8192-word × 8-bit CMOS Electrically Erasable and Programmable CMOS ROM

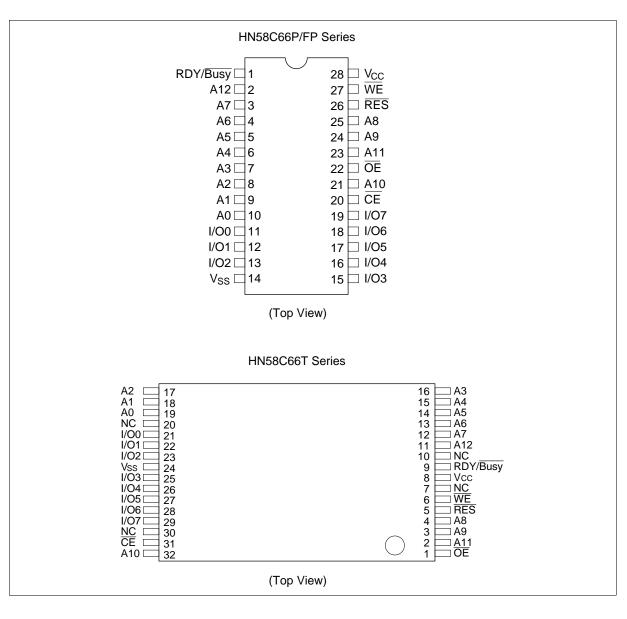
HITACHI

ADE-203-375F (Z) Rev. 6.0 Apr. 12, 1995

Description

The Hitachi HN58C66 is a electrically erasable and programmable ROM organized as 8192-word \times 8-bit. It realizes high speed, low power consumption, and a high level of reliability, employing advanced MNOS memory technology and CMOS process and circuitry technology. It also has a 32-byte page programming function to make its erase and write operations faster.

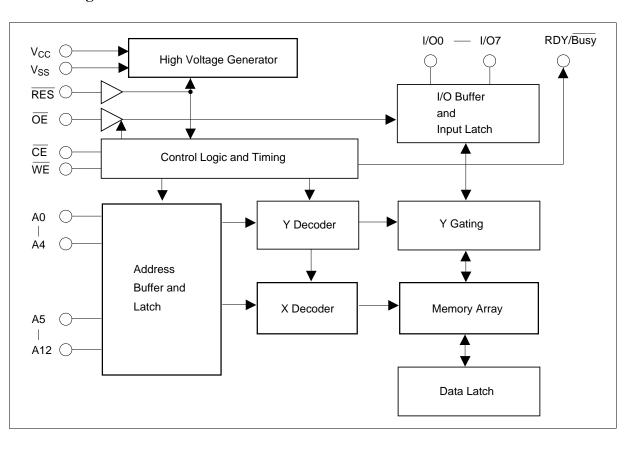
Features


- Single 5 V supply
- On chip latches: address, data, \overline{CE} , \overline{OE} , \overline{WE}
- Automatic byte write: 10 ms max
- Automatic page write (32 bytes): 10 ms max
- High speed: Access time 250 ns max
- Low power dissipation:
 - 20 mW/MHz typ (active)
 - 2.0 mW typ (standby)
- Data polling, RDY/Busy
- Data protection circuit on power on/off
- · Conforms to JEDEC byte-wide standard
- Reliable CMOS with MNOS cell technology
- 10⁵ erase/write cycles (in page mode)
- 10 years data retension
- Write protection by RES pin

Ordering Information

Type No	Access Time	Package
HN58C66P-25	250 ns	600-mil 28-pin plastic DIP (DP-28)
HN58C66FP-25	250 ns	28-pin plastic SOP ^{*1} (FP-28D/DA)
HN58C66T-25	250 ns	32-pin plastic TSOP (TFP-32DA)

Note: 1. T is added to the end of the type no. for a SOP of 3.00 mm (max) thickness.


Pin Arrangement

Pin Description

Pin Name	Function
A0 – A12	Address
I/O0 – I/O7	Data input/output
ŌĒ	Output enable
CE	Chip enable
WE	Write enable
V _{cc}	Power supply (+5 V)
V _{SS}	Ground
RES	Reset
NC	No connection
RDY/Busy	Ready/Busy

Block Diagram

Mode Selection

Pin Mode	CE	OE	WE	RDY/Busy	RES	I/O
Read	V_{IL}	V_{IL}	V_{IH}	High-Z	V _H *1	Dout
Standby	V_{IH}	X*2	Χ	High-Z	Χ	High-Z
Write	V _{IL}	V _{IH}	V _{IL}	High-Z to V _{OL}	V _H	Din
Deselect	V_{IL}	V_{IH}	V_{IH}	High-Z	V_{H}	High-Z
Write inhibit	Χ	Χ	V_{IH}	High-Z	Χ	_
	X	V _{IL}	Х			
Data polling	V _{IL}	V _{IL}	V _{IH}	V _{OL}	V _H	Data out (I/O7)
Program reset	Х	Х	Х	High-Z	V _{IL}	High-Z

Notes: 1. Refer to the recommended DC operating condition.

2. X = Don't care.

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply voltage ^{*1}	V _{cc}	-0.6 to +7.0	V
Input voltage ^{*1}	Vin	-0.5 ^{*2} to +7.0	V
Operating temperature range ^{*3}	Topr	0 to +70	°C
Storage temperature range	Tstg	-55 to +125	°C

Notes: 1. With respect to V_{ss}

2. Vin min = -3.0 V for pulse width ≤ 50 ns

3. Including electrical characteristics and data retention

Recommended DC Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{cc}	4.5	5.0	5.5	V
Input voltage	V_{IL}	-0.3	_	0.8	V
	V _{IH}	2.2	_	V _{cc} + 1.0	V
	V _H	$V_{\text{CC}} - 0.5$	_	V _{cc} + 1.0	V
Operating temperature	Topr	0	_	70	°C

DC Characteristics (Ta = 0 to +70°C, $V_{CC} = 5 \text{ V} \pm 10\%$)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input leakage current	I _{LI}	_	_	2 ^{*1}	μΑ	$V_{CC} = 5.5 \text{ V},$ Vin = 5.5 V
Output leakage current	I _{LO}	_	_	2	μΑ	V _{cc} = 5.5 V, Vout = 5.5/0.4 V
V _{cc} current (standby)	I _{CC1}	_	_	1	mA	$\overline{\text{CE}} = V_{\text{IH}}, \overline{\text{CE}} = V_{\text{CC}}$
V _{cc} current (active)	I _{CC2}	_	_	8	mA	lout = 0 mA, Duty = 100%, Cycle = 1 μ s at V_{cc} = 5.5 V
		_	_	25	mA	lout = 0 mA, Duty = 100% Cycle = 250 ns at V_{cc} = 5.5 V
Input low voltage	V _{IL}	-0.3 ^{*2}	_	0.8	V	
Input high voltage	V_{IH}	2.2	_	V _{cc} + 1.0	V	
	V_{H}	$V_{\rm cc}-0.5$	_	V _{cc} + 1.0	V	
Output low voltage	V_{OL}	_	_	0.4	V	I _{OL} = 2.1 mA
Output high voltage	V_{OH}	2.4	_	_	V	$I_{OH} = -400 \mu A$

Notes: 1. I_{LI} on \overline{RES} = 100 μ A max.

2. V_{IL} min = -1.0 V for pulse width \leq 50 ns

Capacitance (Ta = 25°C, f = 1 MHz)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input capacitance	Cin*1	_	_	6	pF	Vin = 0 V
Output capacitance	Cout ^{*1}	_	_	12	pF	Vout = 0 V

Note: 1. This parameter is periodically sampled and not 100% tested.

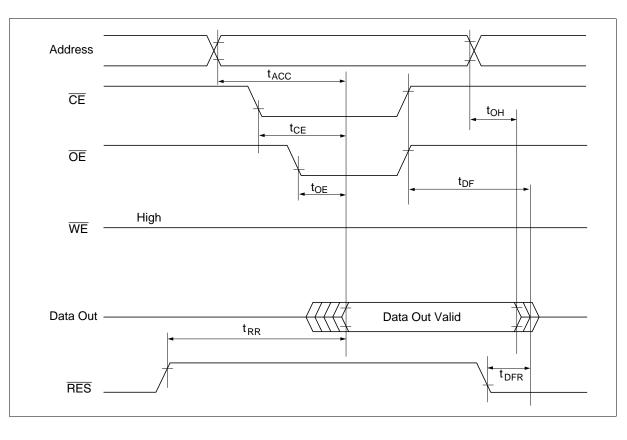
AC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V ± 10%)

Test Conditions

• Input pulse levels: 0.4 V to 2.4 V, 0 to V_{CC} (\overline{RES} pin)

• Input rise and fall time: ≤ 20 ns

Output load: 1TTL gate +100 pF


• Reference levels for measuring timing: 0.8 V, 2.0 V

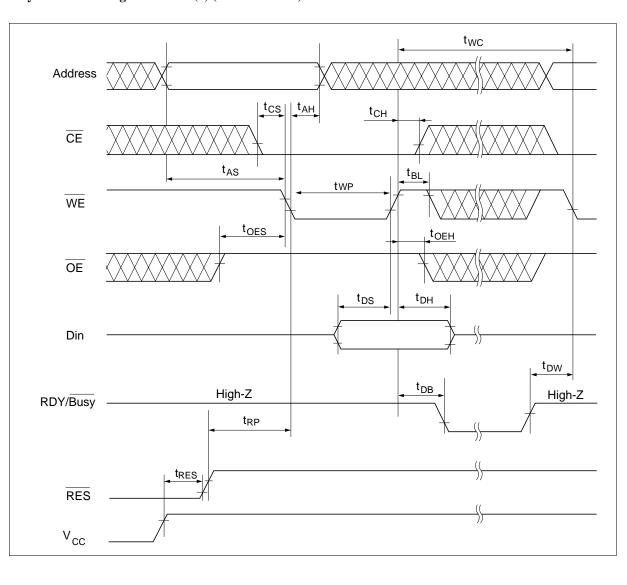
Read Cycle

Parameter	Symbol	Min	Max	Unit	Test Conditions
Address to output delay	t _{ACC}	_	250	ns	$\overline{CE} = \overline{OE} = V_{IL}, \overline{WE} = V_{IH}$
CE to output delay	t _{CE}	_	250	ns	$\overline{OE} = V_{IL}, \overline{WE} = V_{IH}$
OE to output delay	t _{OE}	10	100	ns	$\overline{CE} = V_{IL}, \overline{WE} = V_{IH}$
OE (CE) high to output float*1	t _{DF}	0	90	ns	$\overline{\text{CE}} = V_{IL}, \overline{\text{WE}} = V_{IH}$
RES low to output float*1	t _{DFR}	0	350	ns	$\overline{CE} = \overline{OE} = V_{IL}, \overline{WE} = V_{IH}$
Data output hold	t _{oh}	0	_	ns	$\overline{CE} = \overline{OE} = V_{IL}, \overline{WE} = V_{IH}$
RES to output delay	t _{RR}	0	450	ns	$\overline{CE} = \overline{OE} = V_{IL}, \ \overline{WE} = V_{IH}$

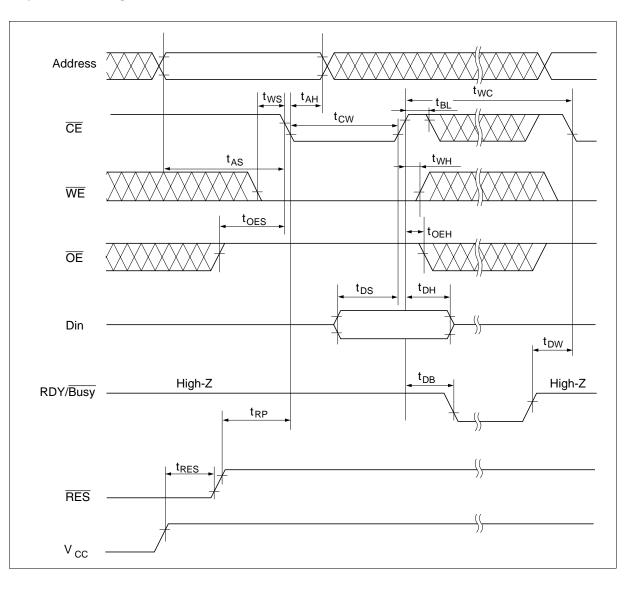
Note: 1. t_{DF}, t_{DFR} is defined at which the outputs achieve the open circuit conditions and are no longer driven.

Read Timing Waveform

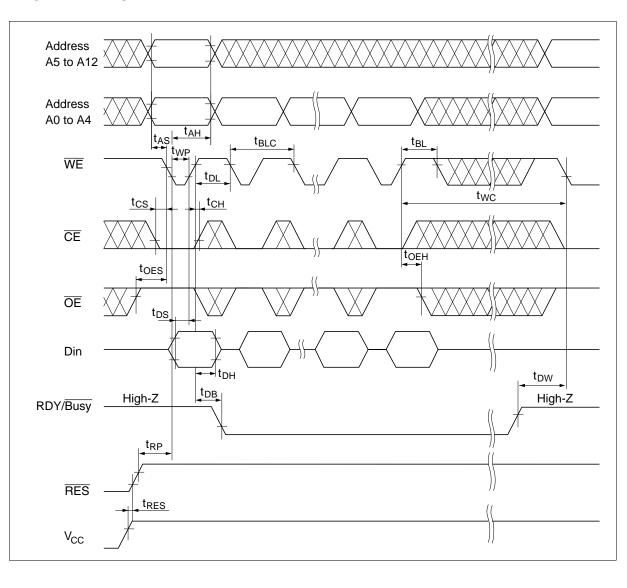
Write Cycle

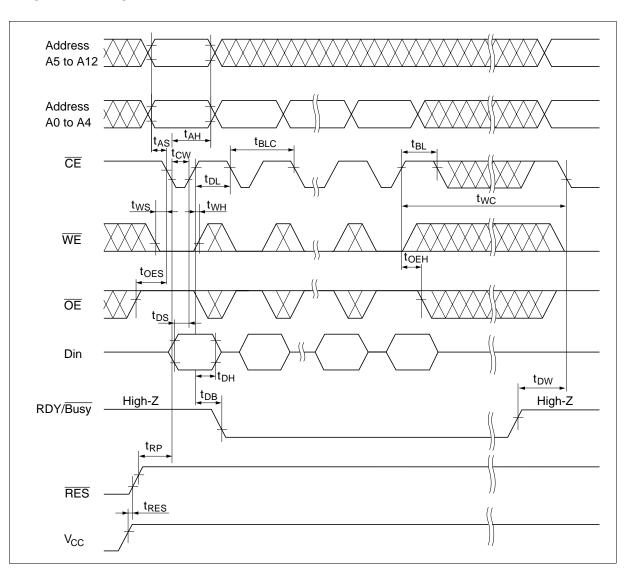

Parameter	Symbol	Min ^{*1}	Тур	Max	Unit	Test Conditions
Address setup time	t _{AS}	0	_	_	ns	
Address hold time	t _{AH}	150	_	_	ns	
CE to write setup time (WE controlled)	t _{CH}	0	_	_	ns	
CE hold time (WE controlled)	t _{CH}	0	_	_	ns	
WE to write setup time (CE controlled)	t _{ws}	0	_	_	ns	
WE hold time (CE controlled)	t _{wh}	0	_	_	ns	
OE to write setup time	t_{OES}	0	_	_	ns	
OE hold time	t_{OEH}	0	_	_	ns	
Data setup time	t _{DS}	100	_	_	ns	
Data hold time	t_{DH}	20	_	_	ns	
WE pulse width (WE controlled)	t _{WP}	200	_	_	ns	
CE pulse width (CE controlled)	$t_{\scriptscriptstyle{\sf CW}}$	200	_	_	ns	
Data latch time	$t_{\scriptscriptstyle DL}$	100	_	_	ns	
Byte load cycle	$t_{\scriptscriptstyle BLC}$	0.30	_	30	μs	
Byte load window	t _{BL}	100	_	_	μs	
Write cycle time	t_{wc}	_	_	10*2	ms	
Time to device busy	t _{DB}	120	_	_	ns	
Write start time	t _{DW}	150*3	_	_	ns	
Reset protect time	t _{RP}	100	_	_	μs	
Reset high time	t _{RES}	1	_	_	μs	

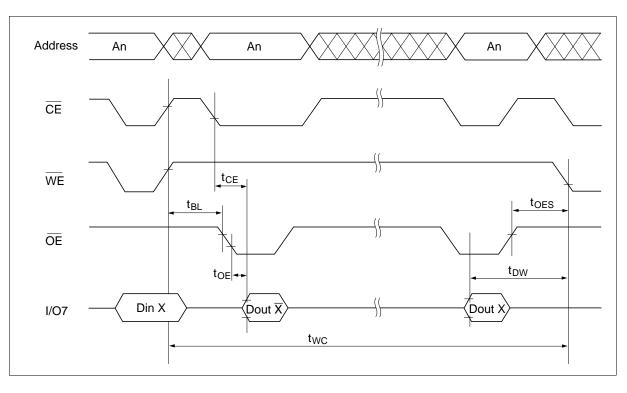
Notes: 1. Use this device in longer cycle than this value.


^{2.} t_{wc} must be longer than this value unless polling technique or RDY/Busy are used. This device automatically completes the internal write operation within this value.

^{3.} Next read or write operation can be initiated after $t_{\scriptscriptstyle DW}$ if polling technique or RDY/ $\overline{\text{Busy}}$ are used.


Byte Write Timing Waveform (1) (WE Controlled)


Byte Write Timing Waveform (2) ($\overline{\text{CE}}$ Controlled)


Page Write Timing Waveform (1) (WE Controlled)

Page Write Timing Waveform (2) (CE Controlled)

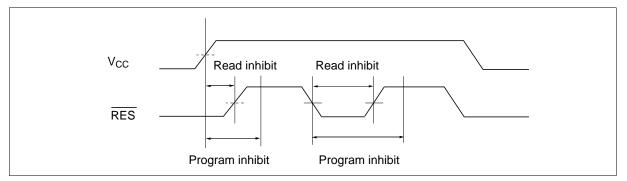
Data Polling Timing Waveform

Functional Description

Automatic Page Write

Page-mode write feature allows 1 to 32 bytes of data to be written into the EEPROM in a single write cycle. Following the initial byte cycle, an additional 1 to 31 bytes can be written in the same manner. Each additional byte load cycle must be started within 30 μ s from the preceding falling edge of \overline{WE} or \overline{CE} . When \overline{CE} or \overline{WE} is high for 100 μ s after data input, the EEPROM enters write mode automatically and the input data are written into the EEPROM.

Data Polling


Data polling allows the status of the EEPROM to be determined. If EEPROM is set to read mode during a write cycle, an inversion of the last byte of data to be loaded outputs from I/O7 to indicate that the EEPROM is performing a write operation.

RDY/Busy Signal

RDY/ \overline{Busy} signal also allows the status of the EEPROM to be determined. The RDY/ \overline{Busy} signal has high impedance except in write cycle and is lowered to V_{OL} after the first write signal. At the end of a write cycle, the RDY/ \overline{Busy} signal changes state to high impedance.

RES Signal

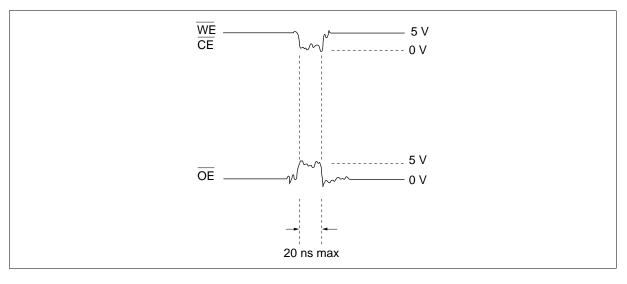
When \overline{RES} is low, the EEPROM cannot be read or programmed. Therefore, data can be protected by keeping \overline{RES} low when V_{CC} is switched. \overline{RES} should be high during read and programming because it doesn't provide a latch function.

WE, CE Pin Operation

During a write cycle, addresses are latched by the falling edge of \overline{WE} or \overline{CE} , and data is latched by the rising edge of \overline{WE} or \overline{CE} .

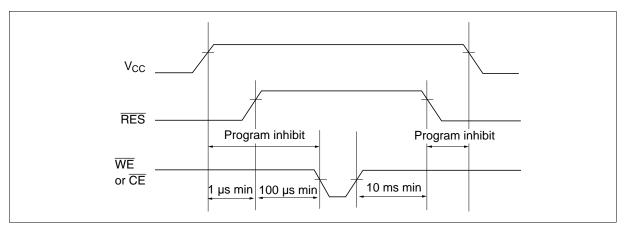
Write/Erase Endurance and Data Retention

The endurance is 10^5 cycles in case of the page programming and 3×10^3 cycles in case of byte programming (1% cumulative failure rate). The data retention time is more than 10 years when a device is page-programmed less than 10^4 cycles.


Data Protection

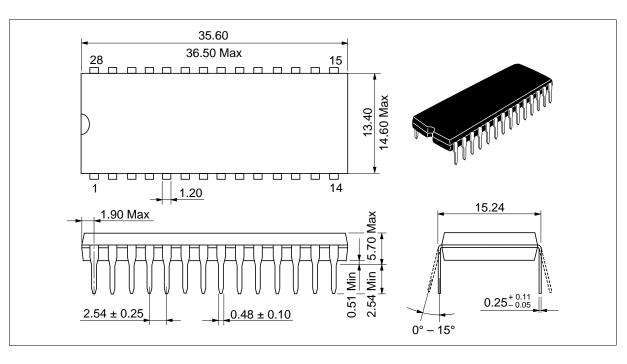
1. Data Protection against Noise on Control Pins (\overline{CE} , \overline{OE} , \overline{WE}) during Operation

During readout or standby, noise on the control pins may act as a trigger and turn the EEPROM to program mode by mistake.

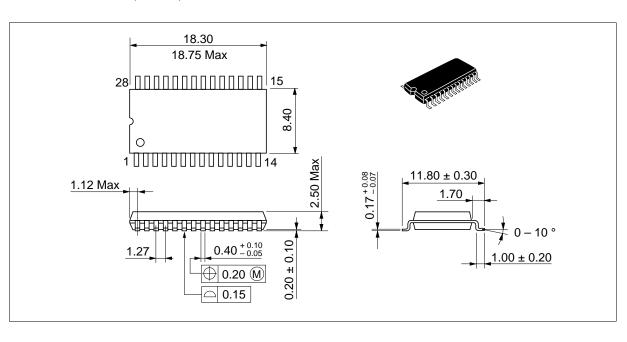

To prevent this phenomenon, this device has a noise cancelation function that cuts noise if its width is 20 ns or less in program mode.

Be careful not to allow noise of a width of more than 20 ns on the control pins.

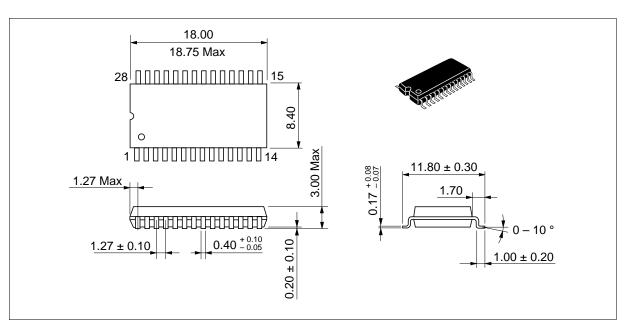
2. Data Protection at V_{CC} On/Off


When V_{CC} is turned on or off, the noise on the control pins generated by external circuits (CPU, etc.) may act as a trigger and turn the EEPROM to program mode by mistake. To prevent this unintentional programming, the EEPROM must be kept in an unprogrammable state by using a CPU reset signal to \overline{RES} pin. \overline{RES} pin should be kept at V_{SS} level when V_{CC} is turned on and off. The EEPROM breaks off programming operation when \overline{RES} becomes low, programming operation doesn't finish correctly in case that \overline{RES} falls low during programming operation. \overline{RES} should be kept high for 10 ms after the last data input.

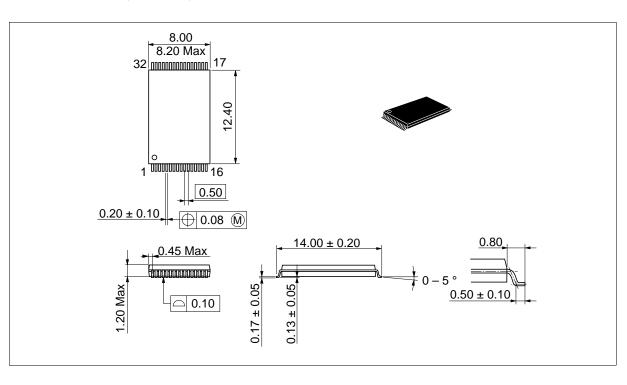
Package Dimensions


HN58C66P Series (DP-28)

Unit: mm


HN58C66FP Series (FP-28D)

Unit: mm


HN58C66FP Series (FP-28DA)

Unit: mm

HN58C66T Series (TFP-32DA)

Unit: mm

