Rev. 2
Apr. 2, 1992

The HM538253 is a 2-Mbit multiport video RAM equipped with a 255 -kword $\times 8$-bit dynamic RAM and a 512 -word $\times 8$-bit SAM (full-sized SAM). Its RAM and SAM operate independently and asynchronously. The HM538253 has basically upward-compatibility with the HM534253A / HM538123A except that pseudo-write-transfer cycle is replaced with masked-write-transfer cycle, which has been approved by JEDEC. Furthermore, several new features are added to the HM538253 without conflict with the conventional features. Stopping column feature realizes much flexibility to the length of split SAM register. Persistent mask is also installed according to the TMS34020 features.

Features

- Multiport organization

Asynchronous and simultaneous operation of RAM and SAM capability

RAM: 256 kword $\times 8$ bit
SAM: 512 word $\times 8$ bit

- Access time

RAM: $70 \mathrm{~ns} / 80 \mathrm{~ns} / 100 \mathrm{~ns} \max$
SAM: $22 \mathrm{~ns} / 25 \mathrm{~ns} / 25 \mathrm{~ns}$ max -Cycle time

RAM: $130 \mathrm{~ns} / 150 \mathrm{~ns} / 180 \mathrm{~ns}$ min
SAM: $25 \mathrm{~ns} / 30 \mathrm{~ns} / 30 \mathrm{~ns}$ min
-Low power
Active \quad RAM: 715 mW max SAM: 468 mW max
Standby $\quad 38.5 \mathrm{~mW}$ max

- Masked-write-transfer cycle capability
-Stopping column feature capability
- Persistent mask capability
-High-speed page mode capability
- Mask write mode capability
- Bidirectional data transfer cycle between RAM and SAM capability
- Split transfer cycle capability
- Block write mode capability
-Flash write mode capability
-3 veriations of refresh ($8 \mathrm{~ms} / 512$ cycles)
- $\overline{\mathrm{R} A \bar{S}}$-only refresh
- CAS-before- $\overline{\mathrm{RAS}}$ refresh
- Hidden refresh
-TTL compatible

Ordering Information

Type No.	Access time Package		
HM538253J-7	70 ns	400 mil 40-pin plastic SOJ (CP-40D)	
HM538253J-8	80 ns		
HM538253J-10	100 ns		
HM538253TT-7	70 ns	44-pin thin small outline package (TTP-40DA)	
HM538253TT-8	80 ns		
HM538253TT-10	100 ns		
HM538253RR-7	70 ns	44-pin thin small outline package (TTP-40DAR)	
HM538253RR-8	80 ns		

Preliminary: This doament contains information on a new product. Specifications and inlormation contained herein are subject to change without notice.

HM538253 Series

Block Diagram

Pin Functions

$\overline{R A S}$ (input pin): $\overline{R A S}$ is a basic RAM signal. It is active in low level and standby in high level. Row address and signals as shown in table 1 are input at the falling edge of $\overline{R A S}$. The input level of these signals determine the operation cycle of the HM538253.

Table 1. Operation Cycles of the HM538253

Table 1. Operation Cycles of the HM538253 (cont)

Mnemonle Code	RAS					CAS		Address		VOn Input	
	CAS	DT/OE	WE	DSF1	DSF2	DSF1	DSF2	FXS	CAS	RAS	CAS/WE
BWM	1	1	0	0	0	1	0	Row	Column	WM	Column Mask
RW (No)	1	1	1	0	0	0	0	Row	Column	-	Input Data
BW (No)	1	1	1	0	0	1	0	Row	Column	-	Column Mask
FWM	1	1	0	1	0	-	0	Row	-	WM	-
LMR and Old Mask Se		1	1	1	0	0	0	(Row)	-	-	Mask Data
LCR	1	1	1	1	0	1	0	(Row)		-	Color
Option	0	0	0	0	0	-	0	Mode	-	Data	-

Mnemonic Code	Write Mask	Per 3 W.M.	Register		No. of Bndry	Functlon
			WM	Color		
BWM	Yes	No Yes	Load/use Use	Use	-	Block write (new/old mask)
RW (No)	No	No	-	-	-	Read/write (no mask)
BW (No)	No	No	-	Use	-	Block write (no mask)
FWM	Yes	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Load/use Use Use		-	Masked flash write (new/old mask)
LMR and Old Mask S		Set	Load	-	-	Load mask register and old mask set
LCR	-	-*	-	Load	-	Load color resister set
Option	-	-	-	-	-	-

Notes: 1. With CBRS, all SAM operations use stop register.
2. Atter LMR, RWM, BWM, FWM, MWT, and MSWT, use old mask which can be reset by CBRR.
3. DSF2 is fixed low in all operation. (for the addition of operation mode in future)
$\overline{\mathrm{CAS}}$ (input pin): Column address and DSF1 signals are fetched into chip at the falling edge of $\overline{\mathrm{CAS}}$, which determines the operation mode of the HM538253. CAS controls output impedance of $1 / \mathrm{O}$ in RAM.

A0 - A8 (input pins): Row address (AX0 - AX8) is determined by A0 - A8 level at the falling edge of $\overline{\text { RAS. Column address (AY0 - AY8) is determined by A0 - A8 level at the falling edge of CAS. In }}$ transfer cycles, row address is the address on the word line which transfers data with SAM data register, and column address is the SAM start address after transfer.

WE (input pin): WE pin has two functions at the falling edge of $\overline{R A S}$ and after. When $\overline{W E}$ is low at the falling edge of $\overline{\mathrm{RAS}}$, the HM538253 turns to mask write mode. According to the I/O level at the time, write on each I/O can be masked. (WE level at the falling edge of RAS is don't care in read cycle.) When $\overline{W E}$ is high at the falling edge of $\overline{\mathrm{RAS}}$, a no mask write cycle is executed. After that, $\overline{\mathrm{WE}}$ switch read/write cycles. In a transfer cycle, the direction of transfer is determined by $\overline{W E}$ level at the falling edge of $\overline{R A S}$. When $\overline{W E}$ is low, data is transferred from SAM to RAM (data is written into RAM), and when $\overline{W E}$ is high, data is transferred from RAM to SAM (data is read from RAM).

1/00 - I/O7 (inpuVouput pins): I/O pins function as mask data at the falling edge of $\overline{\mathrm{RAS}}$ (in mask write mode). Data is written only to high 1/O pins. Data on low $1 / 0$ pins are masked and internal data are retained. After that, they function as inut/output pins as those of a standard DRAM. In block write cycle, they function as address mask data at the falling edges of CAS and $\overline{W E}$.
$\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ (input pin): $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ pin functions as $\overline{\mathrm{DT}}$ (data transfer) pin at the falling edge of $\overline{\mathrm{RAS}}$ and as $\overline{\mathrm{OE}}$ (output enable) pin after that. When $\overline{D T}$ is low at the falling edge of $\bar{R} \overline{A S}$, this cycle becomes a transfer cycle. When $\overline{D T}$ is high at the falling edge of $\overline{R A S}$, RAM and SAM operate independently.

SC (input pin): SC is a basic SAM clock. In a serial read cycle, data outputs from an SI/O pin synchronously with the rising edge of SC. In a serial write cycle, data on an SI/O pin at the rising edge of $S C$ is fetched into the SAM data register.
$\overline{S E}$ (input pin): $\overline{S E}$ pin activates SAM. When SE is high, SI/O is in the high impedance state in serial read cycle and data on SI/O is not fetched into the SAM data register in serial write cycle. SE can be used as a mask for serial write because internal pointer is incremented at the rising edge of SC.

SI/O0 - SI/O7 (input/output pins): SI/Os are input/output pins in SAM. Direction of input/output is determined by the previous transfer cycle. When it was a read transfer cycle, SI/O outputs data. When it was a masked write transfer cycle or write transfer cycle, SI/O inputs data.

DSF1 (input pin): DSF1 is a special function data input flag pin. It is set to high at the falling edge of $\overline{\operatorname{RAS}}$ when new functions such as color register and mask register read/write, split transfer, and flash write, are used.

DSF2 (input pin): DSF2 is also a special function data input flag pin. This pin is fixed to low level in all operations of the HM538253.

QSF (output pin): QSF outputs data of address A8 in SAM. QSF is switched from low to high by accessing address 255 in SAM and from high to low by accessing 511 address in SAM.

Operation of HM538253

RAM Port Operation

RAM Read Cycle (DT/OE high, CAS high and DSF1 low at the falling edge of $\overline{\mathrm{RAS}}$. DSF1 low at the falling edge of CAS)

Row address is entered at the RAS falling edge and column address at the CAS falling edge to the device as in standard DRAM. Then, when WE is high and DT/OE is low while CAS is low, the selected address data outputs through $/ 10$ pin. At the falling edge of $\overline{R A S}, \overline{D T} / \overline{O E}$ and $\overline{C A S}$ become high to distinguish RAM read cycle from transfer cycle and CBR refresh cycle. Address access time ($t_{A A}$) and $\overline{R A S}$ to column address delay time ($\mathrm{t}_{\mathrm{RAD}}$) specifications are added to enable high-speed page mode.

RAM Write Cycle (Eraly Write, Delayed Write, Read-Modify-Write)

($\overline{\mathrm{DT}} \overline{\mathrm{OE}}$ high, CAS high and DSF1 low at the falling edge of $\overline{\mathrm{RAS}}, \mathrm{DSF} 1$ low at the falling edge of $\overline{\mathrm{CAS}}$)

- No Mask Write Cycle ($\overline{\mathrm{WE}}$ high at the falling edge of $\overline{\mathrm{RAS}}$)

When $\overline{C A S}$ is set low and $\overline{W E}$ is set low after $\overline{R A S}$ low, a write cycle is executed.
If $\overline{W E}$ is set low before the $\overline{C A S}$ falling edge, this cycle becomes an early write cycle and all I/O become in high impedance.
If $\overline{W E}$ is set low after the $\overline{C A S}$ falling edge, this cycle becomes a delayed write cycle. /O does not become high impedance in this cycle, so data should be entered with $\overline{\mathrm{OE}}$ in high.

- Mask Write Mode ($\overline{W E}$ low at the falling edge of $\overline{R A S}$)

If $\overline{W E}$ is set low at the falling edge of $\overline{\text { RAS, two modes of mask write cycle are capable. }}$

1. In new mask mode, mask data is loaded and used. Whether or not an I / O is written depends on I/O level at the falling edge of RAS. The data is written in high level I/Os, and the data is masked and retained in low level I/Os. This mask data is effective during the $\overline{R A S}$ cycle. So, in page mode cycles the mask data is retained during the page access.
2. If a load mask register cycle (LMR) has been performed, the mask data is not loaded from I/O pins and the mask data stored in mask registers persistently are used. This operation is known as persistent write mask, set by LMR cycle and reset by CBRR cycle.

High-Speed Page Mode Cycle ($\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ high, $\overline{\mathrm{CAS}}$ high and DSF1 low at the falling edge of $\overline{\mathrm{RAS}}$)
High-speed page mode cycle reads/writes the data of the same row address at high speed by toggling $\overline{\mathrm{CAS}}$ while RAS is low. Its cycle time is one third of the random read/write cycle. In this cycle, read, write, and block write cycles can be mixed. Note that address access time ($t_{A A}$), $\overline{R A S}$ to column address delay time ($t_{\text {RAD }}$), and access time from $\overline{C A S}$ precharge ($t_{A C P}$) are added. In one $\overline{R A S}$ cycle, 512 -word memory cells of the same row address can be accessed. It is necessary to specify access frequency within $t_{\text {RASP }}$ $\max (100 \mu \mathrm{~s}$).

Color Register Set/Read Cycle (CAS high, DT/OE high, WE high and DSF1 high at the falling edge of

 र्RAS)In color registér set cycle, color data is set to the internal color register used in flash write cycle or block write cycle. 8 bits of internal color register are provided at each $1 / \mathrm{O}$. This register is composed of static circuits, so once it is set, it retains the data until reset. Since color register set cycle is just as same as the usual read and write cycle, read, early write and delayed write cycle can be executed. In this cycle, the HM538253 refreshes the row address fetched at the falling edge of RAS.

Mask Register Set/Read Cycle ($\overline{C A S}$ high, $\overline{D T} / \overline{\mathrm{OE}}$ high, WE high, and DSF1 high at the falling edge of रAS)

In mask register set cycle, mask data is set to the internal mask register used in mask write cycle, block write cycle, flash write cycle, masked write transfer, and masked split write transfer. 8 bits of internal mask register are provided at each I / O. This mask register is composed of static circuits, so once it is set, it retains the data until reset. Since mask register set cycle is just as same as the usual read and write cycle, read, early write and delayed write cycle can be executed.

Flash Write Cycle ($\overline{\mathrm{CAS}}$ high, $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ high, $\overline{\text { WE }}$ low, and DSF1 high at the falling edge of $\overline{\mathrm{RAS}}$)
In a flash write cycle, a row of data (512 word $\times 8$ bit) is cleared to 0 or 1 at each I/O according to the data of color register mentioned before. It is also necessary to mask $W O$ in this cycle. When CAS and $\overline{D T} / \overline{O E}$ is set high, $\overline{W E}$ is low, and DSF1 is high at the falling edge of RAS, this cycle starts. Then, the row address to clear is given to row address. Mask data is as same as that of a RAM write cycle. Cycle time is the same as those of RAM read/write cycles, so all bits can be cleared in $1 / 512$ of the usual cycle time. (See figure 1.)

Figure 1 Use of Flash Write

Block Write cycle ($\overline{C A S}$ high, $\overline{D T} / \overline{\mathrm{OE}}$ high and DSF1 low at the falling edge of $\overline{\mathrm{RAS}}, \mathrm{DSF} 1$ high and $\overline{W E}$ low at the falling edge of $\overline{\text { CAS }}$)

In a block write cycle, 4 columns of data (4 word $x 8$ bit) is cleared to 0 or 1 at each I/O according to the data of color register. Column addresses A 0 and Al are disregarded. The data on I/Os and addresses can be masked. I/O level at the falling edge of $\overline{\mathrm{CAS}}$ determines the address to be cleared. (See Figure 2.) Block write cycle is as the same as the usual write cycle, so early and delayed write, read-modify-write, and page mode write cycle can be executed.

- No mask Mode Block Write Cycle ($\overline{\mathrm{WE}}$ high at the falling edge of $\overline{\mathrm{RAS}}$)

The data on $8 \mathrm{I} / \mathrm{Os}$ are all cleared when $\overline{\mathrm{WE}}$ is high at the falling edge of $\overline{\mathrm{RAS}}$.

- Mask Block Write Cycle ($\overline{\mathrm{WE}}$ low at the falling edge of $\overline{\mathrm{RAS}}$)

When $\overline{W E}$ is low at the falling edge of $\overline{\mathrm{RAS}}$, the HM538253 starts mask block write mode to clear the data on an optional I/O. The mask data is the same as that of a RAM write cycle.

Figure 2 Use of Block Write

Transfer Operation

The HM538253 provides the read transfer cycle, split read transfer cycle, masked write transfer cycle and masked split write transfer cycle as data transfer cycles. Theses transfer cycles are set by driving CAS high and $\overline{D T} / \overline{\mathrm{OE}}$ low at the falling edge of $\overline{\mathrm{RAS}}$. They have following functions:
(1) Transfer data between row address and SAM data register

Read transfer cycle and split read transfer cycle: RAM to SAM
Masked write transfer cycle and masked split write transfer cycle: SAM to RAM
(2) Determine SI/O state

Read transfer cycle: SI/O output

Masked write transfer cycle: SI/O input
(3) Determine first SAM address to access after transferring at column address (SAM start address).

SAM start address must be determined by read transfer cycle or masked write transfer cycle (split transfer cycle isn't available)before SAM access, after power on, and determined for each transfer cycle.
(4) Use the stopping columns (boundaries) in the serail shift register. If the stopping columns have been set, split transfer cycles use the stopping columns, but any boundaries cannot be set as the start address.
(5) Load/use mask data in masked write transfer cycle and masked split write transfer cycle.

Read Transfer Cycle (CAS high, DT/OE low, WE high and DSF1 low at the falling edge of $\overline{\mathrm{RAS}}$)
This cycle becomes read transfer cycle by driving $\overline{D T} / \overline{\mathrm{OE}}$ low, WE high and DSF1 low at the falling edge of $\overline{R A S}$. The row address data (512×8 bits) determined by this cycle is transferred to SAM data register synchronously at the rising edge of $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$. After the rising edge of $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$, the new address data outputs from SAM start address determined by column address. In read transfer cycle, $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ must be risen to transfer data from RAM to SAM.
This cycle can access SAM even during transfer (real time read transfer). In this case, the timing tSDD (min) specified between the last SAM access before transfer and $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ rising edge and $\mathrm{t}_{\mathrm{SDH}}$ (min) specified between the first SAM access and $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ rising edge must be satisfied. (See figure 3.) When read transfer cycle is executed, SI/O becomes output state by first SAM access. Input must be set high impedance before $t_{S Z S}(\mathrm{~min})$ of the first SAM access to avoid data contention.

Masked Write Transfer cycle ($\overline{\mathrm{CAS}}$ high, $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ low, $\overline{\mathrm{WE}}$ low, and DSF1 low at the falling edge of RAS)
Masked write transfer cycle can transfer only selected I/O data in a row of data input by serial write cycle to RAM. Whether one I/O data is transferred or not depends on the corresponding I/O level (mask data) at the falling edge of $\overline{R A S}$. This mask transfer operation is the same as a mask write operation in RAM cycles, so the persistent mode can be supported. The row address of data transferred into RAM is determined by the address at the falling edge of $\overline{R A S}$. The column address is specified as the first address for serial write after terminating this cycle. Also in this cycle, SAM access becomes enabled after $\mathrm{t}_{\text {SRD }}$ (min) after $\overline{\mathrm{RAS}}$ becomes high. SAM access is inhibited during $\overline{\mathrm{RAS}}$ low. In this period, SC must bot be risen. Data transferred to SAM by read transfer cycle or split read transfer cycle can be written to other addreses of RAM by write transfer cycle. However, the adddress to write data must be the same as that of the read transfer cycle or the split read transfer cycle (row address AX8)

Split Read Transfer Cycle ($\overline{C A S}$ high, $\overline{D T} / \overline{\mathrm{OE}}$ low, $\overline{\mathrm{WE}}$ high and DSF1 high at the falling edge of $\overline{\mathrm{RAS}}$)
To execute a continuous serial read by real time read transfer, the HM538253 must satisfy SC and $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ timings and requires an external circuit to detect SAM last address. Split read transfer cycle makes it possible to execute a continuous serial read without the above timing limitation.
The HM538253 supports two types of split register operation. One is the normal split register operation to split the data register into two halves. The other is the boundary split register operation using stopping columns described later.
Figure- 4 shows the block diagram for the normal split register operation. SAM data register (DR) consists of 2 split buffers, whose organizations are 256 -word $\times 8$-bit each. Let us suppose that data is read from upper data reagister DR1 (The row address AX8 is 0 and SAM address A8 is 1.). When split read uansfer is executed setting row address AX8 0 and SAM start addresses A0 to A7, 256-word x 8 -bit data are transferred from RAM to the lower data register DR0 (SAM address A8 is 0) automatically. After data are read from data register DR1, data start to be read from SAM start addresses of data register DR0. If the next split read transfer isn't executed while data are read from data register DR0, data start to be read from SAM start address 0 of DR1 after data are read from data register DR0. If split read transfer is executed setting row address AX8 1 and SAM start addresses A0 to A7 while data are read from data register DR1, 256 -word $\times 8$-bit data are transferred to data register DR2. After data are read from data register DR1, data start to be read from SAM start addresses of data register DR2. If the next split read transfer isn't executed while data is read from data register DR2, data start to be read from SAM start address 0 of data register DR1 after data are read from data register DR2. In split read data transfer, the SAM start address A8 is automatically set in the data register which isn't used.
The data on SAM address A8, which will be accessed next, outputs to QSF, QSF is switched from low to high by accessing SAM last address 255 and from high to low by accessing address 511. Split read transfer cycle is set when $\overline{C A S}$ is high, $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ is low, $\overline{\mathrm{WE}}$ is high and DSF1 is high at the falling edge of $\overline{R A S}$. The cycle can be executed asyncronously with SC. However, HM538253 must be satisfied USTS (min) timing specified between SC rising (Boundary address) and RAS falling. In split transfer cycle, the HMS38253 must satisfy $t_{R S T}(\mathrm{~min}), \mathrm{t}_{\mathrm{CST}}(\mathrm{min})$ and $\mathrm{t}_{\text {AST }}(\mathrm{min})$ timings specified between $\overline{\mathrm{RAS}}$ or CAS falling and column address. (See figure 5.)
In split read transfer, SI/O isn't switched to output state. Therefore, read transfer must be executed to switch SI/O to output state when the previous transfer cycle is masked write transfer cycle or masked split write transfer cycle.

Figure 4 Block Diagram for Split Transfer

Note: Ym is the SAM start address in before SRT. Bi and Bjinitiate the boundary address.
Figure 5 Limitation in Split Transfer

Masked Split Write Transfer Cycle (CAS high, $\overline{D T} / \overline{O E}$ low, $\overline{W E}$ low and DSF1 high at the falling edge of $\overline{\text { RAS }}$)
A continuous serial write cannot be executed because accessing SAM is inhibited during $\overline{\mathrm{RAS}}$ low in write transfer. Masked split write transfer cycle makes it possible. In this cycle, tsTS (min), trsT (min), ICST (min) and $\mathrm{t}_{\text {AST }}(\mathrm{min})$ timings must be salisfied like split read transfer cycle. And it is impossible to switch SI/O to input state in this cycle. If SIOO is in output state, masked write transfer cycle should be executed to switch SI/O into input state. Data transferred to SAM by read transfer cycle or split read transfer cycle can be written to other addresses of RAM by split write transfer cycle. However, in this split write transfer cycle, the MSB of row address (AX8) to write data must be the same as that of the read transfer cycle or the split read transfer cycle. In this cycle, the boundary split register operation using stopping columns is capable like split read transfer cycle.

Stopping Column in Splii Transfer Cycle

The HM538253 has the boundary split register operation using stopping columns. If a CBRS cycle has been performed, split transfer cycle performs the boundary operation. Figure 6 shows an example of boundary split register. (Boundary code is B7.)
First of all a read data transfer cycle is executed, and SAM start addresses A0 to A8 are set. The RAM data are tuansferred to the lower SAM, and SAM serial read starts from the start address (Y1) on the lower SAM. After that, a split read transfer cycle is executed, and the next start address (Y2) is set. The RAM data are transferred to the upper SAM. When the serial read arrive at the first boundary after the split read transfer cycle, the next read jumps to the start address (Y2) on the upper SAM (jump 1) and continues. Then the second split read transfer cycle is executed, and another start address (Y3) is set. The RAM data are transferred to the lower SAM. When the serial read arrive at the other boundary again, the next read jumps to the start address (Y3) on the lower SAM. In stopping column, split transfer is needed for jump operation between lower SAM and upper SAM.

Figure 6 Example of Boundary Split Register

Stopping Column Set Cycle (CBRS)

This cycle becomes stopping column set cycle by driving CAS low, WE low, DSF1 high at the falling edge of RAS. Stopping column data (boundaries) are latched from address inputs on the falling edge of $\overline{\text { RAS }}$. To determine the boundary, A2 to A7 can be used and don't care A0, A1, and A8. In the HM538253, 7 types of boundary (B2 to B8) can be set including the default case. (See stopping column boundary table.) If A2 to A6 are set to high and A7 is set to low, the boundaries (B7) are selected. Figure 6 shows the example. Once a CBRS is executed, the stopping column operation mode continues until CBRR.

Stopping Column Boundary Table

Stop Address							
Boundary code	Column size	A2	A3	A4	A5	A6	A7
B2	4	0	*	-	*	-	-
B3	8	1	0	-	-	*	-
B4	16	1	1	0	*	-	*
B5	32	1	1	1	0	-	*
B6	64	1	1	1	1	0	*
B7	128	1	1	1	1	1	0
B8	256	1	1	1	1	1	1

Notes: 1.A0, A1, and A8: don't care
2.": don't care

Register Reset Cycle (CBRR)

This cycle becomes register reset cycle (CBRR) by driving CAS low, $\overline{\text { WE }}$ high, and DSF1 low at the falling edge of $\overline{\mathrm{RAS}}$. A CBRR can reset the persistent mask operation and stopping column operation, so the HM538253 becomes the new mask operation and boundary code B8. When a CBRR is executed for stopping column operation reset, it needs to safisfy ${ }^{S} S T S ~(m i n)$ and $I_{R S T}(\mathrm{~min})$ between $\overline{\mathrm{RAS}}$ falling and SC rising.

SAM Port Operation

Serial Read Cycle

SAM port is in read mode when the previous data transfer cycle is read transfer cycle. Access is synchronized with SC rising, and SAM data is output from SIOO. When SE is set high, SIO becomes high impedance, and the internal pointer is incremented by the SC rising. After indicating the last address (address 511), the intemal pointer indicates address 0 at the next access.

Serial Write Cycle

If previous data transfer cycle is masked write transfer cycle or write transfer cycle, SAM port goes into write mode. In this cycle, SI/O data is fetched into data register at the SC rising edge like in the serial read cycle. If SE is high, SIO data isn't fetched into data register. Internal pointer is incremented by the SC rising, so SE high can be used as mask data for SAM. After indicating the last address (address 511), the internal pointer indicates address 0 at the next access.

Refresh

RAM Refresh

RAM, which is composed of dynamic circuits, requires refresh to retain data. Refresh is executed by accessing all 512 row addresses within 8 ms . There are three refresh cycles: (1) $\overline{R A S}$-only refresh cycle, (2) $\overline{C A S}$-before- $\overline{R A S}(C B R N, ~ C B R S, ~ a n d ~ C B R R) ~ r e f r e s h ~ c y c l e, ~ a n d ~(3) ~ H i d d e n ~ r e f r e s h ~ c y c l e . ~ B e s i d e s ~$ them, the cycles which activate $\overline{R A S}$ such as read/write cycles or transfer cycles can refresh the row address. Therefore, no refresh cycle is required when all row addresses are accessed within 8 ms .
(1) $\overline{\mathrm{RAS}}$-Only Refresh Cycle: $\overline{\mathrm{RAS}}$-only refresh cycle is executed by activating only $\overline{\mathrm{RAS}}$ cycle with $\overline{\mathrm{CAS}}$ fixed to high after inputting the row address ($=$ refresh address) from external circuits. To distinguish this cycle from data transfer cycle, $\overline{\mathrm{DT}} / \overline{\mathrm{OE}}$ must be high at the falling edge of $\overline{\mathrm{RAS}}$.
(2) CBR Refresh Cycle: CBR refresh cycle (CBRN, CBRS and CBRR) are set by activating $\overline{C \overline{A S}}$ before $\overline{\text { RAS. In }}$. is cycle, refresh address need not to be input through external circuits because it is input through an internal refresh counter. In this cycle, output is in high impedance and power dissipation is lowered because CAS circuits don't operate.
(3) Hidden Refresh Cycle: Hidden refresh cycle executes $C B R$ refresh with the data output by reactivating $\overline{\text { RAS }}$ when DT/OE and CAS keep low in normal RAM read cycles.

SAM Refresh

SAM parts (data register, shift resister and selector), organized as fully static circuitry, require no refresh.

Absolute Maximum Ratings

Parameter	Symbol	Value	Unlt
Vollage on any pin relative to $V_{S S}$	V_{T}	-1.0 to +7.0	V
Supply voltage relative to $V_{S S}$	$V_{C C}$	-0.5 to +7.0	V
Short circuit output current	lout	50	mA
Power dissipation	P_{T}	Topr	1.0
Operating temperature	Tstg	0 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature		-55 to +125	${ }^{\circ} \mathrm{C}$

Recommended DC Operating Conditions ($\mathrm{Ta}=0$ to $+70^{\circ} \mathrm{C}$)

Parameter	Symbol	Min	Typ	Max	Unlt	Notes
Supply voltage	$V_{C C}$	4.5	5.0	5.5	V	1
Input high voltage	$V_{\text {IH }}$	2.4	-	6.5	V	1
Input bw voltage	$V_{\text {IL }}$	$-0.5^{\circ} 2$	-	0.8	V	1

Notes: 1. All voltage referenced to $V_{S S}$
$2-3.0 \mathrm{~V}$ for pulse width $\leq 10 \mathrm{~ns}$.

DC Characteristics ($\mathrm{Ta}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$)

HM538253

-7	-8	-10

Parameter Symbol Min Max Min Max Min Max Unit Test conditions

Operating current	lcci	-	120	-	105	-		90		RAS, CAS	SC $=$
	ICc7	-	190	-	160	-		140	mA	$t_{R C}=\min$	SE -
Standby current	${ }^{1} \mathrm{CCO}$	-	7	-	7	-	7	7		PAS, CAS	SC =
	${ }^{\text {c CC8 }}$	-	85	-	70	-		70	mA		SE
RAS-only refresh current	${ }^{\text {Icc3 }}$	-	120	-	105	-		90	mA	RAS cycling	$\mathrm{SC}=$
	${ }^{1} \mathrm{CCO}$	-	190	-	160	-		140	mA	$t_{\text {AC }}=\min$	SE
Page mode current	ICC4	-	130	-	115	-		100	mA	CAS cycling RAS $=V_{1}$	g SC
	ICC10	-	200	-	170	-		150	mA		SE
CRS-beloreRAS refresh current	ICC5		95	-	85			70		FAS cycling	SC
	$\mathrm{lCC11}$	-	165	-	140	-		120	mA	$\mathrm{R}_{\text {RC }}=$ min	SE
Data transfer current	ICC6	-	130	-	115	-		100	mA	FAS, CAS	SC
	${ }^{\text {CCl }} 2$		200	-	170	-		150	mA	$\mathrm{t}_{\mathrm{RC}} \mathrm{C}=\mathrm{min}$	SE
Input leakage Lil current		-10	10		10	-1	10	10	$\mu \mathrm{A}$		
Output leakage ILO current			10	-10	010	-	10	10	μA		
Output high voltage	V_{OH}	2.4	-		-	2.	4	-	V	$\mathrm{OH}=-1$	mA
Output bw voltage	$V_{\text {OL }}$	-	0.4	-	0.4	,	-	0.4	V	$\mathrm{OL}=2.1$	mA

Notes: 1. Icc depends on output bad condition when the device is selected. ICC max is specified at the output open condition.
2. Address can be changed once while RAS is low and CAS is high.

Capacitance $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}\right.$, Bias: Clock, $\mathrm{I} / \mathrm{O}=\mathrm{V}_{\mathrm{CC}}$, address $=\mathrm{V}_{\mathrm{SS}}$)

Parameter	Symbol	Typ	Max	Unlt	Note
Input capacitance (Address)	C_{11}	-	5	pF	1
Input capacitance (Clocks)	C_{12}	-	5	pF	1
Output capacitance (IO, SVO, QSF)	$\mathrm{C}_{1 / \mathrm{O}}$	-	7	pF	1

Notes: 1. This parameter is sampled and not 100% tested.
AC Characteristics $\left(\mathrm{Ta}=0\right.$ to $\left.+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}\right){ }^{* 1,}{ }^{*} 16$
Test Conditions

- Input rise and fall times: 5 ns
- Input pulse levels: $\mathrm{V}_{\text {SS }}$ to 3.0 V
- Input timing reference levels: $0.8 \mathrm{~V}, 2.4 \mathrm{~V}$
- Output timing reference levels: $0.8 \mathrm{~V}, 2.0 \mathrm{~V}$
- Output load: RAM 1TTL + CL (50 pF)

SAM, QSF 1TTL + CL (30 pF)
(Including scope and jig)

Common Parameter

Paramater	Symbol	HM538253					Unit	Notes
		-7	-8		-10			
		Min Max	Min	Max	Min	Max		
Random read or write cycle time	${ }^{\text {t }} \mathrm{C}$	$130-$	150	-	180	-	ns	
RAS precharge time	${ }_{1} \mathrm{PP}$	$50-$	60	-	70	-	ns	
FAS pulse width	tras	7010000	80	10000	100	10000	ns	
CAS pulse width	${ }^{\text {c }}$ CAS	20	20	-	25	-	ns	
Row address setup time	${ }^{\text {A ASR }}$	0	0	-	0	-	ns	
Row address hold time	${ }^{\text {PRAH }}$	10	10	-	10	-	ns	
Column address setup time	${ }^{\text {A ASC }}$	0 ,	0	-	0	-	ns	
Column address hold time	${ }^{1}$ CAH	12 -	15	-	15	-	ns	
FAS to CAS delay time	${ }^{\text {R }}$ RCD	$20 \quad 50$	20	60	20	75	ns	2
FAS hold time referenced to CAS	${ }_{\text {trsh }}$	20 -	20	-	25	-	ns	

Common Parameter (cont)

Parameter	Symbol	HM538253						Unit	Notes
		-7		-8		-10			
		Min	Max	Min	Max	Min	Max		
CAS hold time referenced to RAS	${ }^{1} \mathrm{CSH}$	70	-	80	-	100	-	ns	
CAS to RAS precharge time	${ }^{1}$ CRP	10	-	10	-	10	-	ns	
Transition time (rise to fall)	${ }^{1}$	3	50	3	50	3	50	ns	3
Refresh period	${ }^{\text {treF }}$	-	8	-	8	-	8	ms	
DT to RAS setup time	${ }^{1}$ DTS	0	-	0	-	0	-	ns	
DT to RAS hold time	${ }^{\text {I DTH }}$	10	-	10	-	10	-	ns	
DSF1 to RAS setup time	${ }^{\text {t FSR }}$	0	-	0	-	0	-	ns	
DSF1 to RAS hold time	${ }^{1} \mathrm{RFH}$	10	-	10	-	10	-	ns	
DSF1 to CAS setup time	${ }^{\text {t FSC }}$	0	-	0	-	0	-	ns	
DSFi to CAS hold time	ICFH	12	-	15	-	15	-	ns	
Data-in to CAS delay time	${ }^{\text {I ORC }}$	0	-	0	-	0	-	ns	4
Data-in to OE delay time	tozo	0	-	0	-	0	-	ns	4
Output buffer turn-off delay referenced to CAS	toffi	-	20	-	20	-	20	ns	5
Output buffer turn-off delay referenced to $O E$	${ }^{1}$ OFF2	-	15	-	20	-	20	ns	5

Read Cycle (RAM), Page Mode Read Cycle

Parameter	Symbor	HM538253						Unit	Notes
		$\frac{.7}{M i n}$ Max		-8		-10			
				Min	Max	Min	Max		
Access time from RAS	${ }^{\text {trac }}$	-	70	-	80	-	100	ns	6, 7
Access time from CAS	${ }^{\text {t }}$ CAC	-	20	-	20	-	25	ns	7.8
Access time from $0 E$	${ }^{\text {I O }}$ OAC	-	20	-	20	-	25	ns	7
Address access time	${ }^{\prime} A A$	-	35	-	40	-	45	ns	7,9
Read command setup time	${ }^{\prime}$ RCS	0	-	0	-	0	-	ns	
Read command hold time	${ }^{1} \mathrm{RCH}$	0	-	0	-	0	-	ns	10
Read command hold bime referenced to RAS	trRH	10	-	10	-	10	-	ns	10
RAS to column address delay time	$t_{\text {Pad }}$	15	35	15	40	15	55	ns	2
Column address to RAS lead time	${ }^{\text {traL }}$	35	-	40	-	45	-	ns	
Column address to CAS lead time	${ }^{\text {c }}$ CAL	35	-	40	-	45	-	ns	
Page mode cycle time	$t^{\text {PC }}$	45	-	50	-	55	-	ns	
CAS precharge time	${ }^{1} \mathrm{CP}$	7	-	10	-	10	-	ns	
Access time from CAS precharge	${ }^{\prime} A C P$	-	40	-	45	-	50	ns	
Page mode RAS pulse width	trasp	70	1000	080	1000	100	1000	ns	

Write Cycle (RAM), Page Mode Write Cycle, Color Register Set Cycle

Read-Modify-Write Cycle

Parameter	Symbol	HM538253						Unit	Notes
		-7		-8		-10			
		1 Min	Max	Min	Max	Min	Max		
Read-modily-write cycle time	${ }^{\text {tRWC }}$	180	-	200	-	230	-	ns	
RAS pulse width (read-modity-write cycle)	$t_{\text {RWS }}$	120	10000	130	10000	150	10000	ns	
CAS to WE delay time	towd	45	-	45	-	50	-	ns	14
Column address to WE delay time	${ }^{\text {tawD }}$	60	-	65	-	70	-	ns	14
OE to data-in delay time	${ }^{1} \mathrm{ODD}$	20	-	20	-	20	-	ns	12
Access time from RAS	${ }^{\text {I }}$ RAC	-	70	-	80	-	100	ns	6. 7
Access time from CAS	${ }^{1}$ CAC	-	20	-	20	-	25	ns	7, 8
Access time from $\overline{O E}$	IOAC	-	20	-	20	-	25	ns	7
Address access time	${ }^{\text {t }}$ A ${ }^{\text {a }}$	-	35	-	40	-	45	ns	7, 9
FAS to column address delay time	$t_{\text {PAD }}$	15	35	15	40	15	55	ns	
Read command setup time	$t_{\text {RCS }}$	0	-	0	-	0	-	ns	
Write command to RAS lead time	${ }_{\text {trwL }}$	20	-	20	-	20	-	ns	
Write command to CAS lead time	'cm	20	-	20	-	20	-	ns	
Write command pulse width	${ }^{\text {t }}$ WP	15	-	15	-	15	-	ns	
Data-in setup time	${ }^{1}$ DS	0	-	0	-	0	-	ns	12
Data-in hold time -	${ }^{\text {D }}$ D	12	-	15	--	15	-	ns	12
$\overline{\text { OE hold time relerenced to WE }}$	IOEH	15	-	20	-	20	-	ns	

Refresh Cycle

Parameter	Symbol	HM538253						Unit	Notes
		-7		-8		-10			
		Min	Max	Min	Max	Min	Max		
CAS selup time (CAS-before-RAS refresh)	${ }^{\text {c C CSR }}$	10	-	10	-	10	-	ns	
CAS hold time (CAS-belore-FAS refresh)-	${ }^{\text {t }} \mathrm{CHR}$	10	-	10	-	10	-	ns	
RAS precharge to CAS hold time	${ }_{\text {IRPC }}$	10	-	10	-	10	-	ns	

Flash Write Cycle, Block Write Cycle, and Register Read Cycle

Parameter	Symbol	HM538253						Unit	Notes
		.7		-8		-10			
		Min	Max	Min	Max	Min	Max		
CAS to data-in delay time	${ }^{1} \mathrm{CDD}$	20	-	20	-	20	-	ns	13
OE to data-in delay time	IODD	15	-	20	-	20	-	ns	13

CBR Refresh with Register Reset

Parameter	Symbol	HM538253						Uni	Notes
		-7		-8		-10			
		Min	Max	Min	Max	Min	Max		
Split transler setup time -	${ }^{\text {t }}$ STS	20	-	20	-	25	-	ns	
Split transfer hold time refer	$t_{\text {RST }}$. 70	-	80	-	100	-	ns	

Read Transfer Cycle

Parameter	Symbol	HM538253						Unit	Notes
		. 7		-8		-10			
		Min	Max	Min	Max	Min	Max		
DT hold time referenced to RAS	${ }^{1} \mathrm{RDH}$	60	10000	65	10000	80	10000	ns	
DT hold time referenced to CAS	${ }^{1} \mathrm{CDH}$	20	-	20	-	25	-	ns	
OT hold lime relerenced to column address	${ }_{\text {t }}^{\text {ADH }}$	25	-	30	-	30	-	ns	
DT precharge time	${ }^{1}$ DTP	20	-	20	-	30	-	ns	
OT to RAS delay time	${ }^{\text {t }}$ DRD	60	-	70	-	80	-	ns	
SC to RAS setup time	'sRS	25	-	30	-	30	-	ns	
1st SC to RAS hold time	${ }^{\text {ISRH }}$	'70	-	80	-	100	-	ns	
1st SC to CAS hold time	${ }^{\text {t SCH }}$	25	-	25	-	25	-	ns	
1st SC to column address hold time	'sah	40	-	45	-	50	-	ns	
Last SC to DT delay time	'SOD	5	-	5	-	5	-	ns	
1st SC to DT hold time	${ }^{\text {'SOH }}$	10	-	15	-	15	-	ns	
DT to QSF delay time	${ }^{1}$ DOD	-	30	-	35	-	35	ns	15
QSF hold time relerenced to DT	${ }^{\text {I }} \mathrm{DOH}$	5	-	5	-	5	-	ns	
Serial data-in to ist SC delay time	'szs	0	-	0	-	0	-	ns	
Serial clock cycle time	${ }^{\text {tscc }}$	25	-	30	-	30	-	ns	
SC pulse width	ISC	5	-	10	-	10	-	ns	
SC precharge time	${ }^{\text {I ScP }}$	10	-	10	-	10	-	ns	
SC access time	'sca	-	22	-	25	-	25	ns	15
Serial data-out hold time	${ }^{\text {i }} \mathrm{SOH}$	5	-	5	-	5	-	ns	
Serial data-in setup time	${ }^{1} \mathrm{SIS}$	0	-	0	-	0	-	ns	
Serial data-in hold time	${ }^{\text {t }}$ IH	15	-	15	-	15	-	ns	
RAS to column address delay time	${ }^{\text {trad }}$	15	35	15	40	15	55	ns	
Column address to RAS lead time	${ }^{\text {traL }}$	35	-	40	-	45	-	ns	

Read Transfer Cycle (cont)

Parameler	Symbol	HM538253						Unit	Notes
		-7		-8		-10			
		Min	Max	Min	Max	Min	Max		
RAS to QSF delay time	${ }^{1} \mathrm{RQD}$	-	70	-	75	-	85	ns	15
CAS to QSF delay time	${ }^{1} \mathrm{COD}$	-	35	-	35	-	35	ns	15
QSF hold time referenced toRAS	${ }^{1} \mathrm{ROH}$	20	-	20	-	25	-	ns	
QSF hold time relerenced to CAS	${ }^{1} \mathrm{COH}$	5	-	5	-	5	-	ns	

Masked Write Transfer Cycle

Parameter	Symbol	HM538253						Unit	Notes
		-7		-8		. 10			
		MIn	Max	Min	Max	Min	Max		
SC setup time referenced to RAS	'SRS	25	-	30	-	30	-	ns	
RAS to SC delay time	${ }^{\text {I }}$ SRD	20	-	25	-	25	-	ns	
Serial output buffer turn-of time relerenced to RAS	ISRZ	10	40	10	45	10	50	ns	
FAS to serial data-in delay time	${ }^{\text {t SID }}$	40	-	45	-	50	-	ns	
RAS to QSF delay time	${ }^{1} \mathrm{RQD}$	-	70	-	75	-	85	ns	15
CAS to QSF delay time	${ }^{1} \mathrm{CQD}$	-	35	-	35	-	35	ns	15
QSF hold time referenced to RAS	${ }^{\text {troh }}$	20	-	20	-	25	-	ns	
QSF hold time seferenced to CAS	${ }^{1} \mathrm{COH}$	5	-	5	-	5	-	ns	
Serial clock cycle time	Iscc	25	-	30	-	30	-	ns	
SC pulse width	${ }^{\text {I Sc }}$	5	-	10	-	10	-	ns	
SC precharge time	ISCP	10	-	10	-	10	-	ns	
SC access time	I'SCA	-	22	-	25	-	25	ns	15
Serial data-out hold time	${ }^{\text {TSOH}}$	5	-	5	-	5	-	ns	
Serial data-in setup time	${ }^{\text {ISIS }}$	0	-	0	-	0	-	ns	
Serial data-in hold time	${ }^{1} \mathrm{SIH}$	15	-	15	-	15	-	ns	

Split Read Transfer Cycle, Masked Split Write Transfer Cycle

Parameter	Symbol	HM538253						Unit	Notes
		. 7		-8		-10			
		Min	Max	Min	Max	Min	Max		
Split transfer selup time	tsts	20	-	20	-	25	-	ns	
Split transfer hold time relerenced to RAS	${ }^{\text {t }}$ RST	70	-	80	-	100	-	ns	
Split transfer hold time referenced to CAS	${ }^{\text {'CST }}$	20	-	20	-	25	-	ns	
Split transfer hold time referenced to column address	${ }^{\text {t }}$ AST	35	-	40	-	45	-	ns	
SC to QSF delay time	isao	-	30	-	30	-	30	ns	15
QSF hold time referenced to SC	${ }^{\text {I }}$ SOH	5	-	5	-	5	-	ns	
Serial clock cycle time	${ }^{\prime} \mathrm{ScC}$	25	-	30	-	30	-	ns	
SC pulse width	${ }^{\text {I }} \mathrm{Sc}$	5	-	10	-	10	-	ns	
SC precharge time	'scp	10	-	10	-	10	-	ns	
SC access time	${ }^{\text {tsCA }}$	-	22	-	25	-	25	ns	15
Serial data-out hold time	${ }^{\text {t }} \mathrm{SOH}$	5	-	5	-	5	-	ns	
Serial data-in setup time	${ }^{\text {tS }}$ S	0	-	0	-	0	-	ns	
Serial data-in hold time	${ }^{\text {tSIH }}$	15	-	15	-	15	-	ns	
RAS to column address delay time	trad	15	35	15	40	15	55	ns	
Column address to RAS lead time	${ }^{\text {PraL }}$	35	-	40	-	45	-	ns	

Serial Read Cycle, Serial Write Cycle

Parametar	Symbol	HM538253						Unit	Notes
		-7		-8		-10			
		Min	Max	Min	Max	Min	Max		
Serial clock cycle time	${ }^{\text {I Sce }}$	25	-	30	-	30	-	ns	
SC pulse width	Isc	5	-	10	-	10	-	ns	
SC precharge width	${ }^{\text {I SCP }}$	10	-	10	-	10	-	ns	
Access time from SC	'sca	-	22	-	25	-	25	ns	15
Access time from SE	${ }^{\text {t SEA }}$	-	20	-	25	-	25	ns	15
Serial data-out hold time	${ }^{\text {ISOH}}$	5	-	5	\mp	5	-	ns	
Serial output buffer turn-off time referenced to SE	${ }^{\text {tS }} \mathrm{HZ}$	-	15	-	20	-	20	ns	5,17
SE to serial output in low-Z	'siz	0	-	0	-	0	-	ns	5,17
Serial data-in setup time	${ }^{\text {tSIS }}$	0	-	0	-	0	-	ns	
Serial data-in hold time	${ }^{\text {ISIH }}$	15	-	15	-	15	-	ns	
Serial write enable setup time	tsws	0	-	0	-	0	-	ns	
Serial wrie enbable hold time	'SWH	15	-	15	-	15	-	ns	
Serial write disable setup time	'swis	\bigcirc	-	0	-	0	-	ns	
Serial write disable hold time	'swit	15	-	15	-	15	-	ns	

HM538253 Series

Notes: 1. AC measurements assume $i_{T}=5 \mathrm{~ns}$.
2. When $I_{\text {RCD }}>I_{\text {RCD }}$ (max) and IRAD $>$ I RAD (max), access time is specified by tCAC or taA.
3. $V_{I H}$ (min) and $V_{I L}$ (max) are reference levels for measuring timing of input signals. Transition time I_{T} is measured between $V_{I H}$ and $V_{I L}$.
4. Data input must be floating before output buffer is turned on. In read cycle, read-modily-write cycle and delayed write cycle, either IDZC (min) or tDZO (min) must be satisfied.
5. IOFF1 (max), tOFF2 (max). ISHZ (max) and ISLZ (min) are defined as the time at which the output acheives the open circuit condition ($\mathrm{VOH}_{\mathrm{OH}}-100 \mathrm{mV}, \mathrm{V}_{\mathrm{OL}}+100 \mathrm{mV}$). This parameler is sampled and not 100% testod.
6. Assume that $I_{R C D} \leq I_{R C D}$ (max) and $t_{R A D} \leq t_{\text {RAD }}$ (max). If $t_{R C D}$ or $t_{R A D}$ is greater than the maximum recommended value shown in this table, tRAC exceeds the value shown.
7. Measured with a load circuit equivalent to 1 TLL loads and 50 pF .
8. When $t_{R C D} \geq^{t_{R C D}}$ (max) and $t_{R A D} \leq t_{R A D}$ (max), access time is specified by ${ }^{\text {t }}$ CAC.
9. When $t_{R C D} \leq t_{R C D}$ (max) and $t_{R A D} \geq I_{\text {RAD }}$ (max), access time is specified by $I_{A A}$.
10. If either $t_{R C H}$ or $t_{R R H}$ is satisfied, operation is guaranteed.
11. When IWCS 2 IWCS (min), the cycle is an early write cycle, and VO pins remain in an open circuit (high impedance) condition.
12. These parameters are specified by the later falling edge of CAS or WE.
13. Either $I_{\text {CDD }}(\mathrm{min})$ or $\mathrm{I}_{\mathrm{ODD}}(\mathrm{min})$ must be satisfied because output buffer must be turned off by CAS or OE prior to applying data to the device when output buffer is on.
14. When taWD 2 tawd (min) and ${ }^{\prime}$ CWD $\geq{ }^{\mathrm{t}}$ CWD (min) in read-modify-write cycle, the data of the selected address outputs to an 10 pin and input data is writen into the selected address. tOOD (min) must be satisfied because output buffer must be turned off by OE prior to applying data to the device.
15. Measured with a bad circuit equivalent to 1 Th. loads and 30 pF . 8 initialization cycle (normal
16. After power-up, pause for 100 us or more and exion. Hitachi recommends that 8 initialization memory cycle or refresh cycie), then sta
cycle is CBRR for internal register reset.
17. When ISHZ and ISLZ are measured in the same VCC and Ta condition and Ir and if of SE are
less than $5 \mathrm{~ns},{ }_{\mathrm{I} H \mathrm{HZ}} \leq{ }^{{ }^{\mathrm{t}} \mathrm{SLZ}+5 \mathrm{~ns}}$.
18. After power-up, OSF output is High-Z, so 1SC cycle is needed to be Low-Z it.
19. DSF2 pin is open pin, but Hitachi recommends it is fixed low in all operation for the addition mode in future.

- Timing Waveforms

: Don't care

Write Cycle

The write cycle state table as shown below is applied to early write, delayed write, page mode write, and read-modify write.

Write Cycle State Table

Menu	Cycle	FAS	CAS	RAS	FAS	CAS
		-DSF1	DSF1	WE	1/O	vo
		W1	W2	W3	W4	W5
RWM	Write mask (new/old) Write DQs to VOs	0	0	0	Write mask ${ }^{1}$	Valid dala
BWM	Write mask (new/old) Block write	0	1	0	Write mask ${ }^{2}$	Column mask ${ }^{2}$
RW	Normal write (no mask)	0	0	1	Don't care ${ }^{-1}$	Valid data
BW	Block write (no mask)	0	1	1	Don't care ${ }^{2}$	Column mask ${ }^{2}$
LMR	Load write mask resister	1	0	1	Don't care	Write mask data ${ }^{3}$
LCR	Load color resister	1	1	1	Don't care	Color data

Note 1

WE	Mode	1O data $\overline{\text { RAS }}$
Low	New Mask Mode	Mask
	Persistent Mask Mode	Don't care (mask register used)
	No mask	Don't care

VO Mask Data (In new mask mode)
Low: Mask
High: Non Mask
In persistent mask mode, VO don' care
Note 2: reference Figure 2 use of Block Write
Note 3: IO Write Mask Data
Low: Mask
High: Non mask

W1 to W5: See Write Cycle State Table for the logic states.

Delayed Write Cycle

W1 to W5: See Write Cycle State Table for the logic states.

Page Mode Write Cycle (Early Write)

W1 to W5: See Write Cycle State Table for the logic states.

W1 to W5: See Write Cycle State Table for the locgic states.

Read-Modify-Write Cycle

W1 to W5: See Write Cycle State Table for the logic states.

- $\overline{R A S}-O n l y$ Refresh Cycle

$\overline{\mathrm{CAS}}$-Before- $\overline{\mathrm{RAS}}$ Refresh Cycle (CBRN)

Hidden Refresh Cycle

$\overline{\mathrm{CAS}}$-Before- $\overline{\mathrm{RAS}}$ Set Cycle (CBRS)

$\overline{\text { CAS-Before-RAS }}$ Reset Cycle (CBRR)

Note: 1. Bi, Bj initiate the boundary addresses.

Flash Write Cycle

Register Read Cycle (Mask data, Color data)

Note: 1. State of DSF1 at falling edge of $\overline{C A S}$

State	0	1
Accessed Data	Mask Data (LMR)	Color Data (LCR)

Read Transfer Cycle-1

Read Transfer Cycle - 2

Masked Write Transfer Cycle

Note: 1. I/0 Mask Data (In new mask mode)
Low : Mask
High : Non Mask
I/O : Don't care in persistent mask mode.

Notes: 1. Ym is the SAM start address in before SRT.
2. Bi, Bj initiate the boundary address.

Masked Split Write Transfer Cycle

Notes: 1. Ym is the SAM start address in before SRWT.
2. Bi, Bj initiate the boundary address.
3. I/O Mask Data (In new mask mode)

Low : Mask
High : Non Mask
I/O : Don't care in persistent mask mode.

Serial Read Cycle

Sereal Write Cycle

Package Outline

Unit: mm

HM538253J Series (CP.40D)

Package Outline (cont)

Unit: mm

HM538253TT Serles (TTP-40DA)

HM538253RR Series (TTP-40DAR)

When using this document, keep the following in mind:

1. This document may, wholly or partially, be subject to change without notice.
2. All rights are reserved: No one is permitted to reproduce or duplicate. in any form, the whole or part of this document without Hitachi's permission.
3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
5. No licerse is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Lld.
6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, butt is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales office when planning to use the products in MEDICAL APPLICATIONS.

(古) Hitachi, Ltd.

Sembenductorx at triceried Circuive Div.
New Maranorchi Blden 5-1 Merunoechl 1-chorre, Chiyode-ha, Tokya, 100, Sapea Tal : Tokyo (CB) 212:1111
Taler : J22395, J22432, 224491, 226375 (HITACHY)
Pax : 03-2143158 Cible : HTTACHY TOXYO

For haquiry wrtie to:			
	INITEN	LONDON	IIONG KONG
SAN TRANCTSCO	MUNHEN	Henchi Exope 1 d	Hiechi Ploctronic Composenty
Fruch: Aumation Lid	Hindi Exape Ombl	Henchi Evopo Lan	
Samicontuctore \pm K	Elecranic Comporenta Division	Excturie Comporerts Division	
	Coutall European Ilemdqumeri	Northerm Earope Ifendquenter	nit S12-513, SF Norin Tower
Divieion 200 Sierra Pobat Parkwry	Hese-Pbed Srate 104,	21, Upton Road.	World Pinunce Centre
	O13 Hembeivarchen	Watford	Habour Caty, Canma Roed, Tim Sha Trui
Brisbere, CA \$4000-1519	criter bei Mirly	Herts WDITIS. U.K.	Kowioca, Hong Kons
U.S.A.		Tal : 0923-246488	Tal : 3-7219218-9, 7200698-9
	Telex conse3 mice 0	Telocorp Oold : K5871 MONREP 0	Telex : 40015 (HITBC HX)
T4 : 415.589.8300	FEx: 0f9-46306\%	ATTN 76 (1ECOLO)	
P2x : 415.383-4207	,	Telex : 936293 (1ITEC O)	
		Fas : 0922-20422	

Revision Record

Rev.	Date	Contents of Modification	Drawn by	Approved by
0	Apr. 26, 1991	Initial issue	S.Ishikawa	K.Oishi
1	Sep. 27, 1991	Addition of HM538253TT/RR series.	S.Ishikawa	M. Yamamura
		Addition of HM538253-7		
		Change of Low Power (Active)		
		RAM: 633 mW (max) $\rightarrow 715 \mathrm{~mW}$ (max)		
		SAM: 385 mW (max) $\rightarrow 468 \mathrm{~mW}$ (max)		
		Pin Descriptioon		
		Addition of No lead		
		Change of sopping column boundary table.		
		Addition of note 17 for AC characteristics.		
		Addition of note for Masked Write Transfer Cycle and Masked Split Transfer Cycle.		
		Pin Arrangement Addition of TSOP		
		Operation of HM538253		
		Change of Mask Resister Set/Read Cycle and DSF1 low \rightarrow and DSF1 high		
		Figure 1/Figure 2: Change of DSF1		
		Figure 2: Address Mask \rightarrow Column Mask		
		Addition of note for DC Characteristics		
		Capacitance Change of V_{CC} range: $5 \mathrm{~V} \rightarrow 5 \mathrm{~V} \pm 10 \%$		
		AC Characteristics		
		Addition of Output load		
		$t_{\text {RAH: }} 15 \mathrm{~ns}$ (min) $\rightarrow 10 \mathrm{~ns}$ (min)		
		$\mathrm{t}_{\text {RCD }}: 25 \mathrm{~ns}(\mathrm{~min}) \rightarrow 20 \mathrm{~ns}(\mathrm{~min})$		
		${ }^{\text {D }}$ (TH: $: 15 \mathrm{~ns}(\mathrm{~min}) \rightarrow 10 \mathrm{~ns}(\mathrm{~min})$		
		${ }^{\text {RFFH }}$: 15 ns (min) $\rightarrow 10 \mathrm{~ns}$ (min)		
		${ }^{t_{R A D}}: 20 \mathrm{~ns}(\mathrm{~min}) \rightarrow 15 \mathrm{~ns}(\mathrm{~min})$		
		$\dagger_{\text {RWL }}: 25 \mathrm{~ns}(\mathrm{~min}) \rightarrow 20 \mathrm{~ns}$ (min)		
		$L_{\text {CWL }}: 25 \mathrm{~ns}$ (min) $\rightarrow 20 \mathrm{~ns}$ (min)		
		$t_{W H}: 15 \mathrm{~ns}(\mathrm{~min}) \rightarrow 10 \mathrm{~ns}(\mathrm{~min})$		
		$\mathrm{t}_{\mathrm{MH}}{ }^{\text {c }} 15 \mathrm{~ns}(\mathrm{~min}) \rightarrow 10 \mathrm{~ns}(\mathrm{~min})$		
		${ }_{\text {t }}^{\text {RWC: }}$: $235 \mathrm{~ns}(\mathrm{~min}) \rightarrow 230 \mathrm{~ns}(\mathrm{~min}$)		
		$\mathrm{t}_{\text {RWS }}: 155 \mathrm{~ns}(\mathrm{~min}) \rightarrow 150 \mathrm{~ns}(\mathrm{~min})$		
		$4_{\text {CWD }} 55 \mathrm{~ns}(\mathrm{~min}) \rightarrow 50 \mathrm{~ns}(\mathrm{~min})$		
		$t_{\text {AWD }}: 75 \mathrm{~ns}(\mathrm{~min}) \rightarrow 70 \mathrm{~ns}(\mathrm{~min})$		
		$t_{\text {RAD }}: 20 \mathrm{~ns}(\mathrm{~min}) \rightarrow 15 \mathrm{~ns}(\mathrm{~min})$		
		$t_{\text {RWL }}: 25 \mathrm{~ns}(\mathrm{~min}) \longrightarrow 20 \mathrm{~ns}(\mathrm{~min})$		
		${ }^{1} \mathrm{CWL}: 25 \mathrm{~ns}(\mathrm{~min}) \rightarrow 20 \mathrm{~ns}$ (min)		

Revision Record (cont)

HM538253 Series

Revision Record (cont)

This datasheet has been downloaded from: www.DatasheetCatalog.com

Datasheets for electronic components.

