The TMS320 Family of
Digital Signal
Processors

APPLICATION REPORT: SPRA396

Kun-Shan Lin

Gene A. Frantz

Ray Simar, Jr.

Digital Signal Processor Product
Semiconductor Group

Texas Instruments

Digital Signal Processing Solutions

%‘ TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

Tl warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of Tl
products in such applications requires the written approval of an appropriate Tl officer. Questions concerning
potential risk applications should be directed to Tl through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does Tl warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of Tl covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

Tl is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE
US TMS320 FAX

US TMS320 BBS

US TMS320 email

(281) 274-2320
(281) 274-2324
(281) 274-2323
dsph@ti.com

The TMS320 Family of Digital Signal
Processors

Abstract

The introduction of the TMS320C30 Digital Signal Processor, a
floating-point 33-MFLOP device, allows users to represent multi-
length floating-point math in terms of single length floating-point
math. This allows applications which need this type of power
(digital filtering, image processing, FFTs, etc.) to be much more
accurate. This chapter explains how to extend the available
precision of floating-point arithmetic on the TMS320C30. It is
organized as follows:

Q A description of the TMS320C30 DSP floating-point number
representation

O A discussion of doublelength arithmetic and some basic
definitions

Q A discussion of the algorithms used along with the
TMS320C30 implementation

Q Error analysis

O Information about generating C-callable functions from
assembly language routines

Accompanying graphics illustrate

Q Single precision floating point format of the TMS320C30
Q Singlelength and doublelength addition

Q Singlelength and doublelength procude
a

Doublelength quotient and square root

The TMS320 Family of Digital Signal Processors 5

SPRA396

The chapter closes with a summary, a list of references, and three
appendices which provide source listings for the extended-
precision arithmetic.

The TMS320 Family of Digital Signal Processors

*i’
SPRA396

Product Support

World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. Users
registering with TI&ME can build custom information pages and
receive new product updates automatically via email.

Email

For technical issues or clarification on switching products, please
send a detailed email to (dsph@ti.com). Questions receive prompt
attention and are usually answered within one business day.

The TMS320 Family of Digital Signal Processors 7

The TMS320 Family of Digital Signal

Processors

KUN-SHAN LIN, MemBer, 1EEE, GENE A. FRANTZ, SENIOR MEMBER, IEEE,

AND RAY SIMAR, Jr.

This paper begins with a discussion of the characteristics of dig-
ital signal processing, which are the driving force behind the design
of digital signal processors. The remainder of the paper describes
the three generations of the TMS320 family of digital signal proces-
sors available from Texas Instruments. The evolution in architec-
tural design of these processors and key features of each genera-
tion of processors are discussed. More detailed information is
provided for the TMS320C25 and TMS320C30, the newest members
in the family. The benefits and cost-performance tradeoffs of these
processors become obvious when applied to digital signal pro-
cessing applications, such as telecommunications, data commu-
nications, graphics/image processing, etc.

DIGITAL SIGNAL PROCESSING CHARACTERISTICS

Digital signal processing (DSP) encompasses a broad
spectrum of applications. Some application examples
include digital filtering, speech vocoding, image process-
ing, fast Fourier transforms, and digital audio[1]-[10]. These
applications and those considered digital signal processing
have several characteristics in common:

+ mathematically intensive algorithms,
+ real-time operation, '

» sampled data implementation,

+ system flexibility.

Toillustrate these characteristics in this section, we will use
the digital filter as an example. Specifically, we will use the
Finite Impulse Response (FIR) filter which in the time
domain takes the general form of

N

yn) = 21 a(i) * xtn — i) M

where y(n) is the output sample at time n, a(i) is the ith coef-
ficient or weighting factor, and x(n — i) is the (n — i)th input
sample.

With this example in mind, we can discuss the various
characteristics of digital signal processing: mathematically
intensive algorithms, real-time processing, sampled data
implementation, and system flexibility. First, let us look at
the concept of mathematically intensive algorithms.

Manuscript received October 6, 1986; revised March 27, 1987.

The authors are with the Semiconductor Group, Texas Instru-
ments Inc., Houston, TX 77521-1445, USA.

IEEE Log Number 8716214.

Mathematically Intensive Algorithms

From (1), we can see that to generate every y(n), we have
to compute N multiplications and additions or sums of
products. This computation makes it mathematically inten-
sive, especially when N is large.

At this point it is worthwhile to give the FIR filter some
physical significance. An FIR filter is a common technique
used to eliminate the erratic nature of stock market prices.
When the day-to-day closing prices are plotted, it is some-
times difficult to obtain the desired information, such as the
trend of the stock, because of the large variations. A simple
way of smoothing the data is to calculate the average clos-
ing values of the previous five days. For the new average
value each day, the oldest value is dropped and the newest
value added. Each daily average value (average (n)) would
be the sum of the weighted value of the latest five days,
where the weighting factors (a(i)'s) are 1/5. In equation form,
the average is determined by

1 1
average (n) =§'d(n -1 +§'d(n -2
+1'd(n—3)+1'd(4)
5 5T

+§‘d(n—5))

where d(n - i) is the daily stock closing price for the (n —
i)th day. Equation (2) assumes the same form as (1). This is
also the general form of the convolution of two sequences
of numbers, a(i) and x(i) (5], (6). Both FIR filtering and con-
volution are fundamental to digital signal processing.

Real-Time Processing

In addition to being mathematically intensive, DSP algo-
rithms must be performed in real time. Real time can be
defined as a process that is accomplished by the DSP with-
out creating a delay noticeable to the user. In the stock mar-
ket example, as long as the new average value can be com-
puted prior tothe nextday when it is needed, itis considered
to be completed in real time. In digital signal processing
applications, processes happen faster thanon a daily basis.
In the FIR filter example in (1), the sum of products must

be computed usually within hundreds of microseconds
before the next sample comes into the system. A second
example is in a speech recognition system where a notice-
able delay between a word being spoken and being rec-
ognized would be unacceptable and not considered real-
time. Another example is in image processing, where it is
considered real-time if the processor finishes the process-
ing within the frame update period. If the pixel information
cannot be updated within the frame update period, prob-
lems such as flicker, smearing, or missing information will
occur.

Sampled Data Implementation

The application must be capable of being handled as a
sampled data system in order to be processed by digital
processors, such as digital signal processors. The stock
market is an example of a sampled data system. That is, a
specific value (closing value) is assigned to each sample
period or day. Other periods may be chosen such as hourly
prices or weekly prices. In an FIR filter as shown in (1), the
output y(n) is calculated to be the weighted sum of the pre-
vious N inputs. In other words, the input signal is sampled
at periodic intervals (1 over the sample rate), multiplied by
weighting factor a(i), and then added together to give the
outputresult of y(n). Examples of sample rates for some typ-
ical sampled data applications [2], (4] are shown in Table 1.

Table 1 Sample Rates versus Applications

Nominal
Application Sample Rate
Control 1kHz
Telecommunications 8 kHz
Speech processing 8-10 kHz
Audio processing 40-48 kHz

Video frame rate 30 Hz
Video pixel rate 14 MHz

In a typical DSP application, the processor must be able
to effectively handle sampled data in large quantity and also
perform arithmetic computations in real time.

System Flexibility

The design of the digital signal processing system must
be flexible enough to allow improvements in the state of
the art. We may find out after several weeks of using the
average stock price as a means of measuring a particular
stock’s value that a different method of obtaining the daily
information is more suited to our needs, e.g., using dif-
ferent daily weightings, a different number of periods over
which to average, or a different procedure for calculating
the result. Enough flexibility in the system must be available
to allow for these variations. In many of the DSP applica-
tions, techniques are still in the developmental phase, and
therefore the algorithms tend to change over time. As an
example, speech recognition is presently an inexact tech-
nique requiring continual algorithmic modification. From
this example we can see the need for system flexibility so
that the DSP algorithm can be updated. A programmable
DSP system can provide this flexibility to the user.

Historicat DSP Sowutions

Over the past several decades, digital signal processing
machines have taken on several evolutions in order to
incorporate these characteristics. Large mainframe com-
puters were initially used to process signals in the digital
domain. Typically, because of state-of-the-art limitations,
this was done in nonreal time. As the state of the art
advanced, array processors were added to the processing
task. Because of their flexibility and speed, array processors
have become the accepted solution for the research lab-
oratory, and have been extended to end-applications in
many instances. However, integrated circuit technology has
matured, thus allowing for the design of faster micropro-
cessors and microcomputers. As a result, many digital sig-
nal processing applications have migrated from the array
processor to microprocessor subsystems (i.e., bit-slice
machines) to single-chip integrated circuit solutions. This
migration has brought the cost of the DSP solution down
to a point that allows pervasive use of the technology. The
increased performance of these highly integrated circuits
has also expanded DSP applications from traditional tele-
communications to graphics/image processing, then to
consumer audio processing.

A recent development in DSP technology is the single-
chip digital signal processor, such as the TMS320 family of
processors. These processors give the designer a DSP solu-
tion with its performance attainable only by the array pro-
cessors a few years ago. Fig. 1 shows the TMS320 family in
graphical form with the y-axis indicating the hypothetical
performance and the x-axis being the evolution of the semi-
conductor processing technology. The first member of the
family, the TMS32010, was disclosed to the market in 1982
[11], [12]. It gave the system designer the first microcom-
puter capable of performing five million DSP operations
per second (5 MIPS), including the add and multiply func-
tions [13] required in (1). Today there are a dozen spinoffs
from the TMS32010 in the first generation of the TMS320
family. Some of these devices are the TMS320C10,
TMS320C15, and TMS320C17 [14]. The second generation
of devices include the TMS32020 [15] and TMS320C25 [16).
The TMS320C25 can perform 10 MIPS [16]. In addition,
expanded memory space, combined single-cycle multiply/
accumulate operation, multiprocessing capabilities, and
expanded I/0O functions have given the TMS320C25 a
2 to 4 times performance improvement over its predeces-
sors. The third generation of the TMS320 family of proces-
sors, the TMS320C30 (26}, (27], has a computational rate of
33 million DSP floating-point operations per second (33
MFLOPS). Its performance (speed, throughput, and pre-
cision) has far exceeded the digital signal processors avail-
able today and has reached the level of a supercomputer.

It we look closely at the TMS320 family as shown in Fig.
1, we can see that devices in the same generation, such as
the TMS320C10, TMS320C15,and TMS320C17, are assembly
object-code compatible. Devices across generations, such
as the TMS320C10 and TMS320C25, are assembly source-
code compatible. Software investment on DSP algorithms
therefore can be maintained during the system upgrade.
Another point is that since the introduction of the
TMS32010, semiconductor processing technology has
emerged from 3-um NMOS to 2-um CMOS to 1-um CMOS.

mOoZ»PEDONIMY

PROCESSING TECHNOLOGY __

1.0.um

—_— y B e — -um CM —_—
2.4-um NMOS 2.0-ym CMOS cmos

Fig. 1. The TMS320 family of digital signal processors.

The TMS320 generations of processors have also taken the
same evolution in processing technology. Low power con-
sumption, high performance, and high-density circuit inte-
gration are some of the direct benefits of this semicon-
ductor processing evolution.

From Fig. 1, it can be observed that various DSP building
blocks, such as the CPU, RAM, ROM, I/O configurations,
and processor speeds, have been designed as individual
modules and can be rearranged or combined with other
standard cells to meet the needs of specific applications.
Each of the three generations (and future generations) will
evolve in the same manner. As applications become more
sophisticated, semicustom solutions based on the core CPU
will become the solution of choice. An example of this
approach is the TMS320C17/E17, which consists of the
TMS320C10 core CPU, expanded 4K-word program ROM
(TMS320C17) or EPROM (TMS320E17), enlarged data RAM
of 256 words, dual serial ports, companding hardware, and
a coprocessor interface. Furthermore, as integrated circuit
layout rules move into smaller geometry (now at 2 um, rap-
idly going to 1 um), notonly will the TMS320 devices become
smaller in size, but also multiple CPUs will be incorporated
on the same device along with application-specific 1/0 to
achieve low-cost integrated system solutions.

BAsiC TMS320 ARCHITECTURE

As noted previously, the underlying assumption regard-
ing a digital signal processor is fast arithmetic operations
and high throughput to handle mathematically intensive
algorithms in real time. In the TMS320 family [11)-(17], [26),
[27), this is accomplished by using the following basic con-
cepts:

» Harvard architecture,

« extensive pipelining,

« dedicated hardware multiplier,
+ special DSP instructions,

+ fast instruction cycle.

These concepts were designed into the TMS320 digital sig-
nal processors to handle the vast amount of data charac-
teristic of DSP operations, and to allow most DSP opera-
tions to be executed in a single-cycle instruction.
Furthermore, the TMS320 processors are programmable
devices, providing the flexibility and ease of use of general-
purpose microprocessors. The following paragraphs dis-
cuss how each of the above concepts is used in the TMS320
family of devices to make them useful in digital signal pro-
cessing applications.

Harvard Architecture

The TMS320 utilizes a modified Harvard architecture for
speed and flexibility. In a strict Harvard architecture [18],
[19), the program and data memories lie in two separate
spaces, permitting a full overlap of instruction fetch and
execution. The TMS320 family’s modification of the Har-
vard architecture further allows transfer between program
and data spaces, thereby increasing the flexibility of the
device. This architectural modification eliminates the need
for a separate coefficient ROM and also maximizes the pro-
cessing power by maintaining two separate bus structures
(program and data) for full-speed execution.

Extensive Pipelining

In conjunction with the Harvard architecture, pipelining
is used extensively to reduce the instruction cycle time to
its absolute minimum, and to increase the throughput of
the processor. The pipeline can be anywhere from two to
four levels deep, depending on which processor in the fam-
ily is used. The TMS320 family architecture uses a two-level
pipeline for its first generation, a three-level pipeline for its
second generation, and a four-level pipeline for its third
generation of processors. This means that the device is pro-
cessing from two to four instructions in parallel, and each
instruction is atadifferent stage in its execution. Fig. 2 shows
an example of a three-level pipeline operation.

CLKOUT1 I I I I I I |

prefetoh N N+1 N+2
decode N-1 N N+t
exeoute N-2 N-1 N

Fig. 2. Three-level pipeline operation.

In pipeline operation, the prefetch, decode, and execute
operations can be handled independently, thus allowing
the execution of instructions to overlap. During any instruc-
tion cycle, three different instructions are active, each at a
different stage of completion. For example, as the Nth
instruction is being prefetched, the previous (N — T)th
instruction is being decoded, and the previous (N — 2)th
instruction is being executed. In general, the pipeline is
transparent to the user.

Dedicated Hardware Multiplier

As we saw in the general form of an FIR filter, multipli-
cation is an important part of digital signal processing. For
each filter tap (denoted by i), a multiplication and an addi-
tion must take place. The faster a multiplication can be per-
formed, the higher the performance of the digital signal
processor. In general-purpose microprocessors, the mul-
tiplication instruction is constructed by a series of addi-
tions, therefore taking many instruction cycles. In com-
parison, the characteristic of every DSP device is a dedicated
multiplier. In the TMS320 family, multiplication is a single-
cycle instruction as a result of the dedicated hardware mul-
tiplier. If we look at the arithmetic for each tap of the FIR
filter to be performed by the TMS32010, we see that each
tap of the filter requires a multiplication (MPY) instruction.

LT ;LOAD MULTIPLICAND INTO T REGISTER
DMOV ;MOVE DATA IN MEMORY TO DO DELAY
MPY ;MULTIPLY

APAC ;ADD MULTIPLICATION RESULT TO ACC

The other three instructions are used to load the multiplier
circuit with the multiplicand (LT), move the data through
the filter tap (DMOV), and add the result of the multipli-
cation (stored in the product register) to the accumulator
(APAC). Specifically, the multiply instruction (MPY) loads
the multiplier into the dedicated multiplier and performs
the multiplication, placing the result in a product register.
Therefore, if a 256-tap FIR filter is used, these four instruc-
tions are repeated 256 times. At each sample period, 256
multiplications must be performed. In a typical general-
purpose microprocessor, this requires each tap to be 30 to
40 instruction cycles long, whereas in the TMS320C10, it is
only four instruction cycles. We will see in the next section
how special DSP instructions reduce the time required for
each FIR tap even further.

Special DSP Instructions

Another characteristic of DSP devices is the use of special
instructions. We were introduced to one of them in the pre-
vious example, the DMOV (data move) instruction. In dig-
ital signal processing, the delay operator (z =) is very impor-
tant. Recalling the stock market example, during each new
sample period (i.e., each new day), the oldest piece of data

(the closing price five days ago) was dropped and a new one
(today'’s closing price) was added. Or, each piece of the old
data is delayed or moved one sample period to make room
for the incoming most current sample. This delay is the
function of the DMOV instruction. Another special instruc-
tion in the TMS32010 is the LTD instruction. It executes the
LT,DMOV, and APAC instructions in a single cycle. The LTD
and MPY instruction then reduce the number of instruction
cycles per FIR filter tap from four to two. In the second-gen-
eration TMS320, such as the TMS320C25, two more special
instructions have been included (the RPT and MACD
instructions) to reduce the number of cycles per tap to one,
as shown in the following:

RPTK 255 ;REPEAT THE NEXT INSTRUCTION 256 TIMES
(N+1)

MACD ;LT, DMOV, MPY, AND APAC

Fast Instruction Cycle

The real-time processing capability is further enhanced
by the raw speed of the processor in executing instructions.
The characteristics which we have discussed, combined
with optimization of the integrated circuit design for speed,
give the DSP devices instruction cycle times less than 200
ns. The specific instruction cycle times for the TMS320 fam-
ily are given in Table 2. These fast cycle times have made

Table 2 TMS320 Cycle Times

Cycle Time
Device (ns)
TMS320C10* 160-200
TMS32020 160-200
TMS320C25 100-125
TMS320C30 60-75

*The same cycle time applies to all of the first-generation processors.

the TMS320 family of processors highly suited for many real-
time DSP applications. Table 1 showed the sample rates for
some typical DSP applications. This table can be combined
with the cycle times indicated in Table 2 to show how many
instruction cycles per sample can be achieved by the var-
ious generations of the TMS320 for real-time applications
(see Fig. 3).

As we can see from Fig. 3, many instruction cycles are
available to process the signal or to generate commands for
real-time control applications. Therefore, for simple con-
trol applications, the general-purpose microprocessors or
controllers would be adequate. However, for more math-
ematically intensive control applications, such as robotics
and adaptive control, digital signal processors are much
better suited [24]. The number of available instruction cycles
is reduced as we increase the sample rate from 8 kHz for
typical telecommunication applications to 40-48 kHz for
audio processing. Since most of these real-time applica-
tions require only a few hundreds of instructions per sam-
ple (such as ADPCM [4], and echo cancelation [4)), this is
within the reach of the TMS320. For higher sample rate
applications, such as video/image processing, digital signal
processors available today are not capable of handling the
processing of the real-time video data. Therefore, for these

5000 -
g c
600 - o
N
[T T
R E S
[L P
L EE
§ o cE
ocC
M H
1 1
sl) 1 kMz 10 kHz

Third-Generation TMS320

Second-Generation TMS320

First-Generation TMS320

OmO ~-<

1
100 kHz 1 MHz 10 MHz

Semple Rate
Fig. 3. Number of instruction cycles/sample versus sample rate for the TMS320 family.

types of applications, multiple digital signal processors and
frame buffers are usually required. From Fig. 3, it can also
be seen that for slower speed applications, such as control,
the first-generation TMS320 provides better cost-perfor-
mance tradeoffs than the other processors. For high sample
rate applications, such as video/image processing, the sec-
ond and third generations of the TMS320 with their mul-
tiprocessing capabilities and high throughput are better
suited.

Now that we have discussed the basic characteristics of
digital signal processors, we can concentrate on specific
details of each of the three generations of the TMS320 fam-
ily devices.

THe FIRST GENERATION -OF THE TMS320 FamiLy

The first generation of the TMS320 family includes the
TMS32010 [13], and TMS32011 [17], which are processed in
2.4pm NMOS technology, and the TMS320C10 (13],
TMS320C15/E15 [14), and TMS320C17/E17 [14], processed in
1.8-um CMOS technology. Some of the key features of these
devices are [14] as follows:

* Instruction cycle timing:
-160 ns
-200 ns
-280 ns.
* On-chip data RAM:
-144 words
-256 words (TMS320C15/E15, TMS320C17/E17).
+ On-chip program ROM:
-1.5K words
-4K words (TMS320C15, TMS320C17).
« 4K words of on-chip program EPROM (TMS320E15,
TMS320E17).
+ External memory expansion up to 4K words at full
speed.
+ 16 x 16-bit parallel multiplier with 32-bit result.
« Barrel shifter for shifting data memory words into the
ALU.
* Parallel shifter.
* 4 x 12-bit stack that allows context switching.
« Two auxiliary registers for indirect addressing.

+ Dual-channel serial port (TMS32011, TMS320C17,
TMS320E17).
* On-chip companding
TMS320C17, TMS320E17).
+ Coprocessor interface (TMS320C17, TMS320E17).
+ Device packaging
-40-pin DIP
-44-pin PLCC.

hardware (TMS32011,

TMS320C10

The first generation of the TMS320 processors is based
on the architecture of the TM$32010 and its CMOS replica,
the TMS$320C10. The TMS32010 was introduced in 1982 and
was the first microcomputer capable of performing 5 MIPS.
Since the TMS32010 has been covered extensively in the
literature (4], [11]-[14], we will only provide a cursory review
here. A functional block diagram of the TMS320C10is shown
in Fig. 4.

As shown in Fig. 4, the TMS320C10 utilizes the modified
Harvard architecture in which program memory and data
memory lie in two separate spaces. Program memory can
reside both on-chip (1.5K words) or off-chip (4K words). Data
memory is the 144 x 16-bit on-chip dataRAM. There are four
basic arithmetic elements: the ALU, the accumulator, the
multiplier, and the shifters. All arithmetic operations are
performed using two’s-complement arithmetic.

ALU: The ALU is a general-purpose arithmetic logic unit
that operates with a 32-bit dataword. The unit can add, sub-
tract, and perform logical operations.

Accumulator: The accumulator stores the output from the
ALU and is also often an input to the ALU. It operates with
a32-bitword length. The accumulator is divided inta.a high-
order word (bits 31 through 16) and a low-order word (bits
15 through 0). Instructions are provided for storing the high-
and low-order accumulator words in data memory (SACH
for store accumulator high and SACL for store accumulator
low).

Muiltiplier: The 16 x 16-bit parallel multiplier consists of
three units: the T register, the P register, and the multipler
array. The T register is a 16-bit register that stores the mul-
tiplicand, while the P register is a 32-bit register that stores
the product. In order to use the multiplier, the multiplicand

x1
CLKOUT | X2/CLKIN
pa
e 12188
WE —e—]
L] e
—a =
N —e— 3)
55 —- l rcoa | INSTRUCTION
MC/HP —p—]
W £12 2
L: < g ROM
STACK —] (1536 x 16)
- 1
A11-40/ § 4rn2
PA2-PAO 16
3 PROGRAM BUS 015.00
pa
(I“ 16
pa
1 16
% 7 4 1‘4, {
ARO (16) | 9 T8
ARP
AR1 (1) | N 16
n SHIFTE! MULTIPLER | @
Xe (0-16)
L
[] P132)
MUX 32
32
]
MuX
ADORESS 22
DATA RAM
1
— (144 x 16) P
ACC= Accumulator DATA A 32 32
ARP = Auxilisry register pointer
ARO = Auxikisry register O AcCC (32)
AR1 = Auxilisry register 1
DOP = Data page pointer 32
PC = Program counter y
P = P register 1 32
T = Tregwter SHIFTER (0. 1. 4) 16y
16
DATA BUS
pa
Fig. 4. TMS320C10 functional block diagram.
must first be loaded into the T register from the data RAM TMS320C15/E15

by using one of the following instructions: LT, LTA, or LTD.
Then the MPY (multiply) or the MPYK (multiply immediate)
instruction is executed. The multiply and accumulate oper-
ations can be accomplished in two instruction cycles with
the LTA/LTD and MPY/MPYK instructions.

Shifters: Two shifters are available for manipulating data:
a barrel shifter and a parallel shifter. The barrel shifter per-
forms a left-shift of 0 to 16 bits on all data memory words
that are to be loaded into, subtracted from, or added to the
accumulator. The parallel shifter, activated by the SACH
instruction, can execute a shift of 0, 1, or 4 bits to take care
of the sign bits in two’s-complement arithmetic calcula-
tions.

Based on the architecture of the TMS32010/C10, several
spinoffs have been generated offering different processor
speeds, expanded memory, and various 1/O integration.
Currently, the newest members in this generation are the
TMS320C15/E15 and the TMS320C17/E17 [14).

The TMS320C15and TMS320E15 are fully object-code and
pin-for-pin compatible with the TMS32010 and offer
expanded on-chip RAM of 256 words and on-chip program
ROM (TMS320C15) or EPROM (TMS320E15) of 4K words. The
TMS320C15 is available in either a 200-ns version or a 160-
ns version (TMS320C15-25).

TMS320C17/E17

The TMS320C17/E17 is a dedicated microcomputer with
4K words of on-chip program ROM (TMS320C17) or EPROM
(TMS320E17), adual-channel serial port for full-duplex serial
communication, on-chip companding hardware (u-law/
A-law), a serial port timer for stand-alone serial commu-
nication, and a coprocessor interface for zero glue interface
between the processor and any 4/8/16-bit microprocessor.
The TMS320C17/E17 is also object-code compatible with the
TMS32010 and can use the same development tools. The

Table 3 TMS320 First-Generation Processors

Instruction On-Chip On-Chip On-Chip Off-Chip

TMS320 Cycle Time Prog ROM Prog EPROM Data RAM Prog

Devices (ns) Process (words) (words) (words) (words) Ref
TMS32010 200 NMOS 1.5K 144 4K (13)
TMS32010-25 160 NMOS 1.5K 144 4K (13)
TMS32010-14 280 NMOS 1.5K 144 4K (13)
TMS32011 200 NMOS 1.5K 144 17
TMS320C10 200 CMOS 1.5K 144 4K (13)
TMS320C10-25 160 CMOS 1.5K 144 4K [13)
TMS320C15 200 CMOS 4.0K 256 4K (13]
TMS320C15-25 160 CMOS 4.0K 256 4K (14]
TMS320E15 200 CMOS 4.0K 256 4K (14)
TMS320C17 200 CMOS 4.0K 256 (4]
TMS320C17-25 160 CMOS 4.0K 256 (4]
TMS320E17 200 CMOS 4.0K 256 (14)

device is based on the TMS320C10 core CPU with added TMS320C25 Architecture

peripheral memory and /0O modules added on-chip. The
TMS320C17/E17 can be regarded as a semicustom DSP solu-
tion suited for high-volume telecommunication and con-
sumer applications.

Table 3 provides a feature comparison of all members of
the first-generation TMS320 processors. References to more
detailed information on these processors are also provided.

THe SECOND GENERATION OF THE TMS320 FamiLy

The second-generation TMS320 digital signal processors
includes two members, the TMS32020 [15] and the
TMS320C25[16]. The architecture of these devices has been
evolved from the TMS32010, the first member of the TMS320
family. Key features of the second-generation TMS320 are
as follows:

+ Instruction cycle timing:
-100 ns (TMS320C25)
-200 ns (TMS$32020).
+ 4K words of on-chip masked ROM (TMS320C25).
* 544 words of on-chip data RAM.
+ 128K words of total program data memory space.
* Eight auxiliary registers with a dedicated arithmetic
unit.

« Eight-level hardware stack.
Fully static double-buffered serial port.
+ Wait states for communication to slower off-chip
memories.
Serial port for multiprocessing or interfacing to codecs.
Concurrent DMA using an extended hold operation
(TMS320C25). »
+ Bit-reversed addressing modes for fast Fourier trans-

forms (TMS320C25).
+ Extended-precision arithmetic and adaptive filtering

support (TMS$320C25).
+ Full-speed operation of MAC/MACD instructions from
external memory (TMS320C25).
Accumulator carry bit and
(TMS320C25).
1.8-um CMOS technology (TMS320C25):

-68-pin grid array (PGA) package.

-68-pin lead chip carrier (PLCC) package.
2.4-um NMOS technology (TMS32020):

-68-pin PGA package.

related instructions

The TMS320C25 is the latest member in the second gen-
eration of TMS320 digital signal processors. It is a pin-com-
patible CMOS version of the TMS32020 microprocessor,
butwith aninstruction cycle time twice as fastand the inclu-
sion of additional hardware and software features. The
instruction set is a superset of both the TMS32010 and
TMS32020, maintaining source-code compatibility. In addi-
tion, it is completely object-code compatible with the
TMS32020 so that TMS32020 programs run unmodified on
the TMS320C25.

The 100-ns instruction cycle time provides a significant
throughput advantage for many existing applications. Since
most instructions are capable of executing in a single cycle,
the processor is capable of executing ten million instruc-
tions per second (10 MIPS). Increased throughput on the
TMS320C25 for many DSP applications is attained by means
of single-cycle multiply/accumulate instructions with adata
move option (MAC/MACD), eight auxiliary registers with a
dedicated arithmetic unit, instruction set support for adap-
tive filtering and extended-precision arithmetic, bit-rever-
sal addressing, and faster 1/O necessary for data-intensive
signal processing.

Instructions are included to provide data transfers
between the two memory spaces. Externally, the program
and data memory spaces are multiplexed over the same bus
so as to maximize the address range for both spaces while
minimizing the pin count of the device. Internally, the
TMS320C25 architecture maximizes processing power by
maintaining two separate bus structures, program and data,
for full-speed execution.

Program execution in the device takes the form of athree-
level instruction fetch-decode-execute pipeline (see Fig.
2). The pipeline is essentially invisible to the user, except
in some cases where it must be broken (such as for branch
instructions). In this case, the instruction timing takes into
account the fact that the pipeline must be emptied and
refilled. Two large on-chip data RAM blocks (a total of 544
words), one of which is configurable either as program or
data memory, provide increased flexibility in system design.
An off-chip 64K-word directly addressable data memory
address space is included to facilitate implementations of
DSP algorithms. The large on-chip 4K-word masked ROM
can be used for cost-reduced systems, thus providing for
a true single-chip DSP solution. The remainder of the 64K-
word program memory space is located externally. Large

programs can execute at full speed from this memory space. features as well as many others such as a hardware timer,

Programs may also be downloaded from slow external serial port, and block data transfer capabilities.
memory to on-chip RAM for full-speed operation. The VLSI A functional block diagram of the TMS$320C25, shown in
implementation of the TMS320C25 incorporates all of these Fig. 5, outlines the principal blocks and data paths within

SVNC
x1
X2/CLKIN

F
T .
]
—03
]
L—=—cixouT
N

1 1
PFC(16) TS
STAE —a—o R(16)
READY
sT0016)
« 16
g L] 16 \MUx/ sTi016)
Pl] 16 wPTC (el
— £
AOUDA ——— IFR(6)
wh—=—] £ | [wcsnw] = . o
55 —— CLKR
N—e . 6] 0 o
TACR —a—| 16 ———DX
CLKX
[*—FsXx
} ADORESS TACK ()
MP/MT 3 8 - 16) RSR(16) 1
W¥(2.00—~ XSR(16) []
oM L8 DRR(16)
1540 <" (T} 14096 - 16) .
DXR16)
INSTRUCTION ':c e
Yo . PRO(16]
IMR(6]
16 GREG(B)
x
i 16
: 4 Y.
H e fie 6 1s
H AROI16] [srrrenorer] TR(16)
3 AR1(16)
H | ARP(3) ll 7~ AR2(16) 7188 MULTIPLIER
: AR3(16) FROM IR
: . AR4(16) k L PRI32)
3 ARS(16) 9
H AR6(16)
H ART(16) L6
: ARB(3)
q] o
3 ARAU(T6] Mux/ e
H 7
; [0 1
i wox MUX
+ 6 16
H DATA/PROG
e RAM (256 - 16)
_____ | 8LOCK B0
DATA RAM
8LOCK 81 16
(256 = 16)
v for\ SHIFTERS(0-7) |
16 16 116

LEGEND:
ACCH - Accumulstor high IFR . Interrupt flag register [Program counter
ACCL - Accumulstor low MR - Interrupt mask register PFC Prefetch counter
ALU = Arithmetic logic unit IR . Instruction register RPTC - Repeat instruction counter
ARAU = Auxiery register arithmetic it MCS - Microcal stack GREG - Giobal memory sllocation register
ARS = AuxMary register pointer buffer QIR - Queue instruction register RSR - Serisl port receive shift register
ARP - Auxilery register pointer PR _ Product register XSR - Serisl port transmit shift register
op

= Data memory psge pointer PRD Period register for timer ARO-ART - Auxilisry registers
DRAR - Serisl port data receive register TIM - Timer STO.ST1 Status registers
DXR - Serisi port data transmit register TR - Temporary register

Fig. 5. TMS320C25 functional block diagram.

the processor. The diagram also shows all of the TMS320C25
interface pins.

In the following architectural discussions on the mem-
ory, central arithmetic logic unit, hardware multiplier, con-
trol operations, serial port, and I/O interface, please refer
to the block diagram shown in Fig. 5.

Memory Allocation: The TMS320C25 provides a total of
4K 16-bit words of on-chip program ROM and 544 16-bit
words of on-chip data RAM. The RAM is divided into three
separate Blocks (B0, B1, and B2). Of the 544 words, 256 words
(block BO) are configurable as either data or program mem-
ory by CNFD (configure data memory) or CNFP (configure
program memory) instructions provided for that purpose;
288 words (blocks B1 and B2) are always data memory. A
data memory size of 544 words allows the TMS$320C25 to
handle a data array of 512 words while still leaving 32 loca-
tions for intermediate storage. The TMS320C25 provides
64K words of off-chip directly addressable data memory
space as well as a 64K-word off-chip program memory space.

A register file containing eight Auxiliary Registers (ARO-
AR?), which are used for indirect addressing of data mem-
ory and for temporary storage, increase the flexibility and
efficiency of the device. These registers may be either
directly addressed by an instruction or indirectly addressed
by a 3-bit Auxiliary Register Pointer (ARP). The auxiliary reg-
isters and the ARP may be loaded from either data memory
or by an immediate operand defined in the instruction. The
contents of these registers may also be stored into data
memory. The auxiliary register file is connected to the Aux-
iliary Register Arithmetic Unit (ARAU). Using the ARAU
accessing tables of information does not require the CALU
for address manipulation, thus freeing it for other opera-
tions.

Central Arithmetic Logic Unit (CALU): The CALU contains
a 16-bit scaling shifter, a 16 x 16-bit parallel multiplier, a 32-
bit Arithmetic Logic Unit (ALU), and a 32-bit accumulator.
The scaling shifter has a 16-bit input connected to the data
bus and a 32-bit output connected to the ALU. This shifter
produces a left-shift of 0 to 16 bits on the input data, as pro-
grammed in the instruction. Additional shifters at the out-
puts of both the accumulator and the multiplier are suitable
for numerical scaling, bit extraction, extended-precision
arithmetic, and overflow prevention.

The following steps occur in the implementation of a typ-
ical ALU instruction:

1) Data are fetched from the RAM on the data bus.

2) Data are passed through the scaling shifter and the
ALU where the arithmetic is performed.

3) The result is moved into the accumulator.

The 32-bit accumulator is split into two 16-bit segments
for storage in data memory: ACCH (accumulator high) and
ACCL (accumulator low). The accumulator has a carry bit
to facilitate multiple-precision arithmetic for both addition
and subtract instructions.

Hardware Multiplier: The TMS320C25 utilizes a 16 x 16-
bit hardware multiplier, which is capable of computing a
32-bit product during every machine cycle. Two registers
are associated with the multiplier:

+ a16-bit Temporary Register (TR) that holds one of the
operands for the multiplier, and
+ a 32-bit Product Register (PR) that holds the product.

The output of the product register can be left-shifted 1 or
4 bits. This is useful for implementing fractional arithmetic
or justifying fractional products. The output of the PR can
also be right-shifted 6 bits to enable the execution of up to
128 consecutive multiple/accumulates without overflow.
An unsigned multiply (MPYU) instruction facilitates
extended-precision multiplication.

1/O Interface: The TMS320C25 1/O space consists of 16
input and 16 output ports. These ports provide the full 16-
bit parallel I/O interface via the data bus on the device. A
single input (IN) or output (OUT) operation typically takes
two cycles; however, when used with the repeat counter,
the operation becomes single-cycle. I/O devices are mapped
into the 1/0 address space using the processor’s external
address and data buses in the same manner as memory-
mapped devices. Interfacing to memory and 1/O devices of
varying speeds is accomplished by using the READY line.

A Direct Memory Access (DMA) to external program/data
memory is also supported. Another processor can take
complete control of the TMS320C25’s external memory by
asserting HOLD low, causing the TMS320C25 to place its
address, data, and control lines in the high-impedance state.
Signaling between the external processor and the
TMS320C25 can be performed using interrupts. Two modes
of DMA are available on the device. In the first, execution
is suspended during assertion of HOLD. In the second
““concurrent DMA” mode, the TMS320C25 continues to
execute its program while operating from internal RAM or
ROM, thus greatly increasing throughput in data-intensive
applications.

TMS320C25 Software

The majority of the TMS320C25 instructions (97 out of 133)
are executed in a single instruction cycle. Of the 36 instruc-
tions that require additional cycles of execution, 21 involve
branches, calls, and returns that result in a reload of the
program counter and a break in the execution pipeline.
Another seven of the instructions are two-word, long-
immediate instructions. The remaining eight instructions
support I/O, transfers of data between memory spaces, or
provide for additional parallel operation in the processor.
Furthermore, these eight instructions (IN, OUT, BLKD,
BLKP, TBLR, TBLW, MAC, and MACD) become single-cycle
when used in conjunction with the repeat counter. The
functional performance of the instructions exploits the par-
allelism of the processor, allowing complex and/or numer-
ically intensive computations to be implemented in rela-
tively few instructions.

Addressing Modes: Since most of the instructions are
coded in a single 16-bit word, most instructions can be exe-
cuted in a single cycle. Three memory addressing modes
are available with the instruction set: direct, indirect, and
immediate addressing. Both direct and indirect addressing
are used to access datamemory. Immediate addressing uses
the contents of the memory addressed by the program
counter.

When using direct addressing, 7 bits of the instruction
word are concatenated with the 9 bits of the data memory
page pointer (DP) to form the 16-bit data memory address.
With a 128-word page length, the DP register points to one
of 512 possible data memory pages to obtain a 64K total data
memory space. Indirect addressing is provided by the aux-

iliary registers (ARO-AR7). The seven types of indirect
addressing are shown in Table 4. Bit-reversed indexed
addressing modes allow efficient 1/O to be performed for
the resequencing of data points in a radix-2 FFT program.

Table 4 Addressing Modes of the TMS320C25

Addressing Mode

OP A direct addressing

OP * (,NARP) indirect; no change to AR.

OP * +(,NARP) indirect; current AR is incremented.

OP * —(,NARP) indirect; current AR is decremented.

OP *0+(,NARP) indirect; ARO is added to current AR.

OP *0-(,NARP) indirect; ARO is subtracted from
current AR.

indirect; ARO is added to current AR
(with reverse carry propagation).

indirect; ARO is subtracted from
current AR (with reverse carry
propagation).

Operation

OP *BRO+(,NARP)
OP *BRO—(,NARP)

Note: The optional NARP field specifies a new value of the ARP.

TMS320C25 System Configurations

The flexibility of the TMS320C25 allows systems config-
urations to satisfy a wide range of application requirements
[16). The TMS320C25 can be used in the following config-
urations:

* a stand-alone system (a single processor using 4K
words of on-chip ROM and 544 words of on-chip RAM),

* parallel multiprocessing systems with shared global
data memory, or

* host/peripheral coprocessing using interface control
signals.

A minimal processing system is shown in Fig. 6 using
external data RAM and PROM/EPROM. Parallel multipro-
cessing and host/peripheral coprocessing systems can be
designed by taking advantage of the TMS320C25’s direct
memory access and global memory configuration capabil-
ities.

In some digital processing tasks, the algorithm being
implemented can be divided into sections with a distinct
processor dedicated to each section. In this case, the first
and second processors may share global data memory, as
well as the second and third, the third and fourth, etc. Arbi-

tration logic may be required to determine which section *

of the algorithm is executing and which processor has
access to the global memory. With multiple processors ded-

SERIAL
COMMUNICATION

TMS320C28

icated to distinct sections of the algorithm, throughput can
be increased via pipelined execution. The TMS320C25 is
capable of allocating up to 32K words of data memory as
global memory for multiprocessing applications.

THe THIRD GENERATION OF THE TMS320 FAmiLy

The TMS320C30 [26]-[27] is Texas Instruments third-gen-
eration member of the TMS320 family of compatible digital
signal processors. With a computational rate of 33 MFLOPS
(million floating-point operations per second), the
TMS320C30 far exceeds the performance of any program-
mable DSP available today. Total system performance has
been maximized through internal parallelism, more than
twenty-four thousand bytes of on-chip memory, single-cycle
floating-point operations, and concurrent /0. The total sys-
tem cost is minimized with on-chip memory and on-chip
peripherals such as timers and serial ports. Finally, the user’s
system design time is dramatically reduced with the avail-
ability of the floating-point operations, general-purpose
instructions and features, and quality development tools.

The TMS320C30 provides the user with a level of per-
formance that, at one time, was the exclusive domain of
supercomputers. The strong architectural emphasis of pro-
viding a low-cost system solution to demanding arithmetic
algorithms has resulted in the architecture shown in Fig. 7.

The key features of the TMS320C30 [26], [27] are as fol-
lows:

* 60-ns single-cycle execution time, 1-um CMOS.

* Two 1K X 32-bit single-cycle dual-access RAM blocks.

* One 4K x 32-bit single-cycle dual-access ROM block.

* 64 x 32-bit instruction cache.

* 32-bit instruction and data words, 24-bit addresses.

= 32/40-bit floating-point and integer multiplier.

 32/40-bit floating-point, integer, and logical ALU.

* 32-bit barrel shifter.

+ Eight extended-precision registers.

+ Two address-generators with eight auxiliary registers.

* On-chip Direct Memory Access (DMA) controller for
concurrent /O and CPU operation.

* Peripheral bus and modules for easy customization.

« High-level language support.

* Interlocked instructions for multiprocessing support.

* Zero overhead loops and single-cycle branches.

The architecture of the TMS320C30 is targeted at 60-ns
and faster cycle times. To achieve such high-performance

S::g":l ! DATA RAM o
(OPTIONAL) | (OPTIONAL) DEVICES

Fig. 6. Minimal processing system with external data RAM and PROM/EPROM.

PROGRAM RAM RAM now
CACHE 8L0CK 0 8LOCK 1 BLOCK 0
(64 X 32) (1K X 32) (K X 32) (4K X 32) ROV
OROLD
b OROLDA-
i g 0y gg gy o
FOLDA oW
STRE 32-8IT DATA BUSES v 100(310)
o 3 U 8 ﬁ x oAn20)
0(31-0)
A(23-0) — e o raxo
i [—e DX0
SERIAL
ESEY —of | INTEGER/ INTEGER/ SOURCE AND DESTINATION : leel ronr [T CUX0
FLOATING-POINT | FLOATING-POINT ADORESS GENERATORS o fe— F8n0
W30 —= g MULTIPLIER A : e oo
ek =] N CONTROL REGISTERS " fe— cLxno
XF1-0) -y 32.81T BARREL SHIFTER . .
MC/NF—et o :
x1e— o EXTENDED-PRECISION " | o oxy
L REGISTERS (RO-R7) N SEMAL e cixx
X2/CLI o) PORT
veetr-o—ef b ADORESS ADORESS A e rsm
Vg5(10-0) — : GENERATOR O | GENERATOR 1 : e om
vesp «—1 AUXILIARY REGISTERS s le—e CLXRY
AR7)
o > =T
CONTROL REGISTERS (12)
LA

Fig. 7. TMS320C30 functional block diagram.

goals while still providing low-cost system solutions, the
TMS320C30 is designed using Texas Instruments state-of-
the-art 1-um CMOS process. The TMS320C30 s high system
performance is achieved through a high degree of paral-
lelism, the accuracy and precision of its floating-point units,
its on-chip DMA controller that supports concurrent 1/0,
and its general-purpose features. At the heart of the archi-
tecture is the Central Processing Unit (CPU).

The CPU

The CPU consists of the following elements: floating-
point/integer multiplier; ALU for performing floating-point,
integer, and logical operations; auxiliary register arithmetic
units; supporting register file, and associated buses. The
multiplier of the CPU performs floating-point and integer
multiplication. When performing floating-point multipli-
cation, the inputs are 32-bit floating-point numbers, and the
result is a 40-bit floating-point number. When performing
integer multiplication, the input data is 24 bits and yields
a 32-bit result. The ALU performs 32-bit integer, 32-bit log-
ical, and 40-bit floating-point operations. Results of the mul-
tiplier and the ALU are always maintained in 32-bit integer
or 40-bit floating-point formats. The TMS320C30 has the
ability to perform, in a single cycle, parallel multiplies and
adds (subtracts) on integer or floating-point data. It is this
ability to perform floating-point multiplies and adds (sub-
tracts) in a single cycle which give the TMS320C30 its peak
computational rate of 33 MFLOPS.

Floating-point operations provide the user with a con-
venient and virtually trouble-free means of performing
computations while maintaining accuracy and precision.
The TMS320C30 implementation of floating-point arith-

metic allows for floating-point operations at integer speeds.
The floating-point capability allows the user to ignore, to
alarge extent, problems with overflow, operand alignment,
and other burdensome tasks common to integer opera-
tions.

The register file contains 28 registers, which may be oper-
ated upon by the multiplier and ALU. The first eight of these
registers (RO-R7) are the extended-precision registers,
which support operations on 40-bit floating-point numbers
and 32-bit integers.

The next eight registers (ARO-AR?) are the auxiliary reg-
isters, whose primary function is related to the generation
of addresses. However, they also may be used as general-
purpose 32-bit registers. Two auxiliary register arithmetic
units (ARAUO and ARAU1) can generate two addresses in
asingle cycle. The ARAUs operate in parallel with the mul-
tiplier and ALU. They support addressing with displace-
ments, index registers (IR0 and IR1), and circular and bit-
reversed addressing.

The remaining registers support a variety of system func-
tions: addressing, stack management, processor status,
block repeat, and interrupts.

Data Organization

Two integer formats are supported on the TMS$320C30:
a 16-bit format used for immediate integer operands and
a 32-bit single-precision integer format.

Two unsigned-integer formats are available: a 16-bit for-
mat for immediate unsigned-integer operands and a 32-bit
single-precision unsigned-integer format.

The three floating-point formats are assumed to be nor-
malized, thus providing an extra bit of precision. The first

is a 16-bit short floating-point format for immediate float-
ing-point operands, which consists of a 4-bit exponent, 1
sign bit, and an 11-bit fraction. The second is a single-pre-
cision format consisting of an 8-bit exponent, 1sign bit, and
a 23-bit fraction. The third is an extended-precision format
consisting of an 8-bit exponent, 1 sign bit, and a 31-bit frac-
tion.

The total memory space of the TMS320C30 is 16M (mil-
lion) x 32 bits. A machine word is 32 bits, and all addressing
is performed by word. Program, data, and I/0 space are con-
tained within the 16M-word address space.

RAM blocks 0 and 1are each 1K x 32 bits. The ROM block
is 4K x 32 bits. Each RAM block and ROM block is capable
of supporting two data accesses in a single cycle. For exam-
ple, the user may, in a single cycle, access a program word
and a data word from the ROM block.

The separate program data, and DMA buses allow for par-
allel program fetches, datareads and writes, and DMA oper-
ations. Management of memory resources and busing is
handled by the memory controller. For example, a typical
mode of operation could involve a program fetch from the
on-chip program cache, two data fetches from RAM block
0, and the DMA moving data from off-chip memory to RAM
block 1. All of this can be done in parallel with no impact
on the performance of the CPU.

A 64 x 32-bit instruction cache allows for maximum sys-
tem performance with minimal system cost. The instruction
cache stores often repeated sections of code. The code may
then be fetched from the cache, thus greatly reducing the
number of off-chip accesses necessary. This allows for code
to be stored off-chip in slower, lower cost memories. Also,
the external buses are freed, thus allowing for their use by
the DMA or other devices in the system.

DMA

The TMS320C30 processes an on-chip Direct Memory
Access (DMA) controller. The DMA controller is able to per-
form reads from and writes to any location in the memory
map without interfering with the operation of the CPU. As
a consequence, it is possible to interface the TMS320C30
to slow external memories and peripherals (A/Ds, serial
ports, etc.) without affecting the computational throughput
-ofthe CPU. The resultis improved system performance and
decreased system cost.

The DMA controller contains its own address generators,
source and destination registers, and transfer counter.
Dedicated DMA address and data buses allow for operation
with no conflicts between the CPU and DMA controller.

The DMA controller responds to interrupts in a similar
way to the CPU. This ability allows the DMA to transfer data
based upon the interrupts received. Thus I/O transfers that
would normally be performed by the CPU may instead be
performed by the DMA. Again, the CPU may continue pro-
cessing data while the DMA receives or transmits data.

Peripherals

All peripheral modules are manipulated through mem-
ory-mapped registers located on adedicated peripheral bus.
This peripheral bus allows for the straightforward addition,
removal, and creation of peripheral modules. The initial
TMS320C30 peripheral library will include timers and serial
ports. The peripheral library concept allows Texas Instru-

ments to create new modules to serve a wide variety of
applications. For example, the configuration of the
TMS320C30in Fig. 7 includes two timers and two serial ports.

Timers: The two timer modules are general-purpose
timer/event counters, with two signaling modes and inter-
nal or external clocking.

Available to each timer is an I/O pin that can be used as
an input clock to the timer or as an output signal driven by
the timer. The pin may alSo be configured as a general-pur-
pose I/O pin.

Serial Ports: The two serial ports are modular and totally
independent. Each serial port can be configured to transfer
8,16,24, or 32 bits of data per frame. The clock for each serial
port can originate either internally or externally. An inter-
nally generated divide-down clock is provided. The pins of
the serial ports are configurable as general-purpose 1/10
pins. A special handshake mode allows TMS320C30s to
communicate over their serial ports with guaranteed syn-
chronization. The serial ports may also be configured to
operate as timers.

External Interfaces

The TMS320C30 provides two external interfaces: the par-
allel interface and the I/O interface. The parallel interface
consists of a 32-bit data bus, a 24-bit address bus, and a set
of control signals. The I/O interface consists of a 32-bit data
bus, a 13-bit address bus, and a set of control signals. Both
ports support an external ready signal for wait-state gen-
eration and the use of software-controlled wait states.

The TMS320C30 supports four external interrupts, anum-
ber of internal interrupts, and a nonmaskable external reset
signal. Two dedicated, general-purpose, external I/O flags,
XF0 and XF1, may be configured as input or output pins
under software control. These pins are also used by the
interlocked instructions to support multiprocessor com-
munication.

Pipelining In the TMS320C30

The operation of the TMS320C30 is controlled by five
major functional units. The five major units and their func-
tion are as follows:

*+ Fetch Unit (F) which controls the program counter
updates and fetches of the instruction words from
memory.

* Decode Unit (D) which decodes the instruction word
and controls address generation.

* Read Unit (R) which controls the operand reads from
memory.

* Execute Unit (E) which reads operands from the reg-
ister file, performs the necessary operation, and writes
results back to the register file and memory.

* DMA Channel (DMA) which reads and writes memory
concurrently with CPU operation.

Each instruction is operated upon by four of these stages;
namely, fetch, decode, read, and execute. To provide for
maximum processor throughput these units can perform
in parallel with each unit operating on a different instruc-
tion. The overlapping of the fetch, decode, read, and exe-
cute operations of different instructions is called pipelin-
ing. The DMA controller runs concurrently with these units.
The pipelining of these operations is key to the high per-

formance of the TMS320C30. The ability of the DMA to move
datawithin the processor’s memory space results in an even
greater utilization of the CPU with fewer interruptions of
the pipeline which inevitably yields greater performance.

The pipeline control of the TMS$320C30 allows for
extremely high-speed execution rate by allowing an effec-
tive rate of one execution per cycle. It also manages pipe-
line conflicts in a way that makes them transparent to the
user.

While the pipelining of the different phases of an instruc-
tion is key to the performance of the TMS320C30, the
designers felt it essential to avoid pipelining the operation
of the multiplier or ALU. By ruling out this additional level
of pipelining it was possible to greatly improve the pro-
cessor’s useability.

Instructions

The TMS320C30 instruction set is exceptionally well
suited to digital signal processing and other numerically
intensive applications. The TMS320C30also possesses a full
complement of general-purpose instructions. The instruc-
tion set is organized into the following groups:

* load and store instructions;

* two-operand arithmetic instructions;

* two-operand logical instructions;

+ three-operand arithmetic instructions;

* three-operand logic instructions;

* parallel operation instructions;

arithmetic/logical instruction with store instructions;
* program control instructions;

* interlocked operations instructions.

The load and store instructions perform the movement
of a single word to and from the registers and memory.
Included is the ability to load a register conditionally. This
operation is particularly useful for locating the maximum
and minimum of a set of data.

The two-operand arithmetic and logical instructions con-
sist of a complete set of arithmetic instructions. They have
two operands; src and dst for source and destination,
respectively. The src operand may come from memory, a
register, or be part of the instruction word. The dst operand
is always a register. This portion of the instruction set
includes floating-point integer and logical operations, sup-
port of multiprecision arithmetic, and 32-bit arithmetic and
logical shifts.

The three-operand arithmetic and logical instructions are
a subset of the two-operand arithmetic and logical instruc-
tions. They have three operands: two src operands and a
dst operand. The src operands may come from memory or
a register. The dst operand is always a register. These
instructions allow for the reading of two operands from
memory and/or the CPU register file in a single cycle.

The parallel operation instructions allow for a high degree
of parallelism. They support very flexible, parallel floating-
pointand integer multiplies and adds. They also include the
ability to load two registers in parallel.

The arithmetic/logical and store instructions support a
high degree of parallelism, thus complementing the par-
allel operation instructions. They allow for the performance
of an arithmetic or logical instruction between a register
and an operand read from memory, in parallel with the stor-

ing of a register to memory. They also provide for extremely
rapid operations on blocks of memory.

The program control instructions consist of all those
operations that affect the program flow. This section of the
instruction set includes a set of flexible and powerful con-
structs that allow for software control of the program flow.
These fall into two main types: repeat modes and branch-
ing.

For many algorithms, there is an inner kernel of code
where most of the execution time is spent. The repeat modes
of the TMS320C30 allow for the implementation of zero
overhead looping. Using the repeat modes allows these
time-critical sections of code to be executed in the shortest
possible time. The instructions supporting the repeat
modes are RPTB (repeat a block of code) and RPTS (repeat
asingle instruction). Through the use of the dedicated stack-
pointer, block repeats (RPTBs) may be nested.

The branching capabilities of the TMS320C30 include two
main subsets: standard and delayed branches. Standard
branches, as in any pipelined machine that comprehends
them, empty the pipeline to guarantee correct manage-
ment of the program counter. This results in a branch
requiring, in the case of the TMS320C30, four cycles to exe-
cute. Included in this subset are calls and returns. A stan-
dard branch (BR) is illustrated below.

BR THREE ; standard branch.

MPYF ; not executed.
ADDF ; not executed.
SUBF ; not executed.
AND ; not executed.
THREE MPYF ; fetched 3 cycles after BR

is fetched.

Delayed branches do not empty the pipe, but rather,
guarantee that the next three instructions will be fetched
before the program counter is modified by the branch. The
result is a branch that only requires a single cycle. Every
delayed branch has a standard branch counterpart. A
delayed branch (BRD) is illustrated below.

BRD THREE ; delayed branch.

MPYF ; executed.
ADDF ; executed.
SUBF ; executed.
AND ; not executed.
THREE MPYF ; fetched after SUBF fetched.

The combination of the repeat modes, standard branches,
and delayed branches provides the user with a set of pro-
gramming constructs which are well suited to a wide range
of performance requirements.

The program control instructions also include condi-
tional calls and returns. The decrement and branch con-
ditionally instruction allows for efficient loop control by
combining the comparison of a loop counter to zero with

the check of condition flags, i.e., floating-point overflow.
The condition codes available include unsigned and signed
comparisons, comparisons to zero, and comparisons based
upon the status of individual condition flags. These con-
ditions may be used with any of the conditional instruc-
tions.

The interlocked operations instructions support multi-
processor communication. Through the use of external sig-
nals, these instructions allow for powerful synchronization
mechanisms, such as semaphores, to be implemented. The
interlocked operations use the two external flag pins, XFO
and XF1. XFO signals an interlocked-operation request and
XF1 acts as an acknowledge signal for the requested inter-
locked operation. The interlocked operationsincludeinter-
locked loads and stores. When an interlocked operation is
performed the external request and acknowledge signals
can be used to arbitrate between multiple processors shar-
ing memory, semaphores, or counters.

DEVELOPMENT AND SUPPORT TOOLS

Digital signal processors are essentially application-spe-
cific microprocessors (or microcomputers). Like any other
microprocessor, no matter how impressive the perfor-
mance of the processor or the ease of interfacing, without
good development tools and technical support, it is very
difficult to design it into the system. In developing an appli-
cation, problems are encountered and questions are asked.
Oftentimes the tools and vendor support provided to the
designer are the difference between the success and failure
of the project.

The TMS320 family has awide range of development tools
available [25]). These tools range from very inexpensive eval-
uation modules for application evaluation and bench-
marking purposes, assembler/linkers, and software simu-
lators, to full-capability hardware emulators. A brief sum-
mary of these support tools is provided in the succeeding
subsections.

Software Tools

Assembler/linkers and software simulators are available
on PC and VAX for users to develop and debug TMS320 DSP
algorithms. Their features are described as follows:

Assembler/Linker: The Macro Assembler translates
assembly language source code into executable object
code. The Linker permits a program to be designed and
implemented in separate modules that will later be linked
together to form the complete program.

Simulator: The Simulator simulates operations of the
device in software to allow program verification and debug.
The simulator uses the object code produced by the Macro
Assembler/Linker.

C Complier: The C Compiler is a full implementation of
the standard Kernighan and Ritchie C as defined in The C
Programming Language [28]. The compiler supports the
insertion of assembly language code into the C source code.
The user may also write functions in assembly language,
and then call these functions from the C source. Similarly,
C functions may be called from assembly language.
Variables defined in the C source may be accessed in
assembly language modules and vice versa. The result is a
complier that allows the user to tailor the amount of high-
level programming versus the amount of assembly lan-

guage according to his application. The C compiler is sup-
ported on the TMS320C25 and the TMS320C30.

Hardware Tools

Evaluation modules and emulation tools are available for
in-circuit emulation and hardware program debugging for
developing and testing DSP algorithms in a real product
environment.

Evaluation Module (EVM): The EVM is a stand-alone sin-
gle-board module that contains all of the tools necessary
to evaluate the device as well as provide basic in-circuit
emulation. The EVM contains a debug monitor, editor,
assembler, reverse assembler, and software communica-
tions to a host computer or a line printer.

SoftWare Development System (SWDS): The SoftWare
Development System is a PC plug-in card with similar func-
tionality of the EVM.

Emulator (XDS): The eXtended Development System pro-
vides full-speed in-circuit emulation with real-time hard-
ware breakpoint/trace and program execution capability
from target memory. By setting breakpoints based on inter-
nal conditions or external events, execution of the program
can be suspended and the XDS placed into the debug mode.
In the debug mode, all registers and memory locations can
be inspected and modified. Full-trace capabilities at full
speed and areverse assembler thattranslates machine code
back into assembly instructions are included. The XDS sys-
tem is designed to interface with either a terminal or a host
computer. In addition to the above design tools, other
development support is available [25]:

APPLICATIONS

The TMS320 is designed for real-time DSP and other com-
putation-intensive applications [4]. In these applications,
the TMS320 provides an excellent means for executing sig-
nal processing algorithms such as fast Fourier transforms
(FFTs), digital filters, frequency synthesis, correlation, and
convolution. The TMS320 also provides for more general-
purpose functions via bit-manipulation instructions, block
data move capabilities, large program and data memory
address spaces, and flexible memory mapping.

To introduce applications performed by the TMS$320, dig-
ital filters will be used as examples. The remaining portion
of this section will briefly cover applications, and conclude
by showing some benchmarks.

Digital Filtering

As discussed several times in this paper, the FIR filter is
simply the sum of products in a sampled data system. This
was shown in (1). A simple implementation of the FIR filter
uses the MACD instruction (multiply/accumulate and data
move) for each filter tap, with the RPT/RPTK instruction
repeating the MACD for each filter tap. As we saw earlier,
a 256-tap FIR filter can be implemented by using the fol-
lowing two instructions:

RPTK 255
MACD *-,COEFFP

In this example, the coefficients may be stored anywhere
in program memory (reconfigurable on-chip RAM, on-chip
ROM, or external memories). When the coefficients are

For this application, a large on-chip RAM of 544 words and
on-chip ROM of 4K words on the TM$320C25 provides for
a256-tap adaptive filter (32-ms echo cancellation) to be exe-
cuted in a single chip without external data or program
memory.

High-Speed Modems: The TMS320 can perform numer-
ous functions such a modulation/demodulation, adaptive
equalization, and echo cancellation [21], (22]. For lower
speed modems, such as Bell 212A and V.22 bis modems, the
TMS320C17 provides the most cost-effective single-chip
solution to these applications. For higher speed modems,
such as the V.32, requiring more processing power and
multiprocessing capabilities, the TMS320C25 and TMS-
320C30 are the designer’s choice.

Voice Coding: Voice-coding techniques (3], [4], such
as full-duplex 32-kbit's ADPCM (CCITT G.721), CVSD,
16-kbit/s subband coders, and LPC, are frequently used in
voice transmission and storage. Arithmetic speed, nor-
malization, and the bit-manipulation capability of the
TMS320 provide for implementation of these functions,
usually in a single chip. For example, the TMS320C17 can
be used as a single-chip ADPCM [4], subband [4], or LPC (4]
coder. An application of voice coding is an ADPCM trans-
coder implemented in half-duplex on a single TMS320C17
or full-duplex on a TMS320C25 for telecommunication mul-
tiplexing applications. Another example is a secure-voice
communication system, requiring voice coding, as well as
data encryption and transmission over a public-switched
network via a modem; the TMS$320C25 offers an ideal solu-
tion.

Graphics/Image Processing Applications

In graphics and image processing applications [4], the
ability to interface with a host processor is important. Both
the TMS320C30 and the TMS320C25 multiprocessor inter-
face enable them to be used in a variety of host/coprocessor

configurations [4). Graphics and image processing appli-’

cations can use the large directly addressable external data
space and global memory capability to allow graphical
images in memory to be shared with a host processor, thus
minimizing unnecessary data transfers. The indexed indi-
rect addressing modes allow matrices to be processed row-
by-row when performing matrix multiplication for three-
dimensional image rotations, translations, and scaling.

The TMS320C30 has a number of features that support
graphics and image processing extremely well. The float-
ing-point capabilities allow for extremely precise compu-
tation of perspective transformations. They also support
more sophisticated algorithms such as shading and hidden
line removal, operations which are computationally inten-
sive.

The large address space allows for straightforward
addressing of large images or displays. The flexible address-
ing registers, coupled with the integer multiply, support
powerful addressing of multiple-dimensional arrays. Vec-
tor-oriented instructions allow the user to efficiently
manipulate large blocks of memory. Finally, the on-chip
DMA controller allows the user to easily overlap the pro-
cessing of data with its I/O.

High-Speed Control

High-speed control applications [4], [24] use the
TMS320C17 and TMS320C25 general-purpose features for
bit-test and logical operations, timing synchronization, and

high data-transfer rate (ten million 16-bit words per sec-
ond). Both devices can be used in closed-loop systems for
control signal conditioning, filtering, high-speed comput-
ing, and multichannel multiplexing capabilities. The fol-
lowing demonstrates two typical control applications:

Disk Control: Digital filtering in a closed-loop actuation
mechanism positions the read/write heads over the disk
surface. Supplemented with many general-purpose fea-
tures, the TMS320 can replace costly bit-slice/custom/ana-
log solutions to perform such tasks as compensation, fil-
tering, fine/coarse tuning, and other signal conditioning
algorithms.

Robotics: Digital signal processing and bit-manipulation
power, coupled with host interface, allow the TMS320C25
to be useful in robotics control [24]. The TMS320C25 can
replace both the digital controllers and analog signal pro-
cessing hardware for communication to a central host pro-
cessor and for the performance of numerically intensive
control functions.

Instrumentation

Instrumentation, such as spectrum analyzers and various
high-speed/high-precision instruments, often requires a
large data memory space and the high performance of a
digital signal processor. The TM$320C25 and TMS320C30
are capable of performing very long-length FFTs and gen-
erating precision functions with minimal external hard-
ware.

Numeric Processing

Numeric and array processing applications benefit from
TMS320 performance. High throughput resulting from fea-
tures, such as a fast cycle time and an on-chip hardware
multiplier, combined with multiprocessing capabilities and
data memory expansion, provide for a low-cost, easy-to-use
replacement for a typical bit-slice solution. The TMS-
320C30’s floating-point precision, high throughput, and
interface flexibility are excellent for this application.

TMS320 Benchmarks

To complete the discussion on the applications that the
TMS320 can perform, we will provide some benchmarks.
The TMS320 has demonstrated impressive benchmarks in
performing some of the common DSP routines and system
applications. Table 5 shows typical TMS320 benchmarks [4].

Table 5 TMS320 Family Benchmarks

First Second Third
DSP Routines/Applications Generation Generation Generation
FIR filter tap 400 ns 100 ns 60 ns
256-tap FIR sample rate 9.25 kHz 37 kHz >60 kHz
LMS adaptive FIR filter tap 700 ns 400 ns 180 ns
256-tap adaptive FIR filter 5.4 kHz 9.5 kHz >20 kHz
sample rate
Bi-quad filter element (five 2 us 1us 360 ns
multiplies)
Echo canceler (single 8ms 32ms >64 ms
chip)
SUMMARY

This paper has discussed characteristics of digital signal
processing and how these characteristics have influenced
the architectural design of the Texas Instruments TMS320
family of digital signal processors. Three generations of the

TMS320 family were covered, and their support tools nec-
essary to develop end-applications were briefly reviewed.
The paper concluded with an overview of digital signal pro-
cessing applications using these devices.

REFERENCES

m
2]
3]
[4)
(5]
(6]
7
(8
9
10
m

2]

(13
[14)
)]
6]
(17
18]

M9
[20)
21
[22)

(23]
24

1251
126

27
(28]

L. R. Rabiner and B. Gold, Theory and Application of Digital
Signal Processing. Englewood Cliffs, N): Prentice-Hall, 1975.
A.V. Oppenheim, Ed., Applications of Digital Signal Process-
ing. Englewood Cliffs, NJ: Prentice-Hall, 1978.

L. R. Rabiner and R. W. Schafer, Digital Processing of Speech
Signals. Englewood Cliffs, N): Prentice-Hall, 1978.

K. Lin, Ed., Digital Signal Processing Applications with the
TMS320 Family. Englewood Cliffs, NJ: Prentice-Hall, 1987
A.V.Oppenhiem and R. W. Schafer, Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1975.

C. Burrus and T. Parks, DFT/FFT and Convolution Algorithms.
New York, NY: Wiley, 1985.

T. Parks and C. Burrus, Digital Filter Design. New York, NY:
Wiley, 1987.

J. Treichler, C. Johnson, and M. Larimore, A Practical Guide
to Adaptive Filter Design. New York, NY: Wiley, 1987.

P. Papamichalis, Practical Approaches to Speech Coding.
Englewood Cliffs, NJ: Prentice-Hall, 1987.

R. Morris, Digital Signal Processing Software. Ottawa, Ont.,
Canada: DSPS Inc., 1983.

K. McDonough, E. Caudel, S. Magar, and A. Leigh, “Micro-
comp with 32-bit arithmetic does high-precision number
crunching,” Electronics, pp. 105-110, Feb. 24, 1982.

S. Magar, E. Caudel, and A. Leigh, “’A Microcomputer with
digital signal processing capability,” in 7962 Int. Solid State
Conf. Dig. Tech. Pap., pp. 32-33, 284, 285.

First Generation TMS320 User’s Guide. Houston, TX: Texas
Instruments Inc., 1987.

TMS320 First-Generation Digital Signal Processors Data Sheet.
Houston, TX: Texas Instruments Inc., 1987.

TMS32020 User’s Guide. Houston, TX: Texas Instruments
Inc., 1985.

TMS320C25 User’s Guide. Houston, TX: Texas Instruments
Inc., 1986.

TMS32011 User’s Guide. Houston, TX: Texas Instruments
Inc., 1985.

H. Cragon, “The elements of single-chip microcomputer
architecture,” Comput. Mag., vol. 13, no. 10, pp. 27-41, Oct.
1980.

S. Rosen, “Electronic computers: A historical survey,”” Com-
put. Surv., vol. 1, no. 1, Mar. 1969.

M. Honig and D. Messerschmitt, Adaptive Filters. Dor-
drecht, The Netherlands: Kluwer, 1984.

R. Lucky et al., Principles of Data Communication. New York,
NY: McGraw-Hill, 1965.

P. Van Gerwen et al., ‘’Microprocessor implementation of
high speed data modems,” IEEE Trans. Commun., vol. COM-
25, pp. 238-249, 1977.

M. Bellanger, “New applications of digital signal processing
in communications,” IEEE ASSP Mag., pp. 6-11, July 1986.

Y. Wang, M. Andrews, S. Butner, and G. Beni, “Robot-con-
troller system,” in Proc. Symp. on Incremental Motion Con-
trol Systems and Devices, pp. 17-26, June 1986.

TMS320 Family Develop Support Refe e Guide.
Houston, TX: Texas Instruments Inc., 1986.

R. Simar, T. Leigh, P. Koeppen,). Leach,). Potts, and D. Bla-
lock, “’A 40 MFLOPS digital signal processor: The first super-
computer on a chip,” in Proc. IEEE Int’| Conf. on Acoustics,
Speech, and Signal Processing, Apr. 1987.

TMS320C30 User’s Guide. Houston, TX: Texas Instruments
Inc., 1987.

B. Kernighan and D. Ritchie, The C Programming Language.
Englewood Cliffs, NJ: Prentice-Hall, 1978.

