HM511664 Series

65,536-Word x 16-Bit Dynamic Random Access Memory

■ DESCRIPTION

The Hitachi HM511664 are CMOS dynamic RAM organized as 65,536-word x 16-bit. HM511664 have realized higher density, higher performance and various functions by employing 0.8 μ m CMOS process technology and some new CMOS circuit design technologies. The HM511664 offer Fast Page Mode as a high speed access mode.

Multiplexed address input permits the HM511664 to be packaged in standard 400 mil 40-pin plastic SOJ, standard 475 mil 40-pin plastic ZIP.

■ FEATURES

- Single 5V (±10%)
- High Speed
 Access

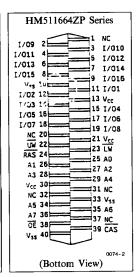
- . Byte Write Capability
- 3 Variations of Refresh

RAS Only Refresh
CAS Before RAS Refresh

Hidden Refresh

ORDERING INFORMATION

Part No.	Access Time	Package
HM511664JP-8 HM511664JP-10	80 ns 100 ns	400 mil 40-pin Plastic SOJ (CP-40D)
HM511664ZP-8 HM511664ZP-10	80 ns 100 ns	475 mil 40-pin Plastic ZIP (ZP-40)


■ PIN DESCRIPTION

Pin Name	Function
A ₀ -A ₇	Address Input Refresh Address Input
I/O ₁ -I/O ₁₆	Data-in/Data-out
RAS	Row Address Strobe
CAS	Column Address Strobe
ŪW	Read/Upper Byte Write Enable
LW	Read/Lower Byte Write Enable
ŌĒ	Output Enable
v _{cc}	Power (+ 5V)
V _{SS}	Ground
NC	No Connection

PIN OUT

	HM	1511664J	P Series
	Vcc U	Z 3 3 4 4 5 5 5 7 7 8 8 9 10 11 12 13 14 15 16 17 18 19 18 19	40 DV ₃₅ 39 DI/016 38 DI/015 37: TI/014 35 DI/013 35 DI/012 34 DI/013 32 DI/09 31 DNC 30 DV ₃₅ 29 DCAS 28 DOE 27 DNC 26 DNC 24 DA7 23 DA6 22 DA6 21 DV ₃₅
			0074-1
1		(Top Vi	.ew)

TRUTH TABLE

		Inputs			I	1/0	
RAS	CAS	LW	ŪW	ŌĒ	I/O ₁ -I/O ₈	I/O ₉ -I/O ₁₆	Operation
Н	Н	Н	Н	Н	High-Z	High-Z	Standby
L	н	Н	н	н	High-Z	High-Z	Refresh
L	L	Н	Н	l L	D _{out}	D _{out}	Read
L	L	L	H	н	Din	Don't Care	Lower Byte Write
L	L	H	L	Н	Don't Care	D _{in}	Upper Byte Write
L	L	L	L	Н	D _{in}	D _{in}	Word Write
L	L	L	L	H	High-Z	High-Z	

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage on Any Pin Relative to VSS	V _T	- 1.0 to + 7.0	v
Supply Voltage Relative to V _{SS}	v _{cc}	- 1.0 to + 7.0	v
Short Circuit Output Current	I _{out}	50	mA
Power Dissipation	P_{T}	0.8	w
Operating Temperature	Topr	0 to + 70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

■ ELECTRICAL CHARACTERISTICS

• Recommended DC Operating Conditions ($T_A = 0 \text{ to } +70^{\circ}\text{C}$)

Рага:	meter	Symbol	Min	Typ	Max	Unit	Note
Supply Voltage		V _{SS}	0	0	0	v	
Supply Voltage		v_{cc}	4.5	5.0	5.5	v	1
Input High Volt	age	v_{IH}	2.4	_	6.5	v	1
Input Low	(I/Oi Pin)	v_{IL}	- 0.5	_	0.8	v	1, 2
Voltage	(Others)	v_{IL}	- 1.0		0.8	v	1, 2

Notes: 1. All voltage referenced to VSS.

2. The device will withstand undershoots to the -2V level with a maximum pulse width of 20 ns at the -1.5V level. (See figure 1.)

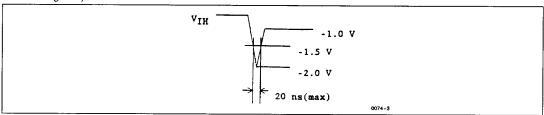


Figure 1. Undershoot of input voltage

• DC Electrical Characteristics (T_A = 0 to $+70^{\circ}$ C, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$)

		HM51	1664-8	HM511	664-10	Unit	Test Conditions	Note
Parameter	Symbol	Min	Max	Min	Max	Unit	Test conditions	
Operating Current	I _{CC1}		TI	BD		mA	RAS, CAS Cycling t _{RC} = Min	1, 2
				2		mA	$\begin{array}{l} \underline{TTL} \ \underline{Interface} \\ \overline{RAS}, \overline{CAS} = V_{IH}, \\ D_{out} = High-Z \end{array}$	
Standby Current	I _{CC2}			1		mA	$\frac{\text{CMOS Interface }\overline{\text{RAS}},}{\overline{\text{CAS}}} \ge V_{\text{CC}} - 0.2V,}\\ D_{\text{out}} = \text{High-Z}$	
RAS Only Refresh Current	I _{CC3}		T	BD		mA	t _{RC} = Min	2
Standby Current	I _{CC5}		T	BD		mA		1
CAS Before RAS Refresh Current	I _{CC6}		T	BD		mA	$t_{RC} = Min$	
Fast Page Mode Current	I _{CC7}		T	BD		mA	t _{PC} = Min	1, 3
Input Leakage Current	I _{LI}	- 10	10	- 10	10	μΑ	$0V \le V_{\rm in} \le 6.5V$	
Output Leakage Current	I_{LO}	-10 10 -10 10		μА	$0V \le V_{out} \le 5.5V$, $D_{out} = Disable$			
Output High Voltage	v _{oH}	2.4	V _{CC}	2.4	v_{cc}	V	High $I_{out} = -2.5 \text{ mA}$	
Output Low Voltage	V _{OL}	0	0.4	0	0.4	v	$Low I_{out} = 2.1 mA$	<u> </u>

Notes: 1. I_{CC} depends on output load condition when the device is selected, I_{CC} max is specified at the output open condition.

2. Address can be changed once or less while RAS = V_{IL}.

3. Address can be changed once or less while $\overline{CAS} = V_{IH}$.

• Capacitance ($T_A = 25$ °C, $V_{CC} = 5V \pm 10$ %)

Parameter	Symbol	Тур	Max	Unit	Note
Input Capacitance (Address)	CII		5	pF	1
Input Capacitance (Clocks)	C ₁₂	_	7	pF	1
Output Capacitance (Data-in, Data-out)	C _{I/O}		7	pF	1, 2

Notes: 1. Capacitance measured with Boonton Meter or effective capacitance measuring method.

2. $\overline{CAS} = V_{IH}$ to disable D_{out} .

• AC Characteristics ($T_A=0$ to $\pm70^{\circ}$ C, $V_{CC}=5$ V $\pm10\%$, $V_{SS}=0$ V)1, 14, 15, 16 Read, Write, Read-Modify-Write and Refresh Cycles (Common Parameters)

Parameter	Symbol	HM5	11664-8	HM5	11664-10	T7 11	
- arameter	Symbol	Min	Max	Min	Max	Unit	Note
Random Read or Write Cycle Time	tRC	135	_	170	_	ns	
RAS Precharge Time	t _{RP}	45	_	60	_	ns	
RAS Pulse Width	tRAS	80	10000	100	10000	ns	
CAS Pulse Width	tCAS	30	10000	40	10000	ns	
Row Address Setup Time	tASR	0	_	0	_	ns	
Row Address Hold Time	t _{RAH}	10	_	10		ns	
Column Address Setup Time	t _{ASC}	0	_	0		ns	
Column Address Hold Time	t _{CAH}	15	_	15	_	ns	
RAS to CAS Delay Time	tRCD	20	50	20	60	ns	8
RAS to Column Address Delay Time	trad	15	35	15	45	ns	9
RAS Hold Time	trsh	30		40		ns	
CAS Hold Time	t _{CSH}	80	_	100	_	ns	
CAS to RAS Precharge Time	tCRP	10	_	10	_	ns	
OE to D _{in} Delay Time	tODD	15	_	15	_	ns	
OE Delay Time from Din	t _{DZO}	0	_	0	_	ns	
CAS Setup Time from Din	t _{DZC}	0	_	0	_	ns	
Transition Time (Rise and Fall)	t _T	3	50	3	50	ns	7
Refresh Period	t _{REF}	_	4	_	4	ms	

Read Cycle

Parameter	Symbol	HM5	11664-8	HM511664-10			
rarameter	Symbol	Min	Max	Min	Max	Unit	Note
Access Time from RAS	t _{RAC}	_	80		100	ns	2, 3
Access Time from CAS	t _{CAC}	_	30		40	ns	3, 4, 13
Access Time from Address	t _{AA}	_	45		55	ns	3, 5, 13
Access Time from OE	†OAC		30	_	40	ns	-40-
Read Command Setup Time	t _{RCS}	0	_	0		ns	
Read Command Hold Time to CAS	tRCH	0	_	0	_	ns	
Read Command Hold Time to RAS	tRRH	0		0	_	ns	
Column Address to RAS Lead Time	tRAL	45	_	55	_	ns	
Output Buffer Turn-off Time	t _{OFF1}	0	20	0	20	ns	6
Output Buffer Turn-off to OE	t _{OFF2}	0	15	0	15	ns	6
CAS to Din Delay Time	t _{CDD}	20	_	20	_	ns	
RAS Hold Time Referenced to OE	troh	10		10		ns	

Write Cycle

Parameter	Symbol	HM5	11664-8	HM511664-10			Note
r arameter	Symbol	Min	Max	Min	Max	Unit	Note
Write Command Setup Time	twcs	0	_	0	_	ns	10
Write Command Hold Time	twcH	15	_	15	_	ns	
Write Command Pulse Width	twp	15	_	15	_	ns	
Write Command to RAS Lead Time	tRWL	20	_	20	_	ns	
Write Command to CAS Lead Time	t _{CWL}	20	_	20		ns	
Data-in Setup Time	t _{DS}	0		0	_	ns	11
Data-in Hold Time	t _{DH}	15	_	15		ns	11

Read-Modify-Write Cycle

	HM511664-8		HM511664-10		Unit	Note	
Parameter	Symbol	Min	Max	Min	Max	Unit	Note
Read-Modify-Write Cycle Time	tRWC	185	_	220		ns	
RAS to WE Delay Time	t _{RWD}	105		125		ns	10
CAS to WE Delay Time	t _{CWD}	55	_	65		ns	10
Column Address to WE Delay Time	tAWD	70		80	_	ns	10, 13
OE Hold Time from WE	t _{OEH}	15	_	15		ns	

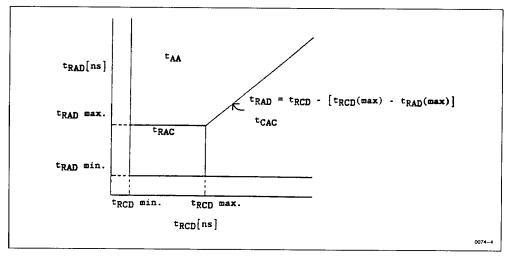
Refresh Cycle

Parameter		HM511664-8		HM511664-10		Unit	Note
	Symbol	Min	Max	Min	Max	Ont	
CAS Setup Time (CAS Before RAS Refresh Cycle)	t _{CSR}	10		10	_	ns	
CAS Hold Time (CAS Before RAS Refresh Cycle)	t _{CHR}	10		10	_	ns	
RAS Precharge to CAS Hold Time	t _{RPC}	10	_	10	_	ns	
CAS Precharge Time in Normal Mode	t _{CPN}	10	_	10		ns	

Fast Page Mode Cycle

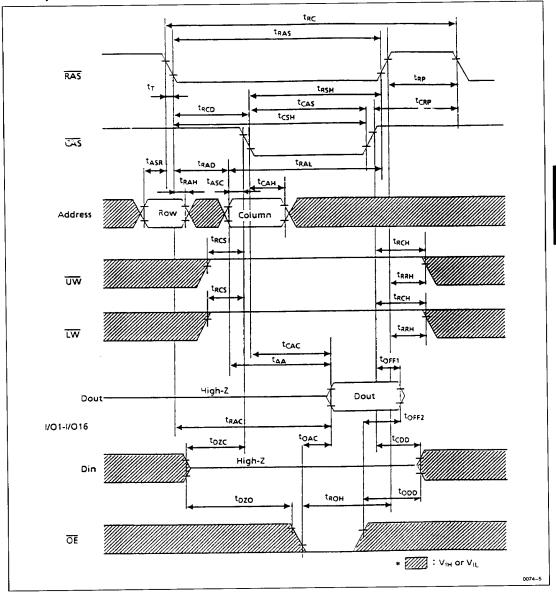
Parameter		HM511664-8		HM511664-10		Unit	Note
	Symbol	Min	Max	Min	Max	Unit	Note
Fast Page Mode Cycle Time	tPC	55		65		ns	
Fast Page Mode CAS Precharge Time	t _{CP}	10	_	10	_	ns	
Fast Page Mode RAS Pulse Width	tRASC	80	100000	100	100000	ns	12
Access Time from CAS Precharge	tACP	_	45		55	ns	3, 13
RAS Hold Time from CAS Precharge	tRHCP	45	_	55		ns	
Fast Page Mode Read-Modify- Write Cycle CAS Precharge to WE Delay Time	t _{CPW}	70	-	80	_	ns	
Fast Page Mode Read-Modify- Write Cycle Time	t _{PCM}	100	_	110		ns	

Counter Test Cycle

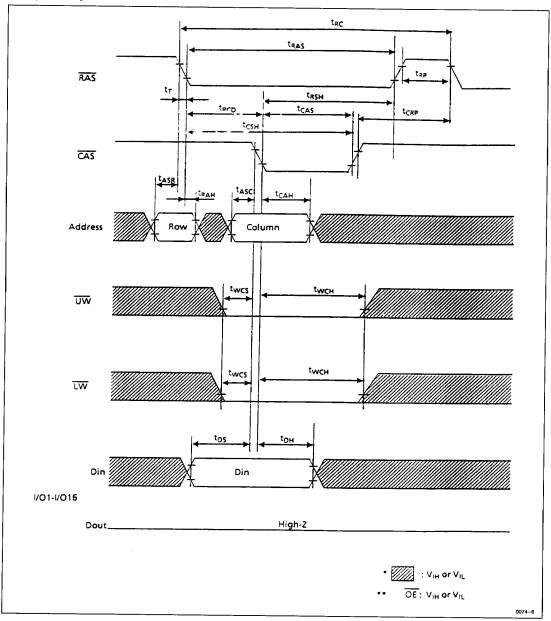

		HM51	1664-8	HM51	1664-10		
Parameter	Symbol	Min	Max	Min	Max	Unit	Note
CAS Precharge Time in	tCPT	40	_	40	_	ns	

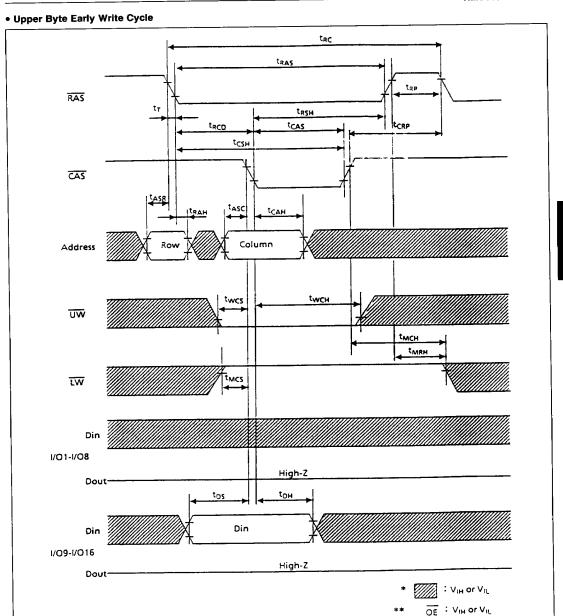
Byte Write Mode

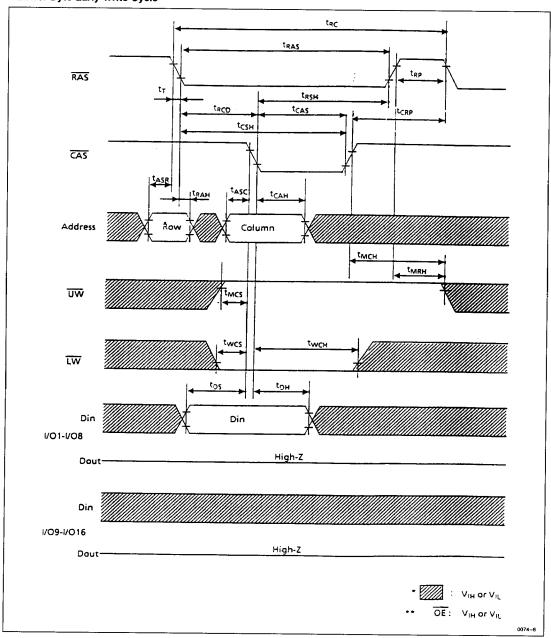
Parameter		HM511664-8		HM511664-10		Unit	Note
	Symbol	Min	Max	Min	Max	Oilt	Note
Masked Write Setup Time	t _{MCS}	0		0		ns	
Masked Write Hold Time Referenced to RAS	t _{MRH}	0	_	0		ns	
Masked Write Hold Time Referenced to CAS	t _{MCH}	0	_	0		ns	

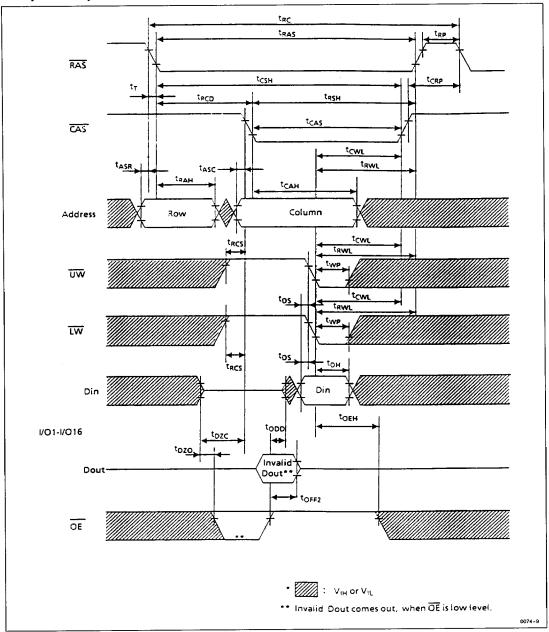

- Notes: 1. AC measurements assume $t_T = 5$ ns.
 - Assumes that t_{RCD} ≤ t_{RCD} (max) and t_{RAD} ≤ t_{RAD} (max). If t_{RCD} or t_{RAD} is greater than the maximum recommended value shown in this table, t_{RAC} exceeds the value shown.
 - 3. Measured with a load circuit equivalent to 1 TTL load and 50 pF.
 - 4. Assumes that $t_{RCD} \ge t_{RCD}$ (max) and $(t_{RCD} t_{RAD}) \ge [t_{RCD}$ (max) t_{RAD} (max)].
 - 5. Assumes that $t_{RAD} \ge t_{RAD}$ (max) and $(t_{RCD} t_{RAD}) \le [t_{RCD}$ (max) t_{RAD} (max)]. t_{RAC} t_{CAC} , and t_{AA} are determined as follows.

- 6. toff (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 7. VIH (min) and VIL (max) are reference levels for measuring timing of input signals. Also, transition times are measured between VIH and VIL.
- 8. Operation with the t_{RCD} (max) limit insures that t_{RAC} (max) can be met, t_{RCD} (max) is specified as a reference point only, if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
- 9. Operation with the t_{RAD} (max) limit insures that t_{RAC} (max) can be met, t_{RAD} (max) is specified as a reference point only, if t_{RAD} is greater than the specified t_{RAD} (max) limit, then access time is controlled exclusively by t_{AA}.
- 10. twcs, trwb, tcwb and tawb are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: if twcs ≥ twcs (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if $t_{RWD} \ge t_{RWD}$ (min), $t_{CWD} \ge t_{CWD}$ (min), $t_{AWD} \ge t_{AWD}$ (min) and tCPW 2 tCPW (min), the cycle is a read-modify-write and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- 11. These parameters are referenced to \overline{CAS} leading edge in an early write cycle and to \overline{WE} leading edge in a delayed write or a read-modify-write cycle.
- 12. t_{RASC} defines RAS pulse width in fast page mode cycles.
- 13. Access time is determined by the longer of tAA or tCAC or tACP.
- 14. An initial pause of 100 \(mu\)s is required after power up followed by a minimum of eight initialization cycles (RAS only refresh cycle or $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh cycle). If the internal refresh counter is used, a minimum of eight $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh cycles is required.
- 15. In delayed write or read-modify-write cycles, OE must disable output buffer prior to applying data to the device.
- 16. When both \overline{LW} and \overline{UW} go low at the same time, all 16-bits data are written into the device. \overline{LW} and \overline{UW} cannot be staggered within the same write cycle.

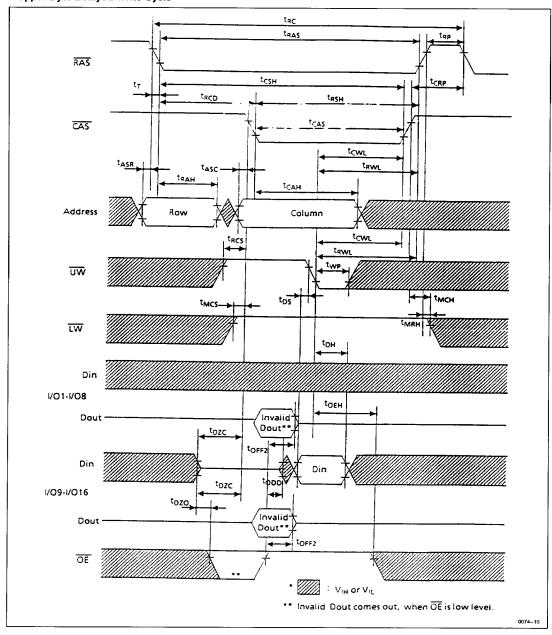

■ TIMING WAVEFORMS


• Read Cycle

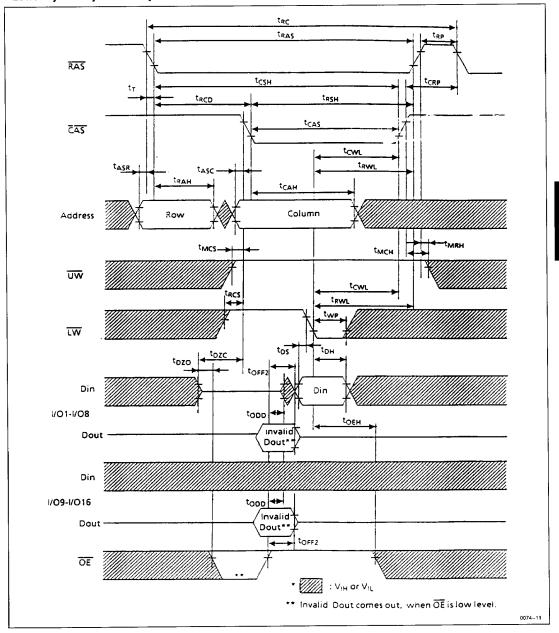

• Early Write Cycle



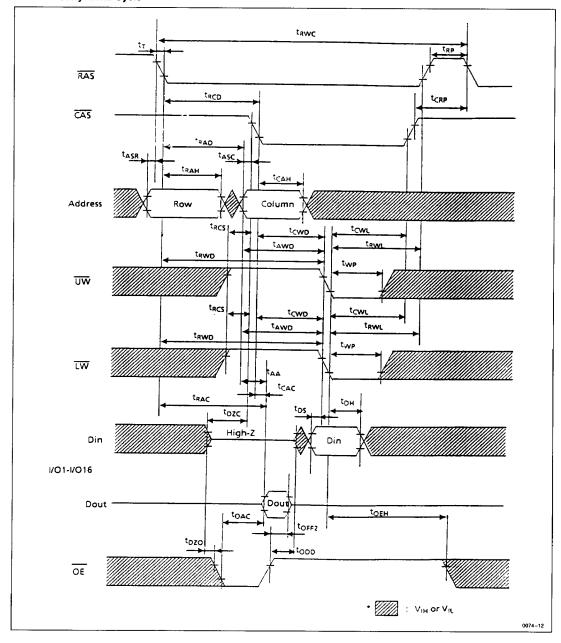
• Lower Byte Early Write Cycle



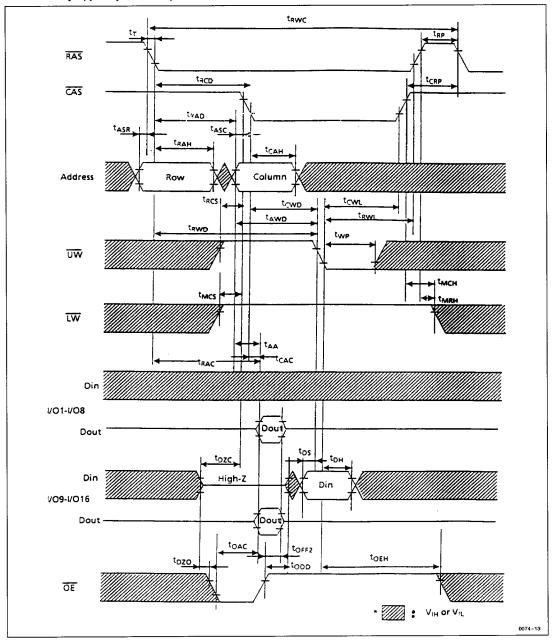
Delayed Write Cycle



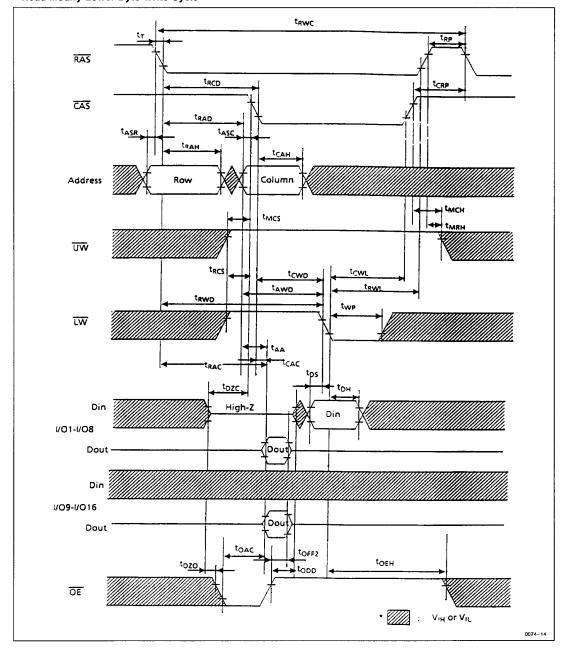
• Upper Byte Delayed Write Cycle



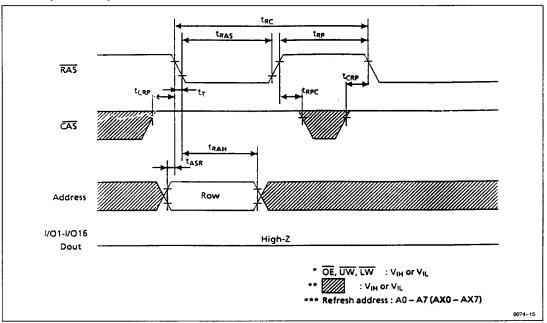
• Lower Byte Delayed Write Cycle

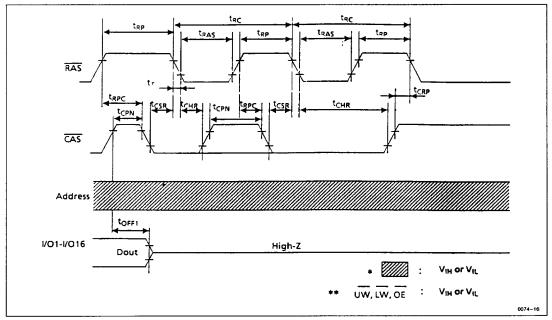


• Read-Modify-Write Cycle

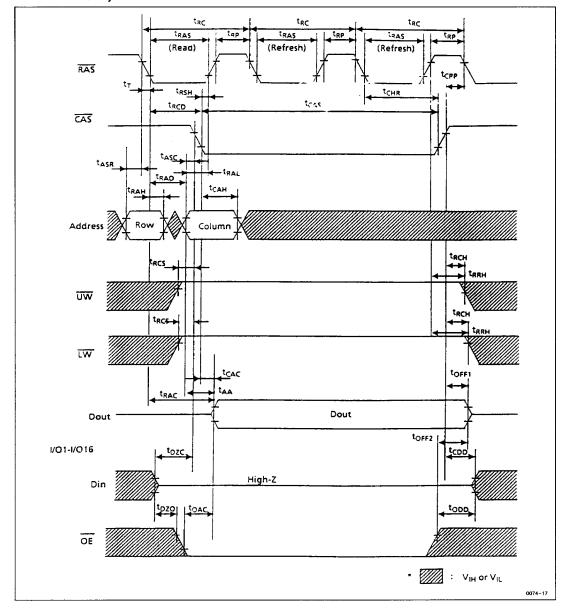


• Read Modify Upper Byte Write Cycle

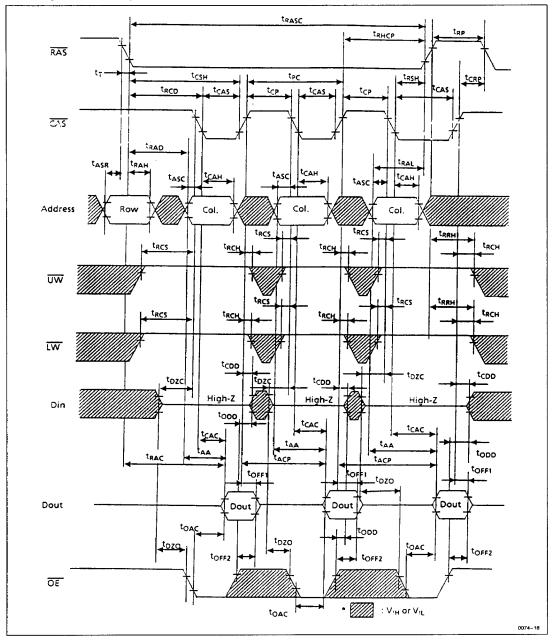



• Read Modify Lower Byte Write Cycle

• RAS Only Refresh Cycle

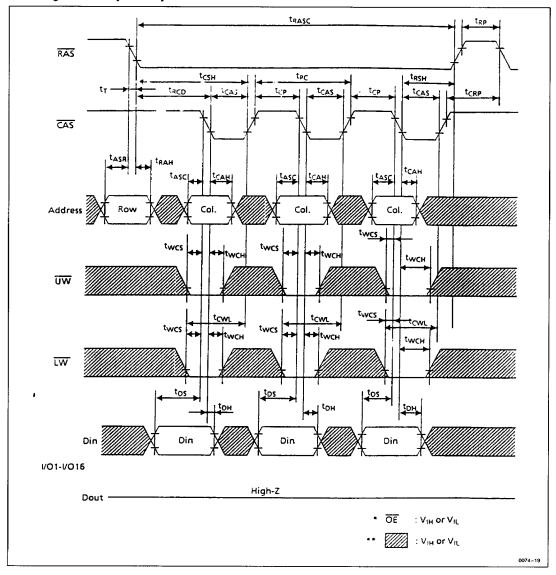


• CAS Before RAS Refresh Cycle

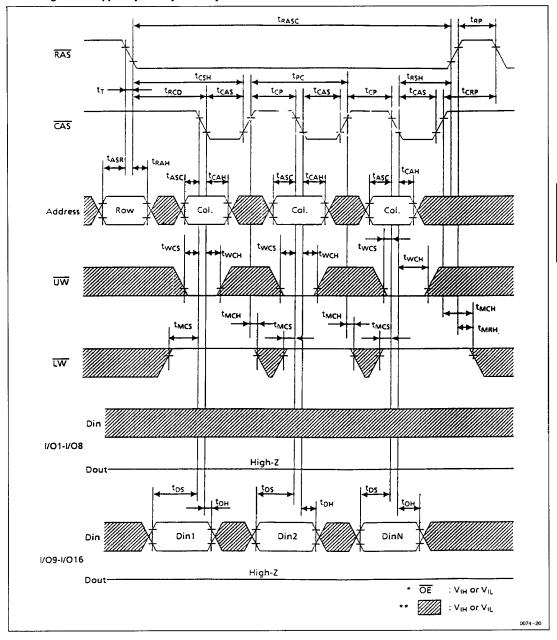


(1) HITACHI

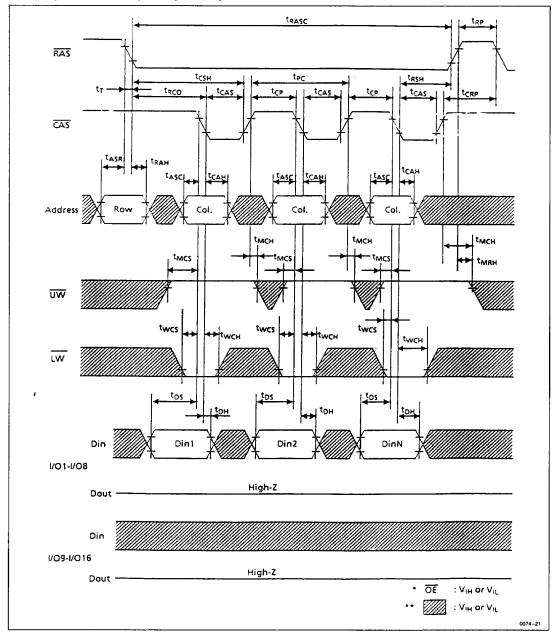
• Hidden Refresh Cycle



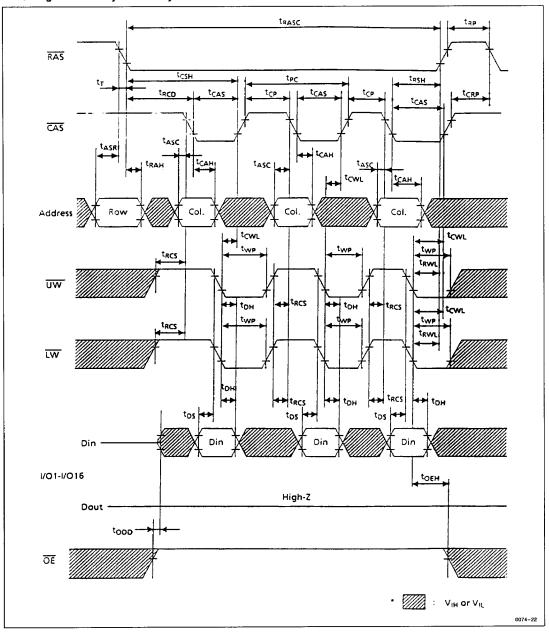
• Fast Page Mode Read Cycle



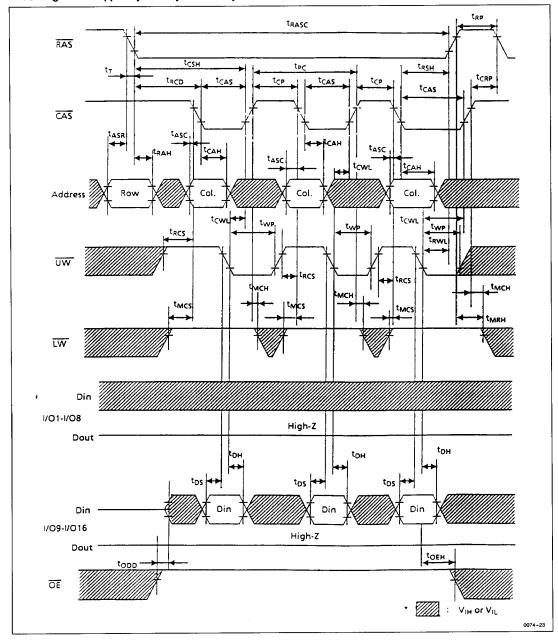
• Fast Page Mode Early Write Cycle



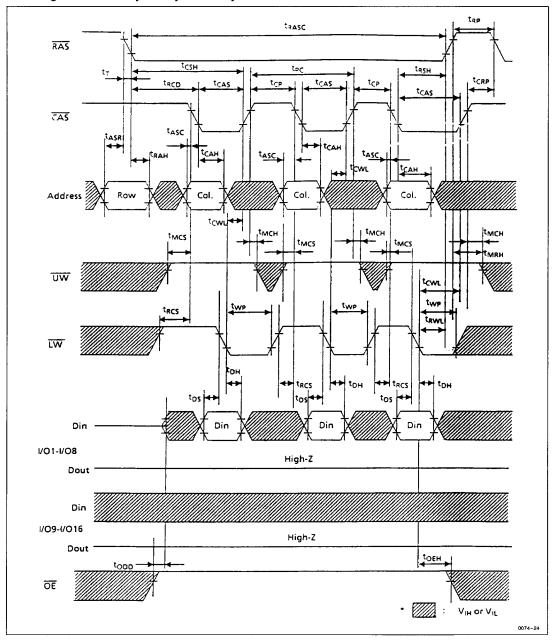
• Fast Page Mode Upper Byte Early Write Cycle



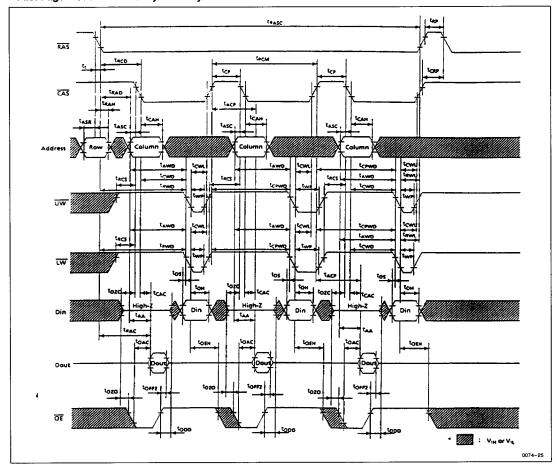
• Fast Page Mode Lower Byte Early Write Cycle



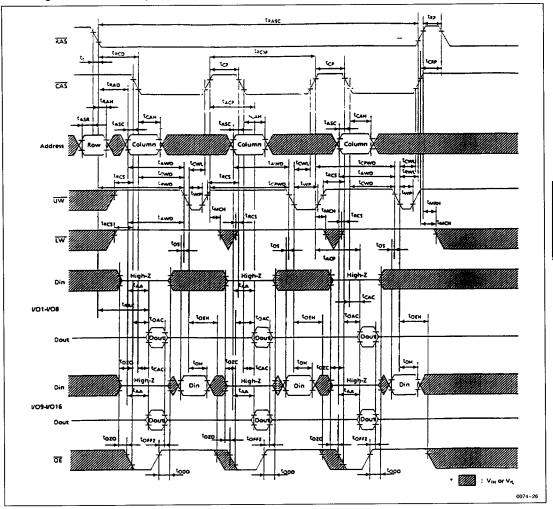
• Fast Page Mode Delayed Write Cycle



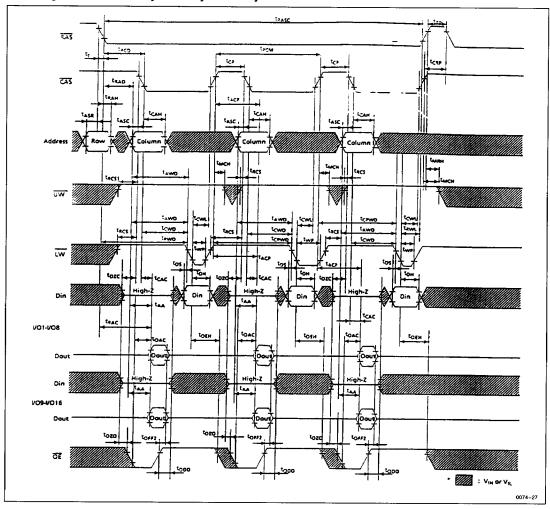
• Fast Page Mode Upper Byte Delayed Write Cycle



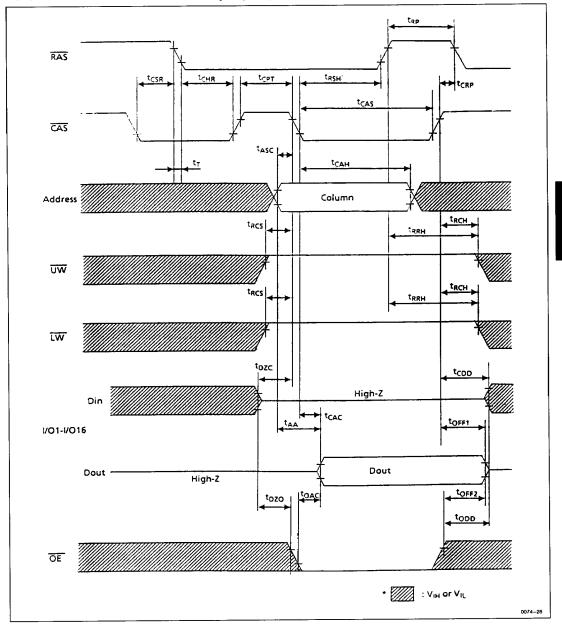
• Fast Page Mode Lower Byte Delayed Write Cycle



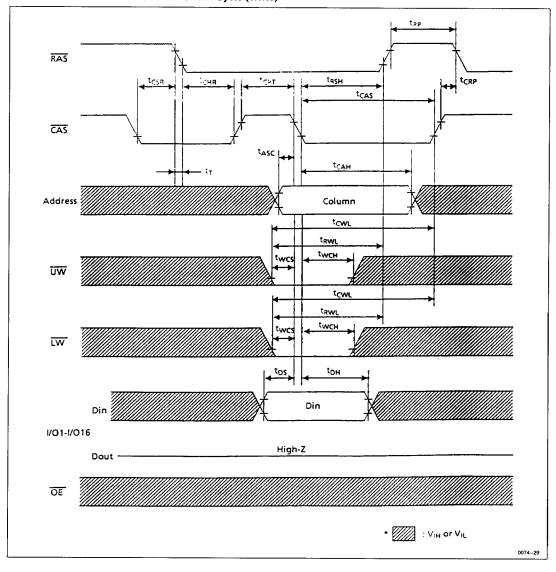
• Fast Page Mode Read-Modify-Write Cycle



• Fast Page Mode Read-Modify-Upper-Byte-Write Cycle



• Fast Page Mode Read-Modify-Lower-Byte-Write Cycle



• CAS Before RAS Refresh Counter Check Cycle (Read)

• CAS Before RAS Refresh Counter Check Cycle (Write)

