Powered by ICminer.com Electronic-Library Service CopyRight 2003

HM511665 Series

65,536-Word x 16-Bit Dynamic Random Access Memory

DESCRIPTION

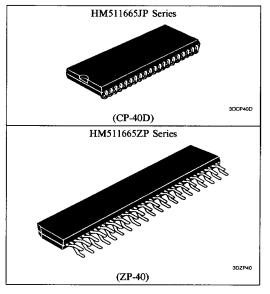
The Hitachi HM511665 are CMOS dynamic RAM organized as 65,536-word x 16-bit. HM511665 have realized higher density, higher performance and various functions by employing 0.8 μm CMOS process technology and some new CMOS circuit design technologies. The HM511665 offer Fast Page Mode as a high speed access mode.

Multiplexed address input permits the HM511665 to be packaged in standard 400 mil 40-pin plastic SOJ, standard 475 mil 40-pin plastic ZIP.

FEATURES

- Single 5V (±10%)
- High Speed

Active Mode	TBD
Standby Mode	


- Fast Page Mode Capability
- Write per Bit Capability
- 256 Refresh Cycles(4 ms)
- 3 Variations of Refresh RAS Only Refresh CAS Before RAS Refresh Hidden Refresh
 Hidden Refresh

ORDERING INFORMATION

Part No.	Access Time	Package
HM511665JP-8 HM511665JP-10	80 ns 100 ns	400 mil 40-pin Plastic SOJ (CP-40D)
HM511665ZP-8 HM511665ZP-10	80 ns 100 ns	475 mil 40-pin Plastic ZIP (ZP-40)

PIN DESCRIPTION

Pin Name	Function
A ₀ -A ₇	Address Input Refresh Address Input
W1/I/O ₁ -W16/I/O ₁₆	Write Select/Data-in/Data-out
RAS	Row Address Strobe
CAS	Column Address Strobe
WB/WE	Write per Bit/Read/Write Enable
WB/WE	Write per Bit/Read/Write Enable
ŌĒ	Output Enable
V _{CC}	Power (+ 5V)
V _{SS}	Ground
NC	No Connection

PIN OUT

HM511665.	JP Series	HM511665ZP Series
V _{cc} [1 w1/101 [2 w2/102 [3 w3/103 [4 w4/104 [5 w5/106 [6 w5/106 [7 w7/107 [3 w8/108 [9 NC [10 V _{cc} [11 <u>NC [12</u> w8/m2 [13 RAS [14 A0 [15 A1 [16 A2 [17 A3 [18 A4 [19 V _{cc} [20	40 2 V ₃₅ 39 2 W16/1016 38 2 V15/1015 37 2 W14/1014 36 2 V13/1013 35 2 V12/1012 34 2 W11/1011 33 2 V16/1010 31 2 NC 30 2 V35 27 2 NC 26 2 NC 25 2 NC 24 2 A5 22 2 A5 21 2 V55	W9/109 Z 1 NC W1/1011 4 3 W10/1010 W13/1013 6 7 W14/2014 V15/1015 8 9 W16/1016 Vys 10 11 W1//101 W2/102 12 1.1 W1//101 W3/103 14 1.1 W1//101 W3/103 14 1.1 Vrc W5/105 15 1.1 Vrc W5/105 15 1.1 Vrc W5/105 15 1.1 Vrc W5/105 15 1.7 Vrc W162 2.2 2.3 W5/108 WC 20 2.1 Yrc 2.3 W162 2.2 2.3 W5/108 MC 20 2.1 Yrc 3.3 W12 2.2 2.3 W5/108 M2 25 2.7 A.2 2.3 W12 3.3 3.3 NC W2 32
(Top V	iew)	(Bottom View) 0075-2

HITACHI

186

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

Preliminary

■ TRUTH TABLE

	I	nputs		1/0	Operation
RAS	RAS CAS WB/WE			W1/I/O1-W16/I/O16	Operation
H L L L	H H L L	H H H L	H H L H H	High-Z High-Z D _{out} D _{in} High-Z	Standby Refresh Read Write

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage on Any Pin Relative to V _{SS}	V _T	- 1.0 to + 7.0	v
Supply Voltage Relative to V _{SS}	v _{cc}	-1.0 to +7.0	v
Short Circuit Output Current	Iout	50	mA
Power Dissipation	P _T	0.8	W
Operating Temperature	T _{opr}	0 to + 70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C

ELECTRICAL CHARACTERISTICS

• Recommended DC Operating Conditions ($T_A = 0$ to $+70^{\circ}$ C)

Par	ameter	Symbol	Min	Тур	Max	Unit	Note
		V _{SS}	0	0	0	v	
Supply Voltage		V _{CC}	4.5	5.0	5.5	v	1
Input High Volt	age	VIH	2.4	_	6.5	v	1
Input Low	(Wi/I/Oi Pin)	V _{IL}	- 0.5		0.8	v	1, 2
Voltage (Others)	v _{IL}	- 1.0	-	0.8	v	1, 2	

Notes: 1. All voltage referenced to VSS.

2. The device will withstand undershoots to the -2V level with a maximum pulse width of 20 ns at the -1.5V level. (See figure 1.)

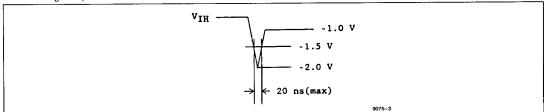


Figure 1. Undershoot of input voltage

HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

HM511665 Series

Parameter	6 h 1	HM511665-8		HM51	HM511665-10				
Farameter	Symbol	Min	Max	Min	Max	Unit	Test Conditions	Note	
Operating Current	I _{CC1}		TI	BD		mA	$\overline{RAS}, \overline{CAS} \text{ Cycling} \\ t_{RC} = Min$	1, 2	
Standby Current	I _{CC2}		:	2		mA	$\frac{\text{TTL Interface}}{\text{RAS}, \overline{\text{CAS}}} = V_{\text{IH}},$ $D_{\text{out}} = \text{High-Z}$		
	4002			1		mA	$\frac{\text{CMOS Interface } \overline{\text{RAS}}}{\overline{\text{CAS}}} \ge V_{\text{CC}} - 0.2V,$ $D_{\text{out}} = \text{High-Z}$		
RAS Only Refresh Current	I _{CC3}		TI	BD		mA	t _{RC} = Min	2	
Standby Current	I _{CC5}		TI	BD		mA	$\overline{RAS} = V_{IH},$ $\overline{CAS} = V_{IL},$ $D_{out} = Enable$	1	
CAS Before RAS Refresh Current	I _{CC6}		TI	BD		mA	$t_{RC} = Min$		
Fast Page Mode Current	I _{CC7}		TBD		TBD		mA t _{PC} = Min		1, 3
Input Leakage Current	ILI	- 10	10	- 10	10	μΑ	$0V \le V_{in} \le 6.5V$		
Output Leakage Current	ILO	- 10	-10 10 -10 10		μA	$0V \le V_{out} \le 5.5V,$ $D_{out} = Disable$			
Output High Voltage	V _{OH}	2.4	V _{CC}	2.4	V _{CC}	v	High $I_{out} = -2.5 \text{ mA}$		
Output Low Voltage	VOL	0	0.4	0	0.4	v	$Low I_{out} = 2.1 mA$		

Notes: 1. I_{CC} depends on output load condition when the device is selected, I_{CC} max is specified at the output open condition. 2. Address can be changed once or less while $\overline{RAS} = V_{IL}$.

3. Address can be changed once or less while $\overline{CAS} = V_{IH}$.

• Capacitance ($T_A = 25^{\circ}C$, $V_{CC} = 5V \pm 10\%$)

Parameter	Symbol	Тур	Max	Unit	Note
Input Capacitance (Address)	C _{I1}	_	5	pF	1
Input Capacitance (Clocks)	CI2	—	7	pF	1
Output Capacitance (Data-in, Data-out)	C _{I/O}	-	7	pF	1, 2

Notes: 1. Capacitance measured with Boonton Meter or effective capacitance measuring method.

2. $\overline{CAS} = V_{IH}$ to disable D_{out} .

OHITACHI

• AC Characteristics (T_A = 0 to +70°C, V_{CC} = 5V \pm 10%, V_{SS} = 0V)^{1, 14, 15} Read, Write, Read-Modify-Write and Refresh Cycles (Common Parameters)

		HM5	11665-8	HM51	1665-10	Unit	Note
Parameter	Symbol	Min	Max	Min	Max	Onit	NOR
Random Read or Write Cycle Time	t _{RC}	135		170	—	ns	
RAS Precharge Time	t _{RP}	45		60	_	ns	
RAS Pulse Width	tRAS	80	10000	100	10000	ns	
CAS Pulse Width	tCAS	30	10000	40	10000	ns	
Row Address Setup Time	tASR	0	—	0	1	ns	
Row Address Hold Time	t _{RAH}	10	_	10	—	ns	
Column Address Setup Time	tASC	0	_	0	—	ns	
Column Address Hold Time	^t CAH	15	_	15	_	ns	
RAS to CAS Delay Time	t _{RCD}	20	50	20	60	ns	8
RAS to Column Address Delay Time	tRAD	15	35	15	45	ns	9
RAS Hold Time	tRSH	30	_	40	—	ns	
CAS Hold Time	^t CSH	80	_	100	-	ns	
CAS to RAS Precharge Time	^t CRP	10	_	10	_	ns	
OE to D _{in} Delay Time	todd	15	_	15	-	ns	
OE Delay Time from D _{in}	^t DZO	0		0		ns	
CAS Setup Time from Din	tDZC	0	_	0	—	ns	
Transition Time (Rise and Fall)	tT	3	50	3	50	ns	7
Refresh Period	tREF	_	4	_	4	ms	

Read Cycle

_		HM5	11665-8	HM51	1665-10	Unit	Note
Parameter	Symbol	Min	Max	Min	Max	Om	INOLE
Access Time from RAS	tRAC	_	80	_	100	ns	2, 3
Access Time from CAS	^t CAC	_	30	—	40	ns	3, 4, 13
Access Time from Address	t _{AA}		45	_	55	ns	3, 5, 13
Access Time from OE	tOAC	_	30	-	40	ns	
Read Command Setup Time	tRCS	0	—	0	—	ns	
Read Command Hold Time to CAS	tRCH	0	_	0	—	ns	
Read Command Hold Time to RAS	^t RRH	0	-	0	_	ns	
Column Address to RAS Lead Time	^t RAL	45	—	55	—	ns	
Output Buffer Turn-off Time	toffi	0	20	0	20	ns	6
Output Buffer Turn-off to OE	t _{OFF2}	0	15	0	15	ns	6
CAS to Din Delay Time	^t CDD	20		20		ns	
RAS Hold Time Referenced to OE	tROH	10	_	10	-	ns	

Write Cycle

Parameter	HM511665-8		HM51	1665-10	Unit	Note	
	Symbol	Min	Max	Min	Max		Note
Write Command Setup Time	twcs	0	-	0	_	ns	10
Write Command Hold Time	twcH	15	_	15	-	ns	
Write Command Pulse Width	twp	15	—	15	—	ns	
Write Command to RAS Lead Time	t _{RWL}	20	_	20	_	ns	
Write Command to CAS Lead Time	^t CWL	20	-	20		ns	
Data-in Setup Time	t _{DS}	0	_	0	_	ns	11
Data-in Hold Time	t _{DH}	15	_	15	_	ns	11

OHITACHI

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

HM511665 Series -

Read-Modify-Write Cycle

Parameter	Symbol	HM511665-8		HM511665-10			
		Min	Max	Min	Max	Unit	Note
Read-Modify-Write Cycle Time	t _{RWC}	185	_	220	_	ns	
RAS to WE Delay Time	t _{RWD}	105	_	125	_	ns	10
CAS to WE Delay Time	tCWD	55	_	65	_	ns	10
Column Address to WE Delay Time	tAWD	70		80		ns	10, 13
OE Hold Time from WE	tOEH	15		15		ns	

Refresh Cycle

Parameter	Symbol	HM511665-8		HM511665-10		TT 1 .	
		Min	Max	Min	Max	Unit	Note
CAS Setup Time (CAS Before RAS Refresh Cycle)	^t CSR	10	_	10	_	ns	
CAS Hold Time (CAS Before RAS Refresh Cycle)	t _{CHR}	10	-	10	_	ns	
RAS Precharge to CAS Hold Time	tRPC	10	-	10	_	ns	
CAS Precharge Time in Normal Mode	^t CPN	10	_	10	_	ns	

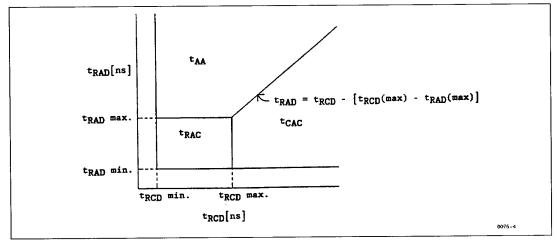
Fast Page Mode Cycle

Parameter	Symbol	HM5	11665-8	HM511665-10		TT 1.	
		Min	Max	Min	Max	Unit	Note
Fast Page Mode Cycle Time	tPC	55	_	65		ns	
Fast Page Mode CAS Precharge Time	t _{CP}	10		10		ns	
Fast Page Mode RAS Pulse Width	tRASC	80	100000	100	100000	ns	12
Access Time from CAS Precharge	tACP	_	45	_	55	ns	3, 13
RAS Hold Time from CAS Precharge	t _{RHCP}	45		55		ns	
Fast Page Mode Read-Modify- Write Cycle CAS Precharge to WE Delay Time	^t CPW	70		80	_	ns	
Fast Page Mode Read-Modify- Write Cycle Time	t _{PCM}	100	_	110	_	ns	

Counter Test Cycle

Parameter	Symbol	HM51	1665-8	HM51	1665-10	Unit	N
		Min	Max	Min	Max		Note
CAS Precharge Time in Counter Test Cycle	^t CPT	40	_	40	-	ns	

Write per Bit Cycle^{16, 17}

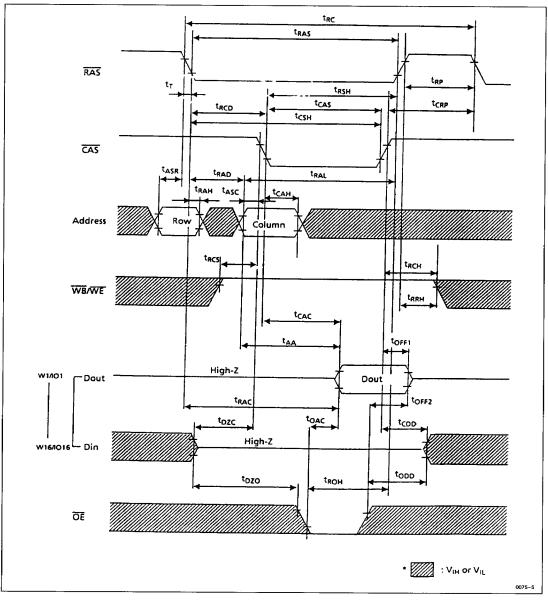

190

Parameter	Symbol	HM511665-8		HM511665-10			
		Min	Max	Min	Max	Unit	Note
Write per Bit Setup Time	t _{WBS}	0		0	_	ns	
Write per Bit Hold Time	t _{WBH}	10		IO	-	ns	
Write per Bit Selection Setup Time	twDs	0	_	0	_	ns	
Write per Bit Selection Hold Time	twDH	10	_	10	—	ns	

(C) HITACHI

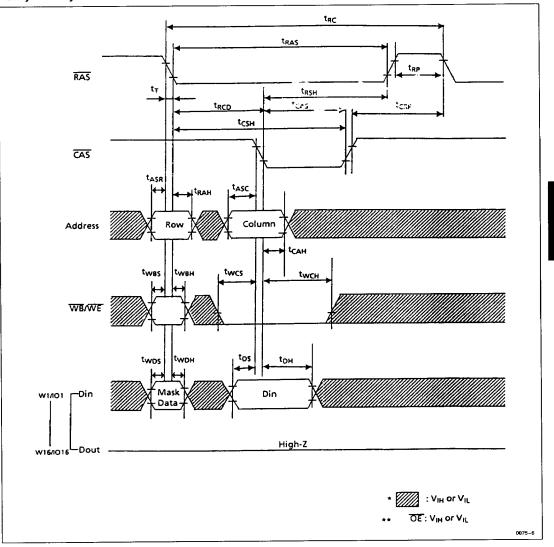
Notes: 1. AC measurements assume $t_T = 5$ ns.

- 2. Assumes that $t_{RCD} \le t_{RCD}$ (max) and $t_{RAD} \le t_{RAD}$ (max). If t_{RCD} or t_{RAD} is greater than the maximum recommended value shown in this table, t_{RAC} exceeds the value shown.
- 3. Measured with a load circuit equivalent to 1 TTL load and 50 pF.
- 4. Assumes that $t_{RCD} \ge t_{RCD}$ (max) and $(t_{RCD} t_{RAD}) \ge [t_{RCD}$ (max) t_{RAD} (max)].
- 5. Assumes that $t_{RAD} \ge t_{RAD}$ (max) and $(t_{RCD} t_{RAD}) \le [t_{RCD} (max) t_{RAD} (max)]$. t_{RAC} , t_{CAC} , and t_{AA} are determined as follows.


- 6. toFF (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 7. V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} and V_{IL}.
- 8. Operation with the t_{RCD} (max) limit insures that t_{RAC} (max) can be met, t_{RCD} (max) is specified as a reference point only, if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC} .
- 9. Operation with the t_{RAD} (max) limit insures that t_{RAC} (max) can be met, t_{RAD} (max) is specified as a reference point only, if t_{RAD} is greater than the specified t_{RAD} (max) limit, then access time is controlled exclusively by t_{AA} .
- 10. twCS, t_{RWD}, t_{CWD} and t_{AWD} are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: if t_{WCS} \geq t_{WCS} (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if t_{RWD} \geq t_{RWD} (min), t_{CWD} \geq t_{CWD} (min), t_{AWD} \geq t_{AWD} (min) and t_{CPW} \geq t_{CPW} (min), the cycle is a read-modify-write and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- 11. These parameters are referenced to CAS leading edge in an early write cycle and to WE leading edge in a delayed write or a read-modify-write cycle.
- 12. t_{RASC} defines \overline{RAS} pulse width in fast page mode cycles.
- 13. Access time is determined by the longer of tAA or tCAC or tACP.
- 14. An initial pause of 100 μ s is required after power up followed by a minimum of eight initialization cycles (RAS only refresh cycle or CAS before RAS refresh cycle). If the internal refresh counter is used, a minimum of eight CAS before RAS refresh cycles is required.
- 15. In delayed write or read-modify-write cycles, OE must disable output buffer prior to applying data to the device.
- 16. When using the write-per-bit capability, $\overline{WB}/\overline{WE}$ must be low as \overline{RAS} falls.
- 17. The data bits to which the write operation is applied can be specified by keeping Wi/I/Oi high with setup and hold time referenced to the \overline{RAS} negative transition.

OHITACHI

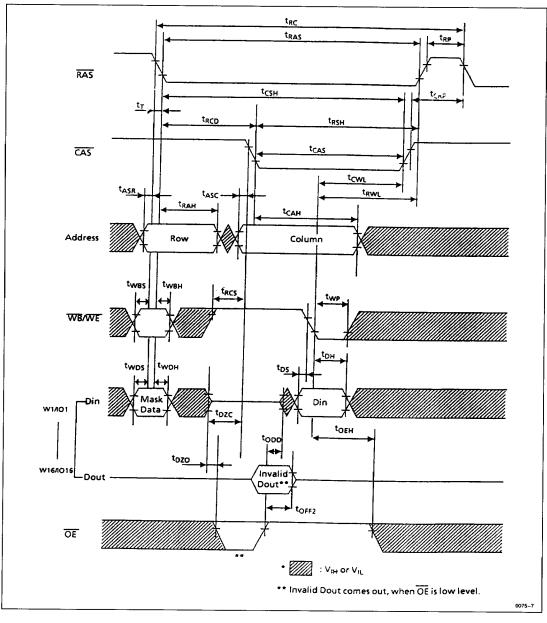
TIMING WAVEFORMS


• Read Cycle

192

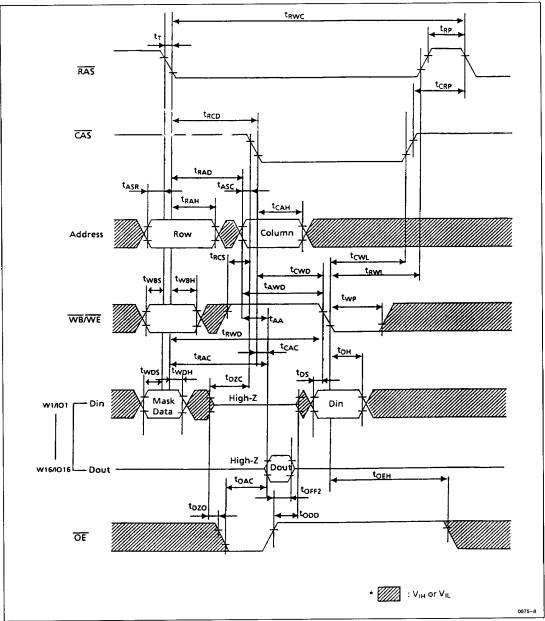
OHITACHI

• Early Write Cycle



HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

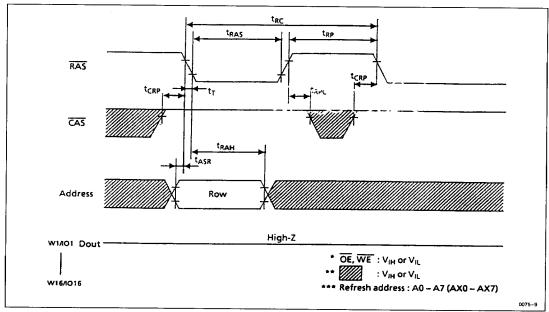
HM511665 Series


194

Delayed Write Cycle

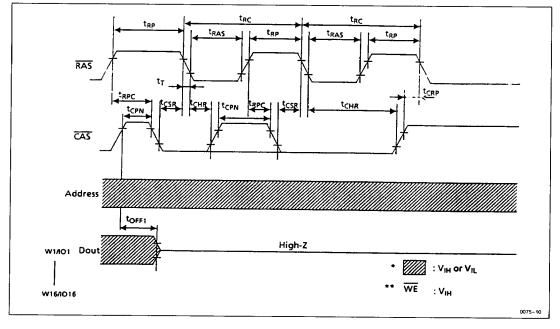
HITACHI

• Read-Modify-Write Cycle

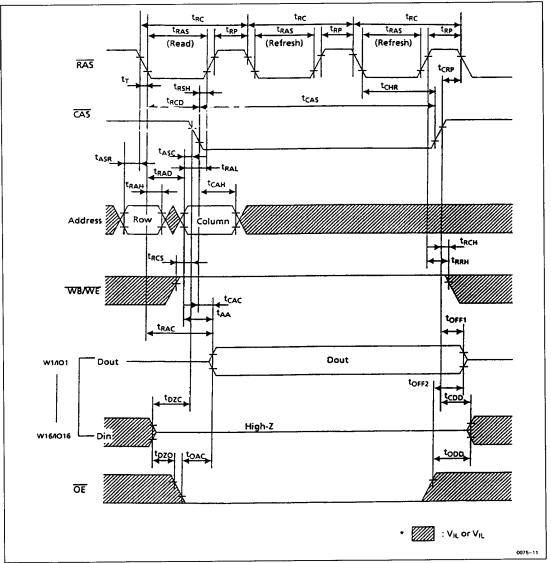


D HITACHI

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

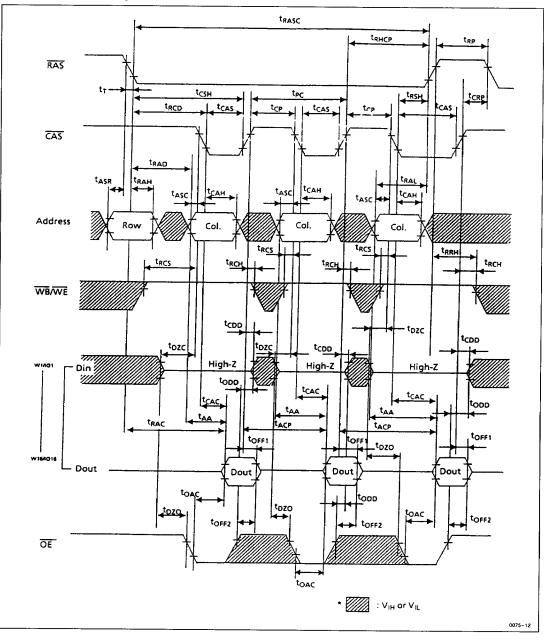

HM511665 Series -

• RAS Only Refresh Cycle



CAS Before RAS Refresh Cycle

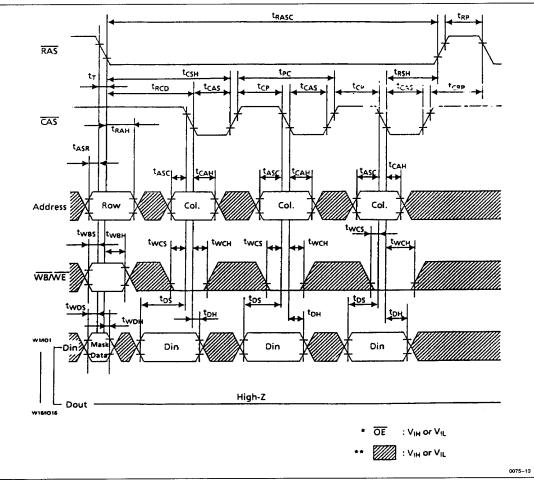
196


Hidden Refresh Cycle

HM511665 Series -

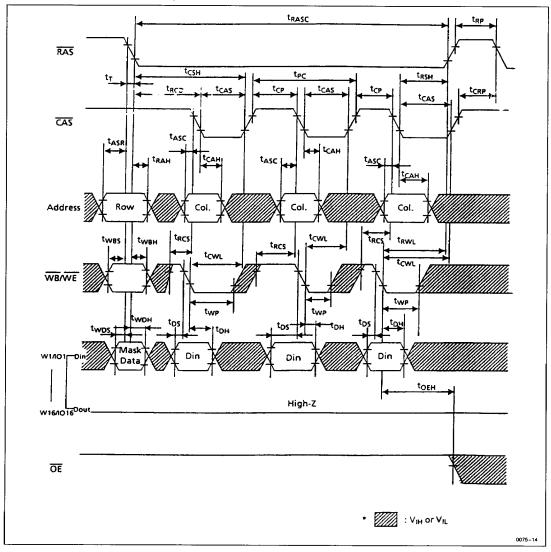
198

• Fast Page Mode Read Cycle

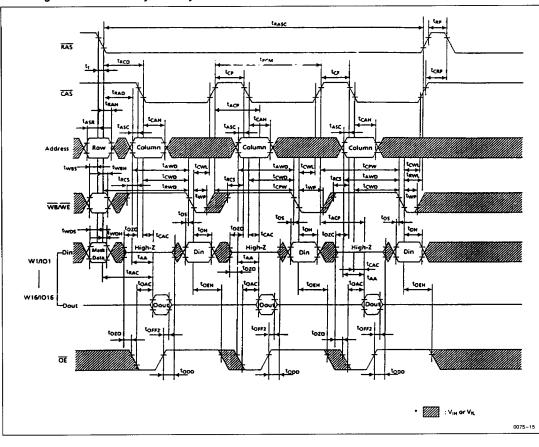

HITACHI

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

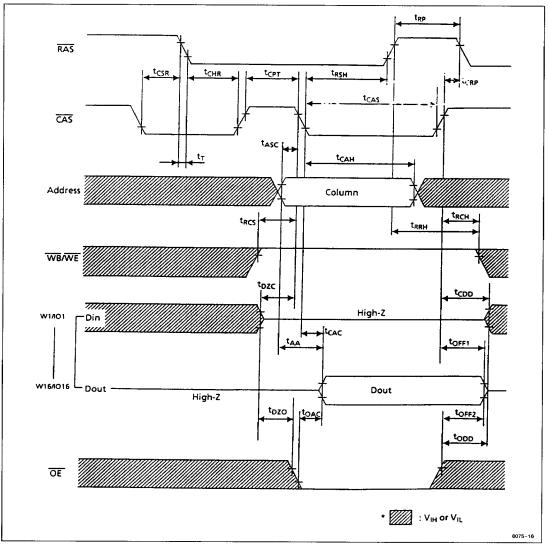
Powered by ICminer.com Electronic-Library Service CopyRight 2003


HM511665 Series

200

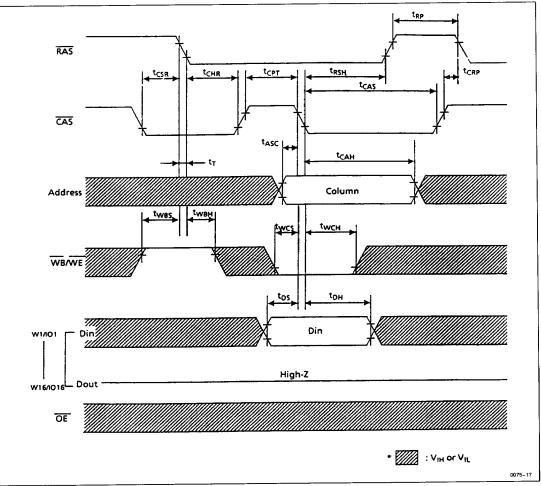

• Fast Page Mode Delayed Write Cycle

CHITACHI


• Fast Page Mode Read-Modify-Write Cycle

D HITACHI

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300


• CAS Before RAS Refresh Counter Check Cycle (Read)

(C) HITACHI

202

CAS Before RAS Refresh Check Cycle (Write)

