ue
sacl wng
.el seif GENERATOR == si newave
call Si nei ni t ;lnitialize sinewave generator
.endif

nitialize counters and pointers for sinmulation period and trace buffers
Irlk AR5, SI MLENGTH-1 ; AR5 simul ation run counter

.if TRACE == in_out

Irlk AR6, ctrace ;ARG = error mike trace buffer pntr

Irlk AR7, gtrace ; AR7 = source mike trace buffer pntr
.elseif TRACE == out

Irlk AR6, ctrace ;ARG = error mike trace buffer pntr
.endif

.endif

.if TIMEBASE ! = freerun

ei nt ; Enabl e GLOBAL interrupt

.endif

ret ;Return to Main when conplete

Macro Library File (macros.asm)

.title”Macro Library”

L L S T S e I o O
; Macro Definitions

File: MACRCS. ASM Rev: 1.0
Last Change: 10/11/93 Start Date: 10/11/93

: Processor: TNVBE320C25
; Language: Assenbl y
; Assenbl er Rev: 6. 40

Programer: Thomas G Horner
TI — Dallas RTC
(214) 917-5051
R o a0 T T o S S S e
Macro definitions
B o o L o o o O e o L o o o o o o

B L T o o
; MACRO CONF

B e o
; Required for C26 using R6.40 of ASSEMBLER. Can’t use the —-v26 sw tch,

; SO CONF instruction is illegal. Causes problens w LARK, LARP, LRLK

This command nodifies ST1 bits 7 & 12 to configure RAM bl ocks as DATA
or PROGRAM Sane result as using CONF instruction w -v26 sw tch.
conf . macro x
i f (x ==
.word Oce3ch
.elseif (x ==
.word Oce3dh
.elseif (x ==
.word Oce3eh
.elseif (x ==
.word Oce3fh
.endif
.endm

e o e a2 B T L T o S S

MACRO MEMCLEAR
L L S

: This macro is designed to generate code to clear the onchip RAM bl ocks
; for either a TMS320C25 or TMS320C26 during initialization.

nmenclear .nmacron

i f (n == 25) ; Zero onchip RAM nenory for C25
cnfd ; Make al |l onchi p RAM bl ocks DATA
zac ; Zer o accunul at or

larp ARO ;Point to AR

| ark ARO, C2X B2 ;Point to B2

rptk C2X_SHORT-1 ; Menmory bl ock | ength-1

sacl * 4+ cFill B2 with 0's

Irlk ARO, C2X BO ;Point to BO

rptk C25_LONG-1 ; Memory bl ock | ength-1

sacl * 4 Fill BO with 0's

rptk C25_LONG-1 ; Memory bl ock | ength-1

sacl * 4+ cFill Bl with 0's

.elseif (n == 26) ; Zero onchip RAM nenory for C26
conf 0 ; Make al |l onchi p RAM bl ocks DATA
zac ; Zero accunul at or

larp ARO ; Activate ARO

147

lark ARO, C2X B2 ; Point to B2 RAM bl ock
rptk C2X_SHORT-1 ; Menory bl ock | engt h-1
sacl * 4 Fill B2 with 0's
Irlk ARO, C26_LONG-1 ; ARO = Menory bl ock | ength-1
Irlk AR1l, C2X_BO ; ARL = BO pointer
Irlk AR2, C26_B1 ; AR2 = Bl pointer
Irlk AR3, C26 B3 ; AR3 = B3 pointer
larp AR1
0?
sacl *+, AR2 ;Fill BO,B1,B3 RAMwith 0's
sacl *+ AR3
sacl *+ ARO
banz Zero?, ARL ; Done??
. el se :CGenerate error if not C25 or C26
.emsg "ERROR — "lIncorrect device. Use 25 or 26.”
endi f

ANC System Supervisor Program (main.asm)

.title” ANC System Supervi sor”

e e 2 B B B g o o S S T B

ANC Syst em Super vi sor

File: MAI N. ASM Rev: 1.0

Last Change: 10/12/93 Start Date: 8/3/93
Processor: TMS320C25

Language: Assenbl y

Assenbl er Rev: 6. 40

Pr ogr amer : Thonmas G Hor ner
Tl — Dallas RTC
(214) 917-5051

+++++H+
Active Noise Cancellation system supervisor. This code controls the

overal | operation of the ANC system

L e T S

T e 2 B B o e s S

I NCLUDE FI LES

e o S (LS S

.include config.asm
.include nacros.asm

. text

o T O L

; PROGRAM
L L S L S o o O
Reset

cal | I nit ;Call systeminitialization routine

call Tr ai ni ng ;Call error path coef training routine

cal | Rei ni t ;Call cancellation initialization routine
; Main routine
Mai n

.if TIMEBASE == tiner

idle ;Wait for Interrupt

.endi f

cal | Contr ol ;Call noise cancellation routine

.if SI MULATION == no

b Mai n ; Endl ess | oop

148

.elseif SI MILATION == yes

larp AR5 ;Activate sinmulation run counter
banz Mai n ;Check if sinmulation is conplete
.if TINMEBASE == tiner
di nt ; Di sabl e d obal interrupt
.endif
Wai t
b Wi t ; Endl ess | oop
.endif

.if Tl MEBASE == ext ernal
I L o L e I o

I NTERRUPT SERVI CE ROUTI NES
L o
The External Interrupt #0 ISR is used to pace the Training and

; Control routines. None of the algorithmis executed in the ISR

IntO

ei nt ; Re—enabl e GLOBAL i nterrupt
ret ;Return to MAIN
.endif

.if TIMEBASE == tiner
T R o e 2 B B A o s o 20 O L T B

; | NTERRUPT SERVI CE ROUTI NES
e e S

; The Tiner ISR is used to pace the Training and Control routines.
; None of the algorithmis executed in the ISR

Ti nt
ei nt ; Re—enabl e GLOBAL i nterrupt
ret ;Return to MAIN
.endif
e o S S oS
.end

Memory Definitions File (memory.asm)

.title”"Menory Definitions”
+++++++++++H
; Menmory Definitions

; File: MEMORY. ASM Rev: 1.0

; Last Change: 10/9/93 Start Date: 8/ 3/ 93
Processor: TMB320C25

; Language: Assenbl y

; Assenbl er Rev: 6. 40

; Pr ogr amer : Thomas G- Hor ner

; Tl — Dallas RTC

: (214) 917-5051

o o o o S L L o I s o o o S T B L T B o o 1 o o = = S SR BTSSR B BT S
Initialized and uninitialized nenory definitions

I o T L B L o o o O L B L L o o L O e B R e S o

L o B B A o 2 T L T B

I NCLUDE FI LES
L O T

.include config.asm

T e e 2 B B o I s

I NI TI ALI ZED MEMORY (PROG)
R o B B A o o 2 T L T B

149

BLOCK BO

Label s to BO coefficient arrays i n PROGRAM space.
PCi .sect "anc_pm” ; G (n) in PROGRAM space

. Space 16*NCz
.if ALGORI THM == f bf x| s

PDi .sect "anc_pnm” ;Di(n) in PROGRAMspace

. space 16*NDz
.endif
.if ALGORI THM == furl s

PAi .sect "anc_pna” ; Al (n) in PROGRAM space
. Space 16*NAz
PBi .sect "anc_pma” ; Bi (n) in PROGRAM space
. space 16*NBz
.else
PW .sect "anc_pna” ;W (n) in PROGRAM space

. Space 16*Nw
.endif

N e st oI T T o S e

O O

@2

UNI NI TI ALI ZED MEMORY (DATA)

e e L L a2 2 8 SRS SE

BLOCK BO

These coefficients are used by the ANC algorithm \Wen the filters are
conput ed, the coefficients should be in PROGRAM space to use with MACD.
The total nunmber of coefficients nust all fit in RAM block BO. This
nunmber varies by device (C25 vs. C26). Due to the DMOV enbedded in the
MACD, the coefficient arrays nust be stored in reverse order.

+ +
I c (n) I
I N-1 I
+ +
I c (n) I
I N-2 I
+ +
I I
I I
I I
I I
I I
+ +
I ¢ (n) |
I 0 |
+ +

The arrays are defined as foll ows:
C = error path coefficients

Di = acoustic feedback path coefficients

W = adaptive FIRfilter coefficients

Al = adaptive IIRfilter feedforward coefficients
Bi = adaptive IIRfilter feedback coefficients

.usect "anc_coef”, NCz ;C (n) in DATA space
.if ALGORI THM == f bf x| ns
.usect "anc_coef”, NDz ;Di(n) in DATA space
.endif
.if ALGORI THM == furl s
.usect "anc_coef”, NAz ;A (n) in DATA space
(n) in DATA space

.usect "anc_coef”, NBz ;Bi
.el se

e

150

W

.usect "anc_coef”, NW ;W (n) in DATA space
.endif

BLOCK Bl

These arrays hold the inputs and outputs used by the adaptation and filter
routines. Keep these arrays in DATA space.

.if ALGORI THM == fxI s

wnn .usect "anc_vars”, Ts+1 ;wn(n) in DATA space
xn .usect "anc_vars”, NW+1 ;x(n) in DATA space (+1 for DMV)
yn .usect "anc_vars”, Te+l ;y(n) in DATA space
x1n .usect "anc_vars”, NCz+1 ;x1(n) in DATA space (+1 for DMV
.elseif ALGORI THM == f bf x| ns
wnn .usect "anc_vars”, NDz+1 ;wn(n) in DATA space (+1 for DMV)
yn .usect "anc_vars”, NDz+1 ;y(n) in DATA space (+1 for DMV)
x1n .usect "anc_vars”, NW+1 ;x1(n) in DATA space (+1 for DMV)
x2n .usect "anc_vars”, NCz+1 ;x2(n) in DATA space (+1 for DMV
.elseif ALGORITHM == furl s
wnn .usect "anc_vars”, Ts+1;wn(n) in DATA space
Xxn .usect "anc_vars”, NAz+1 ;x(n) in DATA space (+1 for DMV)
x1n .usect "anc_vars”, NAz+1 ;x1(n) in DATA space (+1 for DMV)
yn .usect "anc_vars”, NBz+2 ;y(n) in DATA space (+2 for y(n-1) DMV)
yln .usect "anc_vars”, NBz+1 ;yl(n) in DATA space (+1 for DMWV)
.elseif ALGORI THM == fanc
wnn .usect "anc_vars”, Ts+1;wn(n) in DATA space
xn .usect "anc_vars”, NW+1 ;x(n) in DATA space (+1 for DMV)
x1n .usect "anc_vars”, NW+1 ;x1(n) in DATA space (+1 for DMV)
yn .usect "anc_vars”, NCz+1 ;y(n) in DATA space (+1 for DMV)
.endif
BLOCK B2

These are general purpose variables used in the program

. bss adaptenp, 1 ; Adapt ation internedi ate val ue

. bss en, 1 ;Error m ke input: e(n)

. bss zn, 1 ; Error path nodel output: z(n)

. bss eln, 1 ; Error path nodel error: el(n)

.if ALGORI THM == f bf xI ms

. bss xn, 1 ; Input m ke input: x(n)

. bss fn, 1 ; Acousti c feedback path nodel output: f(n)
. bss e2n, 1 ; Acoustic feedback path nodel error: e2(n)
.endif

.if GENERATOR == white_noi se

. bss wng, 2 ; Whi t e noi se generator storage

; current output + internmediate val ue
.elseif GENERATOR == si newave

. bss al, 1 ; Coefficient Al/2
. bss sin 1,1 ; s1(n-1)

. bss sin_2,1 ; s1(n=2)

. bss a2, 1 ; Coefficient A2/2
. bss s2n_1,1 ;s2(n-1)

. bss s2n_2,1 ;s2(n=-2)

.endif

BLOCK B3

; EXTERNAL RAM

151

These arrays hold sinulation trace data. The error m ke reading
shoul d decay to a very small value if the algorithmworks. Use
br oadband input to verify algorithm

NOTE: TOTAL TRACE BUFFER LENGITH USI NG EVM | S 30K SAMPLES US| NG
SUPPLI ED SYSTEM CONFI GURATI ON.

.if TRACE != none
ttrace .usect "verify”, NSAMPLES ;Sinmul ated error m ke reading (Train)
ctrace .usect "verify”, SIM.ENGTH ;Simulated error nike reading (Cancel)
.if ALGORI THM == f bf x| s
fbtrace .usect "verify”, NSAWMPLES ;Sinmul ated feedback readi ng at input

.endif
.if TRACE == in_out
gtrace .usect "verify”, SI MLENGTH ; Sinmul ated i nput m ke readi ng (Cancel)
.endi f
.endif

Simulation Models and Waveform Generators File (models.asm)

.title”Sinmulati on Mbdel s and Wavef orm Gener at ors”

+++++H+
Si mul ati on Model s and Wavef orm Generators

File: MODEL. ASM Rev: 1.0
Last Change: 11/11/93 Start Date: 8/23/93

Processor: TMB320C25
Language: Assenbl y
Assenbl er Rev: 6. 40

Programer: Thomas G Horner
TI — Dallas RTC
(214) 917-5051
++++++++H
Cont ai ns nodel s of acoustic channel and waveform generators required
to sinulate conplete ANC system for algorithmverification. The
random nunber generator is also used for error path coefficient
nodel ling in the Training nodul e.
+++++++H+ A

L B B A e o 20 o T B

; I NCLUDE FI LES
L L L o S

.include config.asm

e e e 2 B B s o S S A

PROGRAM
e e S

. text

.if SI MULATI ON == yes
; Error path nodel (speaker to error mke)
, e(n)=CGe*y(n-Te)

Error
spm 2 ; Setup for Q@7 result in Preg
| dpk yn
It yn+Te ; T=y(n-Te)
mpyk Ge ; P=Ge*y(n-Te) NOTE: Coefficient is 13 bits
| dpk en ;Set DP to error mke input

152

sph en ; Save to error mke location

spm 1 ;Return to standard @O result
.if ALGORITHM ! = f bf x| ns
larp AR4 ; Time shift adaptive filter outputs
Irlk AR4, yn+Te-1 ; except the ol dest entry, yn(n-Te)
| ark AR3, Te-1
Errl
drmov *— AR3
banz Errl, AR4
.endif
ret

.if ALGORI THM == f bf x| s
; Acoustic feedback path nodel for Training node (speaker to input mke)
;. x(n)=G*y(n-Tf)

Feedback
spm 2 ;Setup for Q27 result in Preg
| dpk yn
It yn+Tf ; T=y(n=Tf)
mpyk o ; P=G*y(n-Tf) NOTE: Coefficient is 13 bits
| dpk xn ;Set DP to input mke input
sph Xn ; and save result
spm 1 ;Return to standard B0 result
larp AR4 ; Time shift y(n) sanpl es
Irlk AR4, yn+Tf-1 ; except the ol dest entry, yn(n-Tf)
| ark AR3, Tf-1
Fbl
dnov *—, AR3
banz Fbl, AR4
ret

; Acoustic feedback path nodel for Cancel nopde (speaker to input mke)
;o xX(n)=wn(n)+& *y(n-Tf)
Feedback1

spm 2 ;Setup for Q7 result in Preg
| dpk yn
It yn+Tf ; T=y(n-Tf)
mpyk G ; P=G *y(n-Tf) NOTE: Coefficient is 13 bits
pac ; ACC=F *y(n-Tf)
| dpk wnn ; Set DP to white noise array
addh wnn ; and save result
| dpk Xxn ;Set DP to input mke input
sach xn ; and save result
spm 1 ;Return to standard @O result
ret

.endif

; Acoustic channel nodel (noise source + anti-noise to error mke)
7 e(n)=Gs*wn(n-Ts) + Ge*y(n-Te)

Sour ce
| dpk wnn ;Set DP to input array
.if ALGORI THM == fanc
It wnn ; T=wn(n-Ts), where Ts=0 for fanc al gorithm
.else
It wnn+Ts ; T=wn(n-Ts)
.endif
mpyk Gs ; P=Gs*wn(n-Ts) NOTE: Coefficient is 13 bits
pac ; ACC=Gs*wn(n)
| dpk yn ;Set DP to adaptive filter output
It yn+Te ; T=y(n-Te)
mpyk Ge ; P=Te*y(n-Te) NOTE: Coefficient is 13 bits
apac ; ACC=Gs*wn(n—Ts) +Ge*y(n-Te)
| dpk en
sach en, 3 ;Save to error mke location w @8 shift

.if ALGORITHM ! = fanc

153

larp AR4 ; Time shift wia(n) array
Irlk AR4, wnn+Ts-1,; except the ol dest entry, wn(n-Ts)
| ark AR3, Ts-1
Srcl
dnov *— AR3
banz Srcl, AR4
.endif
.if ALGORI THM == fxI ns
larp AR4 ; Time shift y(n) array
Irlk AR4, yn+Te-1 ; except the ol dest entry, y(n-Te)
| ark AR3, Te-1
Src2
drmov *— AR3
banz Src2, AR4
endi f
ret
endi f

.if GENERATOR == white_noi se
I I L L S S L L L I L o L T e O I o ot o o
; VWhite Noi se Generator Routine
i e I T S S S
; This code conputes a stream of random nunbers. The al gorithm was
; 1s taken fromthe book Digital Signal Processing Design by Bateman

and Yates.
B o ol o S T o ot o T B T T S 0 o B o o S T o R e
Noi segen

| dpk wng

| ac wng : Load current random nunber

andk MASK ;Extract bits 0, 2, 11, 15

sacl wng+1 ; Save for future use

add wng+1, 4 :Conbine bit 11 with 15

add wng+1, 13 ; Conbine bit 2 with result

add wng+1, 15 :Conbine bit O with result

andk MASK ; Extract bit 15 (others extraneous)

addh wng ; Combi ne bit 15 w previous nunber

sach wng, 1 ; Store new random nunber

ret

.elseif GENERATOR == si newave
B i L o

; Si newave Cenerat or Routine

L L L L O o o o
; Sinewave generator to be used for checkout

i s(n)=(2*cos(2*pi *fd/fs))*s(n-1)-s(n-2)

Initialize coefficient and 1Cs for sinewave generator

Si nei ni t
| dpk al
I al k Ald2 ;Al/ 2 = cos(2*pi *fd/fs)
sacl al
lal k S10 ;s1[n-2] IC
sacl sln_ 2
I al k S11 ;s1l[n-1] IC
sacl sln_ 1
I al k A2d2 ; A2/ 2 = cos(2*pi *fd/fs)
sacl a2
I al k S20 ;s2[n=-2] IC
sacl s2n_2
| al k S21 ;s2[n-1] IC
sacl s2n_1
ret

154

Si newave generator al gorithm

Si newave

| dpk al ;Set DP to coefficient a

zac ; Zero mat h channel

mpyk 0 ;

subh sln_2 ; yl[n] = 2*(Al/2*yl1l[n-1]) - y1[n-2]
Itd sin_1

npy al

apac

apac

sach sin_1 ;Store result back to nmenory

zac :Zero mat h channel

nmpyk 0 ;

subh s2n_2 ;oy2[n] = 2*(A2/ 2*y2[n-1]) - y2[n-2]
Itd s2n_1

nmy az

apac

apac

sach s2n_1 ;Store result back to nmenory

| ac sin_1, 15 ;ACC = y1[n] + y2[n] w gain adjust
add s2n_1, 15

ret
.endif

Interrupt Vectors and Interrupt Service Routine Traps File (vectors.asm)

.title”Interrupt Vectors and | SR Traps”

L A A e L L L L L L L e L L o RS
Interrupt Vector Definitions

File: VECTORS. ASM Rev: 1.0

Last Change: 10/11/92 Start Date: 10/5/92
Processor: TMS320C25

Language: Assenbl y

Assenbl er Rev: 6. 40

Programmer: Thomas G Hor ner
TI — Dallas RTC
(214) 917-5051
++++++

Interrupt Vectors and Unused Interrupt Traps
a2 B B A o o 2 T o T B

s a2 B B B e s s s S S A

I NCLUDE FI LES
T e e 2 B B o o L I s

.include config.asm

o

VECTORS
e T o S

Define interrupt vectors with addresses of ISRs. Any ISR which is not
active is trapped to an idle state for debug.

.sect "x_vecs”

b Reset ; Power Up Reset
b IntO ; External Interrupt #0

155

b Intl ; External Interrupt #1

b Int2 ; External Interrupt #2

.sect "p_vecs”

b Tint ; Timer Interrupt

b Rint ;Serial Port Receive |nterrupt
b Xint ;Serial Port Transmit Interrupt
b Trap 7 SIW Trap

++++++++H
UNUSED | NTERRUPT TRAPS

+++++++H

These traps can be used for debug purposes or for an extra nmeasure of

security in production SSW Alternatively, this code can be altered

to performa soft reset by replacing the "idle” nmenmonic with "b reset

”

.sect "traps”
.if TIMEBASE == external

Int0 idle ; External Interrupt #0
.el se
Int0O idle ; External Interrupt #0
.endif
Intl idle ; External Interrupt #1
Int2 idle ;External Interrupt #2
.if TIMEBASE == tiner
;Tint idle ; Timer Interrupt
.el se
Ti nt idle ; Timer Interrupt
.endif
Ri nt idle ;Serial Port Receive Interrupt
Xi nt idle ;Serial Port Transmit Interrupt
Trap idle ; SIW Trap
I I L S S L e I o L o I
.end

156

APPENDIX E: SCHEMATIC DIAGRAM OF 8-ORDER BUTTERWORTH
LOW-PASS FILTER

0.001 uF 0.001 uF 0.001 uF 0.001 uF
AB—{(———AE AF—{———Al AJ———+—AM AN—|——8—AF
TLO74N TLO74N TLO74N TLO74N
1 5 7 8 13 14 | Output
2 6 12
680 pF 330 pF 220 pF 680 pF
TLO74N
Filter 3 1 10 kQ
Input
2 TLO74N JLorn
. 10kQ |10 4 14
1t 4 W _ — AM
1uF 5 1ka |53
. 10kQ 10 kQ
TLO74N 1€ VW v Vv
1uF 1kQ
7 p

1 335 kQ #5% 16

AM %% AB
2 428 kQ +1% 15

AC NV
3 117 kQ +5% 14

AE AN AF
4 257 kQ #5% 13

AG A%
5 367 kQ £5% 12

Al A% Al
6 120 kQ +1% 11

AK %%
7 208 kQ £1% 10

AM A% AN
8 693 kQ £1% 9

AO %%

157

158

APPENDIX F: ANC UNIT SYSTEM SETUP AND OPERATION PROCEDURE

Thisisadetailed description of the system setup and the operation procedure for the ANC unit shown in
Figure 31, page 60.

Hardware

Thetest system was built using PV C pipes of inner diameter 6 inches. The overall length of the duct was
110.7 cm. The distance from noise loudspeaker to error microphone was 69.0 cm. In addition to the PVC
pipes, the system included the components and auxiliary equipment in the following list:
¢ 2 Redlistic 33-1063 tie-pin microphones
2 Kicker 6.5" free-air subwoofers
1 Symetrix SX202 dual microphone preamplifier
1 Carvin FET 450 power amplifier
4 8-order Butterworth low-pass filters
1 LAMBDA LPD-422A-FM dual regulated power supply
1 Ariel DSP-16 Plus TMS320C25 DSP board with a’ C25 device
1 personal computer
1 HP 3561A dynamic signal analyzer or TMS320C26 DSP starter kit with another personal
computer
* Function generator(s)

With two input and output ports, the Ariel DSP-16 Plus TMS320C25 DSP board can fulfill the
experimental requirements. One input port receives the correction signal from the error microphone, and
the other onereceivesthereference signal from theinput microphone. Meanwhile, one of the output ports
is used to send out the antinoise signal, and the other is used to send out the signal to observe.

Software

The Ariel DSP board has a set of supported software; however, only part of it is necessary in these
experiments. A listing of required files with brief descriptions of their functions follows:

DSPBUG.EXE The basic DSPBUG executable file. When invoked, this program provides a
resident monitor that can be used to load and run the source hex file.

DSPBUG.CFG The configuration file of the DSPBUG resident monitor

DSPBUG.HLP Contains the DSPBUG resident monitor help system

DSP320.CFG The configuration file of the DSP-16 Plus TMS320C25 DSP board. Contains

ASCII information on installed options, board revision, 1/O address setting,
memory address, etc.

RESMON.HEX Hex file of the DSPBUG resident monitor. Contains al the code that DSPBUG
needs to control the operation of the source program when debugging.

ASM320.EXE Two-pass assembler that reads a source file from disk and writes a standard
INTEL format hex object file to disk.

159

Thealgorithmsinvolved inthe ANC experimentsare FXLMS, FBFXLMS, and FURLMS. Thefilenames
of the related assembly code and object files in the software package are as follows:

ALGORITHM ASSEMBLY CODE FILE OBJECT FILE FILE
FXLMS FXLMS.ASM FXLMS.HEX
FBFXLMS FBFXLMS.ASM FBFXLMS.HEX
FURLMS FURLMS.ASM FURLMS.HEX

Operation Procedure

The assembly programs and the files required for using the Ariel DSP-16 Plus TM S320C25 DSP board
arein the same directory, and the one-dimensional ANC duct system is set up. The operational procedure
of thisANC system isasfollows:
1. Edit the source program: Type edit <filename>.asm at the DOS prompt, where <filename> is
the name of the source file. For each source file, there must be matching .asmfile.
2. Assemble the source program: Type asm320/c25 <filename> at the DOS prompt. Upon
successful assembly, one additional hex file (<filename>.hex) is generated.
3. Enter the DSPBUG resident monitor: Type dspbug and press enter at the DOS prompt.
4. Setthesamplingrate: Typesplrateand pressenter onthecommandlineof the DSPBUG resident
monitor, then set the sampling rate of both the input and output ports to 2000 Hz.
5. Runthe program:
a. Turn onthe error microphone.
b. Set the volume of the canceling loudspeaker.
c. Typedwnld<filename> and pressenter onthecommand lineof DSPBUG resident monitor.
d. After the off-line modeling stage, set the volume of the noise loudspeaker.
e. Turn on the input microphone.

6. Turn off both of the microphones and adjust the volume of the two loudspeakersto zero when
the demonstration is compl ete.
7. Returnto DOS: Type quit and press enter on the command line of DSPBUG.

Notethat the procedure aboveisvalid only for the FXLM Sand FURLM S algorithms. For the FBFXLMS
algorithm, part d of step 5 should be performed at the same time as part a.

There is a memory conflict between this program and Ariel’'s DSPBUG resident monitor program
(resmon.hex). To avoid the conflict, rearrangethe memory locationsin this program from on-chip memory
to external memory. Extratime may be required to access data from the external memory instead of from
on-chip memory. When many cal cul ationsare required during continued testing of the system performance
inthe higher samplingrates, the use of on-chip memory issuggested. I n using on-chip memory, thememory
conflict occurswhen this programisloaded. Error messages are shown on the screen, indicating the crash
of the DSPBUG resident monitor. The error messages do not adversely affect the program run, but if the
error messages need to be removed from the screen, just press the space bar or the enter key several times.

To make sure that the compensation filters (C(z) in the FXLM S and FURLMS algorithms, C(z) and D(2)
in the FBFXLMS algorithm) are well estimated, it is necessary to monitor the modeling error during the
off-line modeling stage. Connect the modeling error signal out from output channel B on the Ariel DSP
board. Monitor that signal in real time by using a scope. If the observed signal converges, this modeling
process is successful. Otherwise, changing the adaptation step size for the estimated filter is required.

160

APPENDIX G: TMS320C26 DSP STARTER KIT, AN ALTERNATIVE TO

THE SPECTRUM ANALYZER

Instead of using aspectrum analyzer to observethesignal, the TM S320C26 DSP starter kit (DSK) provides
an alternative approach. Thefollowing checklist detail sitemsthat are necessary toimplement thiskit [48].

1. Hardware checklist

a

~poooT

g.

Host: IBM PC/AT or 100%-compatible PC with a hard disk system and a 1.44-megabyte
floppy-disk drive

Memory: minimum of 640K bytes

Display: EGA/VGA

Power supply: 9V ac at 250 mA with a2.1-mm power jack connector

Board: DSK circuit board

Port: asynchronous RS-232 serial communications link

Cable: RS-232 with aDB9 interface

2. Software checklist

a

b.

Operating System : MSI-DOS or PC-DOS (version 4.01 or |ater)
Filess. DSK_SA26.EXE

DSK_COM2.DSK

AV26.ASM

AV26.DSK

EGAVGA.BGI

DSKA.EXE

The DSK_SA26.EXE is an executable real-time FFT file. This file outputs a log magnitude of the FFT
result every 256 sampling points. Thevertical axis of the spectrum analysis shown on the screen of the PC
is dB-based, and the horizontal axis is based on the normalized frequency. The minimum sampling
frequency that can be selected on the DSK is 2560 Hz.

After connecting the DSK to the PC and power, plug in the observed signal source. At the DOS prompt,
type dsk_sa26 and press enter. A working spectrum analysisis shown on the screen of the PC.

MSisaregistered trademark of Microsoft Corporation.
PC is atrademark of International Business Machines Corp.

161

162

