PAL20R8 Family

24-Pin TTL Programmable Array Logic

DISTINCTIVE CHARACTERISTICS

- 5-ns propagation delay
- Popular 24-pin architectures: 20L8, 20R8, 20R6, 20R4
■ Programmable replacement for high-speed TTL logic

■ Power-up reset for initialization
■ Extensive third-party software and programmer support through FusionPLD partners
■ 24-pin SKINNYDIP ${ }^{\circledR}$ and 28-pin PLCC packages save space

GENERAL DESCRIPTION

The PAL20R8 Family (PAL20L8, PAL20R8, PAL20R6, PAL20R4) includes the PAL20R8-5 Series which is ideal for high-performance applications. The PAL20R8 Family is provided in the standard 24-pin DIP and 28-pin PLCC pinouts.

The devices provide user programmable logic for replacing conventional SSI/LSI gates and flip-flops at a reduced chip cost.

The family allows the systems engineer to implement the design on-chip, by opening fuse links to configure AND and OR gates within the device, according to the desired logic function. Complex interconnections between gates, which previously required time-consuming layout, are lifted from the PC board and placed on silicon, where they can be easily modified during prototyping or production.

The PAL device implements the familiar Boolean logic transfer function, the sum of products. The PAL device is a programmable AND array driving a fixed OR array. The AND array is programmed to create custom product terms, while the OR array sums selected terms at the outputs.

In addition, the PAL device provides the following options:

- Variable input/output pin ratio
- Programmable three-state outputs
- Registers with feedback

Product terms with all connections opened assume the logical HIGH state; product terms connected to both true and complement of any single input assume the logical LOW state. Registers consist of D-type flip-flops that are loaded on the LOW-to-HIGH transition of the clock. Unused input pins should be tied to Vcc or GND.
AMD's FusionPLD program allows PAL20R8 Family designs to be implemented using a wide variety of popular industry-standard design tools. By working closely with the FusionPLD partners, AMD certifies that the tools provide accurate, quality support. By ensuring that thirdparty tools are available, costs are lowered because a designer does not have to buy a complete set of new tools for each device. The FusionPLD program also greatly reduces design time since a designer can use a tool that is already installed and familiar. Please refer to the PLD Software Reference Guide for certified development systems and the Programmer Reference Guide for approved programmers.

PRODUCT SELECTOR GUIDE

Device	Dedicated Inputs	Outputs	Product Terms/Output	Feedback	Enable
PAL20L8	14	6 comb. I/Os 2 comb. Outputs	7	I/O	prog.
		7	-	prog.	
PAL20R8	12	8 reg.	8	reg.	pin
PAL20R6	12	6 reg.	8	reg.	pin
		2 comb.	7	I/O	prog.
PAL20R4	12	4 reg.	8	reg.	pin
		4 comb.	7	prog.	

BLOCK DIAGRAMS

CONNECTION DIAGRAMS

Top View

SKINNYDIP/FLATPACK

16490D-5
Note: Pin 1 is marked for orientation.

Note	20L8	20R8	20R6	20R4
1	I_{0}	CLK	CLK	CLK
2	I_{13}	$\overline{\mathrm{OE}}$	$\overline{\mathrm{OE}}$	$\overline{\mathrm{OE}}$
3	O_{1}	O_{1}	$\mathrm{I} / \mathrm{O}_{1}$	$\mathrm{I} / \mathrm{O}_{1}$
4	$\mathrm{I} / \mathrm{O}_{2}$	O_{2}	O_{2}	$\mathrm{I} / \mathrm{O}_{2}$
5	$\mathrm{I} / \mathrm{O}_{3}$	O_{3}	O_{3}	O_{3}
6	$\mathrm{I} / \mathrm{O}_{4}$	O_{4}	O_{4}	O_{4}
7	$\mathrm{I} / \mathrm{O}_{5}$	O_{5}	O_{5}	O_{5}
8	$\mathrm{I} / \mathrm{O}_{6}$	O_{6}	O_{6}	O_{6}
9	$\mathrm{I} / \mathrm{O}_{7}$	O_{7}	O_{7}	$\mathrm{I} / \mathrm{O}_{7}$
10	O_{8}	O_{8}	$\mathrm{I} / \mathrm{O}_{8}$	$\mathrm{I} / \mathrm{O}_{8}$

PIN DESIGNATIONS

CLK	$=$ Clock
GND	$=$ Ground
I	$=$ Input
I/O	$=$ Input/Output
NC	$=$ No Connect
O	$=$ Output
$\overline{\mathrm{OE}}$	$=$ Output Enable
$\mathrm{V} C \mathrm{C}$	$=$ Supply Voltage

PLCC/LCC

JEDEC: Applies to -5, -7, -10, B-2 Series Only

16490D-6
PLCC
Applies to B and A Series Only

LCC

Applies to B and A Series Only

AMD

ORDERING INFORMATION

Commercial Products

AMD programmable logic products for commercial applications are available with several ordering options. The order number (Valid Combination) is formed by a combination of:

Blank = Revision 1
$/ 2=$ Revision 2

Valid Combinations	
PAL20L8-5	PC, JC
PAL20R8-5	
PAL20R6-5	
PAL20R4-5	
PAL20L8-10/2	
PAL20R8-10/2	
PAL20R6-10/2	
PAL20R4-10/2	
PAL20L8-7	PC, JC, DC
PAL20R8-7	
PAL20R6-7	
PAL20R4-7	

Valid Combinations

Valid Combinations lists configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

ORDERING INFORMATION

Commercial Products (MMI Marking Only)

AMD programmable logic products for commercial applications are available with several ordering options. The order number (Valid Combination) is formed by a combination of:

Valid Combinations		
PAL20L8	B-2	CNS, CFN, CJS
PAL20R8		
PAL20R6	B, A	CNS, CNL, CJS
PAL20R4		

Valid Combinations

Valid Combinations lists configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Note: Marked with MMI logo.

FUNCTIONAL DESCRIPTION

Standard 24-Pin PAL Family

The standard 24-pin PAL family is comprised of four different devices, including both registered and combinatorial devices. All parts are produced with a fuse link at each input to the AND gate array, and connections may be selectively removed by applying appropriate voltages to the circuit. Using any of a number of development packages, these products can be rapidly programmed to any customized pattern. Extra test words are pre-programmed during manufacturing to ensure extremely high field programming yields, and provide extra test paths to achieve excellent parametric correlation.

Variable Input/Output Pin Ratio

The registered devices have twelve dedicated input lines, and each combinatorial output is an I/O pin. The PAL20L8 has fourteen dedicated input lines, and only six of the eight combinatorial outputs are I/O pins. Buffers for device inputs have complementary outputs to provide user-programmable input signal polarity. Unused input pins should be tied to Vcc or GND.

Programmable Three-State Outputs

Each output has a three-state output buffer with threestate control. On combinatorial outputs, a product term controls the buffer, allowing enable and disable to be a function of any product of device inputs or output feedback. The combinatorial output provides a bidirectional I/O pin, and may be configured as a dedicated input if the buffer is always disabled. On registered outputs, an input pin controls the enabling of the three-state outputs.

Registers with Feedback

Registered outputs are provided for data storage and synchronization. Registers are composed of D-type flipflops that are loaded on the LOW-to-HIGH transition of the clock input.

Power-Up Reset

All flip-flops power-up to a logic LOW for predictable system initialization. Outputs of the PAL20R8 Family will be HIGH due to the active-low outputs. The Vcc rise must be monotonic and the reset delay time is 1000 ns maximum.

Register Preload

The register on the AMD marked 20R8, 20R6, and 20R4 devices can be preloaded from the output pins to facilitate functional testing of complex state machine designs. This feature allows direct loading of arbitrary states, making it unnecessary to cycle through long test vector sequences to reach a desired state. In addition, transitions from illegal states can be verified by loading illegal states and observing proper recovery.

Security Fuse

After programming and verification, a PAL20R8 Family design can be secured by programming the security fuse. Once programmed, this fuse defeats readback of the internal programmed pattern by a device programmer, securing proprietary designs from competitors. When the security fuse is programmed, the array will read as if every fuse is intact.

Quality and Testability

The PAL20R8 Family offers a very high level of built-in quality. Extra programmable fuses provide a means of verifying performance of all AC and DC parameters. In addition, this verifies complete programmability and functionality of the device to provide the highest programming yields and post-programming functional yields in the industry.

Technology

The PAL20R8-5, -7 and 10/2 are fabricated with AMD's oxide isolated process. The array connections are formed with highly reliable PtSi fuses. The PAL20R8B, B-2, and A series are fabricated with AMD's trench-isolated bipolar process. The array connections are formed with proven TiW fuses. These processes reduce parasitic capacitances and minimum geometries to provide higher performance.

LOGIC DIAGRAM DIP (PLCC) Pinouts

LOGIC DIAGRAM DIP (PLCC) Pinouts

LOGIC DIAGRAM
DIP (PLCC) Pinouts

16490D-12

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with
Respect to Ground
. -0.5 V to +7.0 V
DC Input Voltage -1.2 V to $\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$
DC Output or I/O
Pin Voltage -0.5 V to $\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$
Static Discharge Voltage 2001 V
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ

OPERATING RANGES

Commercial (C) Devices
Ambient Temperature (T_{A})
Operating in Free Air
$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
Supply Voltage (Vcc)
with Respect to Ground
4.75 V to 5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vor	Output HIGH Voltage	$\begin{array}{ll} \mathrm{IOH}=-3.2 \mathrm{~mA} & \mathrm{~V}_{\mathrm{VIN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{array}$	2.4		V
Vol	Output LOW Voltage	$\begin{array}{ll} \text { IOL = } 24 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{array}$		0.5	V
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
VI	Input Clamp Voltage	$\mathrm{IIN}=-18 \mathrm{~mA}, \mathrm{VCC}=$ Min		-1.2	V
IIH	Input HIGH Current	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 2)		25	$\mu \mathrm{A}$
IIL	Input LOW Current	VIN $=0.4 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 2)		-250	$\mu \mathrm{A}$
1	Maximum Input Current	V IN $=5.5 \mathrm{~V}, \mathrm{VCC}=\mathrm{Max}$		1	mA
lozh	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { Vout = 2.7 V, VCC = Max } \\ & \text { VIN = VIH or VIL (Note 2) } \end{aligned}$		100	$\mu \mathrm{A}$
lozl	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout = 0.4 V, VCC = Max } \\ & \text { VIN = VIH or VIL (Note 2) } \end{aligned}$		-100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	Vout = 0.5 V, Vcc = Max (Note 3)	-30	-130	mA
IcC	Supply Current	VIN $=0 \mathrm{~V}$, Outputs Open (Iout $=0 \mathrm{~mA}$) Vcc = Max		210	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.
2. I/O pin leakage is the worst case of IIL and lozl (or IIн and lozh).
3. Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second.

VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description		Test Conditions		Typ	Unit
CIN	Input Capacitance	CLK, $\overline{\mathrm{OE}}$	V IN $=2.0 \mathrm{~V}$		8	pF
		$\mathrm{I}_{1}-\mathrm{I}_{12}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	5	
Cout	Output Capacitance		Vout $=2.0 \mathrm{~V}$	$\mathrm{f}=1 \mathrm{MHz}$	8	

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description				$\begin{aligned} & \text { Min } \\ & \text { (Note 3) } \end{aligned}$	Max	Unit
tpD	Input or Feedback to Combinatorial Output			$\begin{gathered} \hline \text { 20L8, 20R6, } \\ \text { 20R4 } \end{gathered}$	1	5	ns
ts	Setup Time from Input or Feedback to Clock			$\begin{gathered} \text { 20R8, 20R6, } \\ \text { 20R4 } \end{gathered}$	4.5		ns
th	Hold Time				0		ns
tco	Clock to Output				1	4	ns
tSKEWR	Skew Between Registered Outputs (Note 4)					1	ns
twL	Clock Width	LOW			4		ns
twh		HIGH			4		ns
$\mathrm{fmax}^{\text {m }}$	Maximum Frequency (Notes 5 and 6)	External Feedback	1/(ts + tco)		117		MHz
		Internal Feedback (fCNT)	1/(ts + tcF)		125		MHz
		No Feedback	1/(twh + twL)		125		MHz
tpzx	$\overline{\text { OE to Output Enable }}$				1	6.5	ns
tpxz	$\overline{\mathrm{OE}}$ to Output Disable				1	5	ns
tEA	Input to Output Enable Using Product Term Control			20L8, 20R6,	2	6.5	ns
ter	Input to Output Disable Using Product Term Control			20R4	2	5	ns

Notes:
2. See Switching Test Circuit for test conditions.
3. Output delay minimums for $t_{P D}, t_{C O}, t_{P Z X}, t_{E A}$ and $t_{E R}$ are defined under best case conditions. Future process improvements may alter these values; therefore, minimum values are recommended for simulation purposes only.
4. Skew testing takes into account pattern and switching direction differences between outputs that have equal loading.
5. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where the frequency may be affected.
6. $t_{C F}$ is a calculated value and is not guaranteed. $t_{C F}$ can be found using the following equation:
$t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with
Respect to Ground
. -0.5 V to +7.0 V
DC Input Voltage -1.2 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
DC Output or I/O
Pin Voltage -0.5 V to Vcc +0.5 V
Static Discharge Voltage \qquad
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices
Ambient Temperature (T_{A})
Operating in Free Air $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Supply Voltage (VCc)
With Respect to Ground +4.75 V to +5.25 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vor	Output HIGH Voltage	$\begin{array}{ll} \mathrm{IOH}=-3.2 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{array}$	2.4		V
Vol	Output LOW Voltage	$\begin{array}{ll} \hline \mathrm{IOL}=24 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{cc}}=\mathrm{Min} \end{array}$		0.5	V
VIH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
VI	Input Clamp Voltage	$\mathrm{IIN}=-18 \mathrm{~mA}, \mathrm{Vcc}=\mathrm{Min}$		-1.2	V
IIH	Input HIGH Current	VIN $=2.7 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 2)		25	$\mu \mathrm{A}$
IIL	Input LOW Current	VIn $=0.4 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 2)		-250	$\mu \mathrm{A}$
11	Maximum Input Current	$\mathrm{VIN}=5.5 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$		1	mA
lozh	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { Vout = 2.7 V, VCC = Max } \\ & \text { VIN = VIH or VIL (Note 2) } \end{aligned}$		100	$\mu \mathrm{A}$
lozl	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout }=0.4 \mathrm{~V}, \text { VCC }=\text { Max } \\ & \text { VIN }=\text { VIH or } \text { VIL }^{(\text {Note 2) }} \end{aligned}$		-100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	Vout $=0.5 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 3)	-30	-130	mA
Icc	Supply Current	VIN $=0 \mathrm{~V}$, Outputs Open (IOUT $=0 \mathrm{~mA}$) $V_{C C}=M a x$		210	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.
2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).
3. Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vout $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions	Typ	Unit	
CIN	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}=2.0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ $\mathrm{f}=1 \mathrm{MHz}$	7	
COUT	Output Capacitance	Vout $=2.0 \mathrm{~V}$	8	pF	

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description					$\begin{aligned} & \operatorname{Min}^{\text {(Note 3) }} \end{aligned}$	Max	Unit
tpD	Input or Feedback to Combinatorial Output				$\begin{gathered} \text { 20L8, 20R6, } \\ \text { 20R4 } \end{gathered}$	3	7.5	ns
			1 Output Switching			3	7	
ts	Setup Time from Input or Feedback to Clock				$\begin{gathered} \text { 20R8, 20R6, } \\ 20 R 4 \end{gathered}$	7		ns
th	Hold Time					0		ns
tco	Clock to Output					1	6.5	ns
tskew	Skew Between Registered Outputs (Note 4)						1	ns
twL	Clock Width	LOW				5		ns
twh		HIGH				5		ns
fmax	Maximum Frequency (Notes 5 and 6)	Exte	back	1/(ts + tco)		74		MHz
		Inter	ack (fCNT)	1/(ts + tcF)		100		MHz
		No F		1/(twh + twL)		100		MHz
tpzx	$\overline{\text { OE to Output Enable }}$					1	8	ns
tpxz	$\overline{\text { OE to Output Disable }}$					1	8	ns
tEA	Input to Output Enable Using Product Term Control				20L8, 20R6,	3	10	ns
ter	Input to Output Disable Using Product Term Control					3	10	ns

Notes:
2. See Switching Test Circuit for test conditions.
3. Output delay minimums for $t_{P D}, t_{C O}, t_{P Z X}, t_{P X Z}, t_{E A}$ and $t_{E R}$ are defined under best case conditions. Future process improvements may alter these values; therefore, minimum values are recommended for simulation purposes only.
4. Skew is measured with all outputs switching in the same direction.
5. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where the frequency may be affected.
6. $t_{C F}$ is a calculated value and is not guaranteed. $t_{C F}$ can be found using the following equation:
$t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with
Respect to Ground -0.5 V to +7.0 V

DC Input Voltage -0.5 V to Vcc +0.5 V
DC Output or I/O Pin Voltage ... -0.5 V to Vcc Max
DC Input Current -30 mA to 5 mA
Static Discharge Voltage 2001 V
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ

OPERATING RANGES

Commercial (C) Devices
Ambient Temperature (T_{A})
Operating in Free Air \qquad $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Supply Voltage (Vcc)
with Respect to Ground +4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
VOH	Output HIGH Voltage	$\begin{array}{ll} \hline \mathrm{IOH}=-3.2 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{array}$	2.4		V
Vol	Output LOW Voltage	$\begin{array}{ll} \text { IOL = 24 mA } & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{Vcc}^{2}=\mathrm{Min} \end{array}$		0.5	V
VIH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
VI	Input Clamp Voltage	$\mathrm{IIN}=-18 \mathrm{~mA}, \mathrm{Vcc}=$ Min		-1.5	V
IIH	Input HIGH Current	VIN $=2.4 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 2)		25	$\mu \mathrm{A}$
IIL	Input LOW Current	VIN $=0.4 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 2)		-250	$\mu \mathrm{A}$
II	Maximum Input Current	$\mathrm{VIN}=5.5 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$		100	$\mu \mathrm{A}$
lozH	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { Vout = } 2.4 \text { V, Vcc }=\text { Max } \\ & \text { VIN }=\text { VIH or VIL (Note 2) } \end{aligned}$		100	$\mu \mathrm{A}$
lozl	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout = 0.4 V, VCC = Max } \\ & \text { VIN = VIH or VIL (Note 2) } \end{aligned}$		-100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	Vout $=0.5 \mathrm{~V}$, Vcc $=\mathrm{Max}$ (Note 3)	-30	-130	mA
Icc	Supply Current	$\begin{aligned} & \text { VIN }=0 \mathrm{~V} \text {, Outputs Open (Iout }=0 \mathrm{~mA}) \\ & \text { Vcc }=\mathrm{Max} \end{aligned}$		210	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.
2. I/O pin leakage is the worst case of IIL and lozL (or IIH and lozH).
3. Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vout $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions		Typ	Unit
CIN	Input Capacitance	VIN $=2.0 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	7	pF
Cout	Output Capacitance	Vout = 2.0 V		8	

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description				$\begin{aligned} & \text { Min } \\ & \text { (Note 3) } \end{aligned}$	Max	Unit
tPD	Input or Feedback to Combinatorial Output			$\begin{gathered} \text { 20L8, 20R6, } \\ \text { 20R4 } \end{gathered}$	3	10	ns
ts	Setup Time from Input or Feedback to Clock			$\begin{gathered} \text { 20R8, 20R6, } \\ 20 R 4 \end{gathered}$	10		ns
th	Hold Time				0		ns
tco	Clock to Output				3	8	ns
twL	Clock Width	LOW			7		ns
twh		HIGH			7		ns
fmax	Maximum Frequency (Notes 4 and 5)	External Feedback	1/(ts + tco)		55.5		MHz
		Internal Feedback (fcnt)	$1 /$ (ts + tcF)		58.8		MHz
		No Feedback	1/(twh + twi)		71.4		MHz
tpzx	$\overline{\text { OE to Output Enable }}$				2	10	ns
tpxz	$\overline{\text { OE to Output Disable }}$				2	10	ns
tEA	Input to Output Enable Using Product Term Control			20L8, 20R6,	3	10	ns
ter	Input to Output Disable Using Product Term Control			20R4	3	10	ns

Notes:
2. See Switching Test Circuit for test conditions.
3. Output delay minimums for $t_{P D}, t_{C O}, t_{P Z X}, t_{P X Z}, t_{E A}$ and $t_{E R}$ are defined under best case conditions. Future process improvements may alter these values; therefore, minimum values are recommended for simulation purposes only.
4. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where the frequency may be affected.
5. $t_{C F}$ is a calculated value and is not guaranteed. $t_{C F}$ can be found using the following equation: $t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with
Respect to Ground
. -0.5 V to +7.0 V
DC Input Voltage -1.5 V to Vcc +0.5 V
DC Output or I/O
Pin Voltage -0.5 V to $\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices
Ambient Temperature (T_{A})
Operating in Free Air $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Supply Voltage (V_{cc})
with Respect to Ground +4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vor	Output HIGH Voltage	$\begin{array}{ll} \mathrm{IOH}=-3.2 \mathrm{~mA} & \mathrm{VIN}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{VIL}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{array}$	2.4		V
Vol	Output LOW Voltage	$\begin{array}{ll} \text { loL }=24 \mathrm{~mA} & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{array}$		0.5	V
VIH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
VI	Input Clamp Voltage	$\mathrm{IIN}=-18 \mathrm{~mA}, \mathrm{Vcc}=$ Min		-1.5	V
IIH	Input HIGH Current	VIN $=2.7 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 2)		25	$\mu \mathrm{A}$
IIL	Input LOW Current	VIn $=0.4 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 2)		-250	$\mu \mathrm{A}$
1	Maximum Input Current	V IN $=5.5 \mathrm{~V}, \mathrm{~V}$ cc $=\mathrm{Max}$		100	$\mu \mathrm{A}$
lozh	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { VOUT = 2.7 V, VCC = Max } \\ & \text { VIN = VIH or VIL (Note 2) } \end{aligned}$		100	$\mu \mathrm{A}$
IozL	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout }=0.4 \mathrm{~V}, \text { VcC }=\text { Max } \\ & \text { VIN }=\text { VIH or VIL (Note 2) } \end{aligned}$		-100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	Vout $=0.5 \mathrm{~V}$, Vcc $=\mathrm{Max}$ (Note 3)	-30	-130	mA
Icc	Supply Current	VIN $=0 \mathrm{~V}$, Outputs Open (Iout $=0 \mathrm{~mA}$) Vcc = Max		210	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.
2. I/O pin leakage is the worst case of IIL and IozL (or IIH and lozH).
3. Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vout $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 1)

Parameter Symbol	Parameter Description				Min	Max	Unit
tpd	Input or Feedback to Combinatorial Output			$\begin{gathered} \text { 20L8, 20R6, } \\ \text { 20R4 } \end{gathered}$		15	ns
ts	Setup Time from Input or Feedback to Clock			$\begin{gathered} \text { 20R8, 20R6, } \\ \text { 20R4 } \end{gathered}$	15		ns
th	Hold Time				0		ns
tco	Clock to Output or Feedback					12	ns
twL	Clock Width	LOW			10		ns
twh		HIGH			12		ns
$\mathrm{fmax}^{\text {m }}$	Maximum Frequency (Note 2)	External Feedback	1/(ts + tco)		37		MHz
		No Feedback	1/(twh + twL)		45		MHz
tpzx	$\overline{\text { OE }}$ to Output Enable					15	ns
tpxZ	$\overline{\text { OE }}$ to Output Disable					12	ns
teA	Input to Output Enable Using Product Term Control			20L8, 20R6,		18	ns
tER	Input to Output Disable Using Product Term Control			20R4		15	ns

Notes:

1. See Switching Test Circuit for test conditions.
2. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with
Respect to Ground
. -0.5 V to +7.0 V
DC Input Voltage -1.5 V to Vcc +0.5 V
DC Output or I/O
Pin Voltage -0.5 V to $\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices
Ambient Temperature (T_{A})
Operating in Free Air $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Supply Voltage (V_{cc})
with Respect to Ground +4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vor	Output HIGH Voltage	$\begin{array}{ll} \mathrm{IOH}=-3.2 \mathrm{~mA} & \mathrm{VIN}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{VIL}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{array}$	2.4		V
Vol	Output LOW Voltage	$\begin{array}{ll} \text { loL }=24 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{array}$		0.5	V
VIH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
V	Input Clamp Voltage	$\mathrm{IIN}=-18 \mathrm{~mA}, \mathrm{Vcc}=\mathrm{Min}$		-1.5	V
IIH	Input HIGH Current	VIN = 2.7 V, Vcc = Max (Note 2)		25	$\mu \mathrm{A}$
IIL	Input LOW Current	VIn $=0.4 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 2)		-250	$\mu \mathrm{A}$
1	Maximum Input Current	V IN $=5.5 \mathrm{~V}, \mathrm{~V}$ cc $=\mathrm{Max}$		100	$\mu \mathrm{A}$
lozh	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { VOUT = 2.7 V, VCC = Max } \\ & \text { VIN = VIH or VIL (Note 2) } \end{aligned}$		100	$\mu \mathrm{A}$
IozL	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout }=0.4 \mathrm{~V}, \text { VcC }=\text { Max } \\ & \text { VIN }=\text { VIH or VIL }(\text { Note } 2) \end{aligned}$		-100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	Vout $=0.5 \mathrm{~V}$, Vcc $=\mathrm{Max}$ (Note 3)	-30	-130	mA
Icc	Supply Current	VIN $=0 \mathrm{~V}$, Outputs Open (lout $=0 \mathrm{~mA}$) Vcc = Max		105	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.
2. I/O pin leakage is the worst case of IIL and IozL (or IIH and lozH).
3. Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 1)

Parameter Symbol	Parameter Description				Min	Max	Unit
tpd	Input or Feedback to Combinatorial Output			$\begin{gathered} \text { 20L8, 20R6, } \\ \text { 20R4 } \end{gathered}$		25	ns
ts	Setup Time from Input or Feedback to Clock			$\begin{gathered} \text { 20R8, 20R6, } \\ 20 R 4 \end{gathered}$	25		ns
th	Hold Time				0		ns
tco	Clock to Output					15	ns
twL	Clock Width	LOW			15		ns
twh		HIGH			15		ns
$\mathrm{fmax}^{\text {m }}$	Maximum Frequency (Notes 3 and 4)	External Feedback	1/(ts + tco)		25		MHz
		Internal Feedback (fcNT)	1/(ts + tcF)		28.5		MHz
		No Feedback	1/(twh + twL)		33.3		MHz
tpzx	$\overline{\mathrm{OE}}$ to Output Enable					20	ns
tpxz	$\overline{\text { OE }}$ to Output Disable					20	ns
teA	Input to Output Enable Using Product Term Control			20L8, 20R6,		25	ns
ter	Input to Output Disable Using Product Term Control					25	ns

Notes:

1. See Switching Test Circuit for test conditions.
2. Calculated from measured f $f_{M A X}$ internal.
3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
4. $t_{C F}$ is a calculated value and is not guaranteed. $t_{C F}$ can be found using the following equation: $t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with
Respect to Ground
. -0.5 V to +7.0 V
DC Input Voltage -1.5 V to Vcc +0.5 V
DC Output or I/O
Pin Voltage -0.5 V to $\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ

OPERATING RANGES

Commercial (C) Devices
Ambient Temperature (T_{A})
Operating in Free Air \qquad $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Supply Voltage (Vcc)
with Respect to Ground +4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
Vor	Output HIGH Voltage	$\begin{array}{ll} \mathrm{IOH}=-3.2 \mathrm{~mA} & \mathrm{VIN}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{VIL}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{array}$	2.4		V
Vol	Output LOW Voltage	$\begin{array}{ll} \text { IOL = } 24 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{array}$		0.5	V
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
V	Input Clamp Voltage	$\mathrm{IIN}=-18 \mathrm{~mA}, \mathrm{VCC}=\mathrm{Min}$		-1.5	V
IIH	Input HIGH Current	VIN $=2.7 \mathrm{~V}, \mathrm{~V}_{\text {cc }}=\mathrm{Max}$ (Note 2)		25	$\mu \mathrm{A}$
IIL	Input LOW Current	VIN $=0.4 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 2)		-250	$\mu \mathrm{A}$
11	Maximum Input Current	$\mathrm{VIN}=5.5 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$		100	$\mu \mathrm{A}$
lozH	Off-State Output Leakage Current HIGH			100	$\mu \mathrm{A}$
IozL	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout = 0.4 V, VCC = Max } \\ & \text { VIN = VIH or VIL (Note 2) } \end{aligned}$		-100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	Vout $=0.5 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 3)	-30	-130	mA
Icc	Supply Current	VIN $=0 \mathrm{~V}$, Outputs Open (lout $=0 \mathrm{~mA}$) Vcc = Max		210	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.
2. I/O pin leakage is the worst case of IIL and lozL (or IIH and lozH).
3. Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 1)

Parameter Symbol	Parameter Description				Min	Max	Unit
tpd	Input or Feedback to Combinatorial Output			$\begin{gathered} \text { 20L8, 20R6, } \\ \text { 20R4 } \end{gathered}$		25	ns
ts	Setup Time from Input or Feedback to Clock			$\begin{gathered} \text { 20R8, 20R6, } \\ 20 R 4 \end{gathered}$	25		ns
th	Hold Time				0		ns
tco	Clock to Output					15	ns
twL	Clock Width	LOW			15		ns
twh		HIGH			15		ns
fmax	Maximum Frequency (Notes 3 and 4)	External Feedback	1/(ts + tco)		25		MHz
		Internal Feedback (fCNT)	1/(ts + tcF)		28.5		MHz
		No Feedback	1/(twh + twL)		33		MHz
tpzx	$\overline{\mathrm{OE}}$ to Output Enable					20	ns
tpxz	$\overline{\text { OE }}$ to Output Disable					20	ns
teA	Input to Output Enable Using Product Term Control			20L8, 20R6,		25	ns
ter	Input to Output Disable Using Product Term Control			20R4		25	ns

Notes:

1. See Switching Test Circuit for test conditions.
2. Calculated from measured fmax internal.
3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
4. $t_{C F}$ is a calculated value and is not guaranteed. tCF can be found using the following equation:
$t_{C F}=1 / f_{\text {MAX }}$ (internal feedback) $-t_{s}$.

SWITCHING WAVEFORMS

Combinatorial Output

Registered Output Skew

16490D-17
Input to Output Disable/Enable

Registered Output

Clock Width

$\overline{\mathrm{OE}}$ to Output Disable/Enable

Notes:

1. $V_{T}=1.5 \mathrm{~V}$
2. Input pulse amplitude 0 V to 3.0 V
3. Input rise and fall times $2 n s-3$ ns typical

KEY TO SWITCHING WAVEFORMS

SWITCHING TEST CIRCUIT

16490D-19

Specification	S_{1}	C_{L}	Commercial		Military		Measured Output Value
			R ${ }_{1}$	R_{2}	R ${ }_{1}$	R_{2}	
tpd, tco	Closed	50 pF	200Ω	For -5: 200Ω For rest 390Ω	390Ω	750Ω	1.5 V
tPZx, tEA	$\mathrm{Z} \rightarrow \mathrm{H}$: Open Z \rightarrow L: Closed						1.5 V
tPxz, ter	$\mathrm{H} \rightarrow$ Z: Open L \rightarrow Z: Closed	5 pF					$\begin{aligned} \mathrm{H} & \rightarrow \mathrm{Z}: \mathrm{VOH}-0.5 \mathrm{~V} \\ \mathrm{~L} & \rightarrow \mathrm{Z}: \mathrm{VOL}+0.5 \mathrm{~V} \end{aligned}$

MEASURED SWITCHING CHARACTERISTICS FOR THE PAL20R8-5

$$
t_{P D} \text { vs. Number of Outputs Switching }
$$

$$
\mathrm{Vcc}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}(\text { Note } 1)
$$

tpD vs. Load Capacitance
16490D-21
$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where tPD may be affected.

CURRENT VS. VOLTAGE (I-V) CHARACTERISTICS FOR THE PAL20R8-5
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Output, HIGH

Input

