• 🐼 Y U N D A I

HY62256A Series 32K x 8-bit CMOS SRAM

22222222222

SOP-I Reve

so

0

DESCRIPTION

The HY62256A is a high-speed, low power and 32,768 x 8-bits CMOS static RAM fabricated using Hyundai's high performance twin tub CMOS process technology. This high reliability process coupled with innovative circuit design techniques, yields maximum access time of 55ns. The HY62256A has a data retention mode that guarantees data to remain valid at a minimum power supply voltage of 2.0 volt. Using CMOS technology, supply voltages from 2.0 to 5.5 volt have little effect on supply current in data retention mode. Reducing the supply voltage to minimize current drain is unnecessary with the HY62256A Series.

VSS F 14

TSOP-I Stendard

FEATURES

- High speed 55/70/85/100ns (max.)
- Low power consumption
 - Operating : 150mW (typ.) - Standby (CMOS) : 5µw (typ.)
- Single 5V±10% power supply
- Battery backup (L/LL-part) - 2.0V (min.) data retention
- · Fully static operation - No clock or refresh required
- TTL compatible inputs and outputs
- Tri-state output
- Standard pin configuration
- 28 pin 600 mil PDIP
- 28 pin 330 mil SOP

PIN DESCRIPTION

Pin Name

CS

WE

ŌĒ

Vcc

Vss

A0-A14

1/01-1/08

- 28 pin 8x13.4 mm TSOP-I

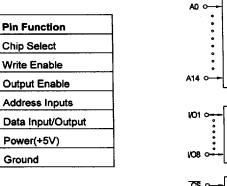
BLOCK DIAGRAM

PIN CONNECTION

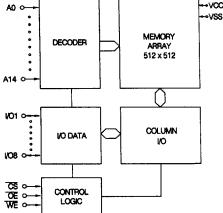
21 DA10 20 0 CS

19 0 008 18 0 007 17 0 006

18 0 VO5


ANNA ANALANA

POF


A12 A7 A6 A5 A5 A3 A2 A1 A0

R R R R R R R

BABABABABABAB

This document is a general product description and is subject to change without notice. Hyundai Electronics does not assume any responsibility for use of circuits described. No patent licences are implied. 1DC01-11-MAY95

4675088 0006053 31T **==**

35

BARBRARSE

 \cap

ABSOLUTE MAXIMUM RATINGS"

SYMBOL	PARAMETER	RATING	UNIT
VCC, VIN, VOUT	Power Supply, Input/Output Voltage	-0.5 to 7.0	V
TA	Operating Temperature	0 to 70	°C
TBIAS	Temperature Under Bias	-10 to 125	°C
TSTG	Storage Temperature	-65 to 150	°C
PD	Power Dissipation	1.0	w
IOUT	Data Output Current	50	mA
TSOLDER	Lead Soldering Temperature & Time	260 • 10	°C • sec

Note:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

(TA= 0°C to 70°C)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
Vcc	Power Supply Voltage	4.5	5.0	5.5	V
VIH	Input High Voltage	2.2	-	Vcc+0.5	v
VIL	Input Low Voltage	-0.5 ⁽¹⁾	-	0.8	v

Note:

1. ViL = -3.0V for pulse width less than 50ns

TRUTH TABLE

MODE	VO OPERATION	<u>CS</u>	WE	ŌE
Standby	High-Z	н	x	x
Output Disabled	High-Z	L	н	н
Read	Data Out	L	н	<u>_</u>
Write	Data in	L	L	X

Note:

1.H=VIH, L=VIL, X=Don't Care

36 4675088 0006054 256 MM 10C01-11-MAY95

DC CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	POWER	MIN.	TYP.	MAX.	UNIT
	Input Leakage Current	Vss≤Vin ≤Vcc		-1	-	1	μА
ILO	Output Leakage Current	Vss ≤ Vout ≤ Vcc, CS = Vin or OE=Vin or W	Ē = VIL	-1	-	1	μA
ICC	Operating Power Supply Current	CS=VIL VIN=ViH or ViL, 1µo≖0mA		-	30	50	mA
ICC1	Average Operating Current	CS=VIL Min. Duty Cycle=100%. I	vo=0mA	-	40	70	mA
ISB	TTL Standby Current (TTL Inputs)	CS=VIH VIN=VIH or VIL		-	0.4	2	mA
ISB1	CMOS Standby Current	CS ≥ Vcc-0.2V		-	-	1.	mΑ
	(CMOS Inputs)	$V_{\rm IN} \ge V_{\rm CC} - 0.2V$ or	L	-	2	100	uА
		$V_{\rm IN} \ge 0.2V$	ш	-	1	25	μA
VOL	Output Low Voltage	IOL = 2.1mA		-	-	0.4	V
VOH	Output High Voltage	10H = -1.0mA		2.4	-	-	v

(TA = 0°C to 70°C, Vcc = 5V \pm 10%, unless otherwise specified.)

Note:

1. Typical values are at Vcc=5.0V, TA=25°C

1DC01-11-MAY95

🔲 4675088 0006055 192 🔜

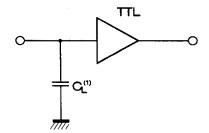
AC CHARACTERISTICS

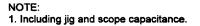
#	evupe:	PARAMETER		55		70.	-4	B5	-	10	
#	SYMBOL			MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT
	READ CYCLE										
1	tRC	Read Cycle Time	55	<u>_</u> 2.	70	1400 - ²⁰⁰	85	- 1	100	- '	ns
2	taa	Address Access Time	-	55	-	70	-	85	-	100	ns
3	tacs	Chip Select Access Time	-	55	-	70	-	85	-	100	ns
4	tOE	Output Enable to Output Valid	-	30	-	35	-	45	-	50	ns
5	tcLz	Chip Select to Low -Z Output	5	-	5	-	5	-	5	-	ns
6	toLZ	Output Enable to Low-Z Output	5	-	5	-	5	-	5	-	ns
7	tCHZ	Chip Disable to High -Z Output	0	20	0	30	0	30	0	35	ns
8	tonz	Output Disable to High -Z Output	0	20	0	30	0	30	0	35	ns
9	ton	Output Hold from Address Change	5	-	5	-	5	-	5	+	ns
	WRITE	CYCLE									
10	twc	Write Cycle Time	55	-	70	-	85	-	100	-	ns
11	tcw	Chip Select to End of Write	50	-	65	-	75	-	80	-	ns
12	taw	Address Valid to End of Write	50	-	65	-	75	-	80	-	ns
13	tas	Address Set-up Time	0	-	0	-	0	-	0	-	ns
14	twp	Write Pluse Width	40	-	50	-	60	-	70	-	ns
15	twr	Write Recovery Time	0	-	0	-	0	-	0	-	ns
16	twnz	Write to High-Z Output	0	20	0	30	0	30	0	35	ns
17	tow	Data to Write Time Overlap	25	i	35	-	40	-	40	-	ns
18	tDH	Data Hold from Write Time	0	-	0	-	0	-	0	-	ns
19	tow	Output Active from End of Write	5	•	5	•	5	-	5	-	ns

(TA=0°C to 70°C, Vcc=5V ±10%, unless otherwise noted.)

4675088 0006056 029 🛲

1DC01-11-MAY95


38


AC TEST CONDITIONS

(TA=0°C to 70°C, Vcc=5V ± 10%, unless otherwise specified.)

PARAMETER	SPEED	VALUE
Input Pulse Level		0.8V to 2.4V
Input Rise and Fall Time		5ns
Input and Output Timing Reference levels		1.5V
Output Land	70/85/100ns	CL=100pF + 1TTL Load
Output Load	55ns	CL= 50pF + 1TTL Load

AC TEST LOADS

CAPACITANCE

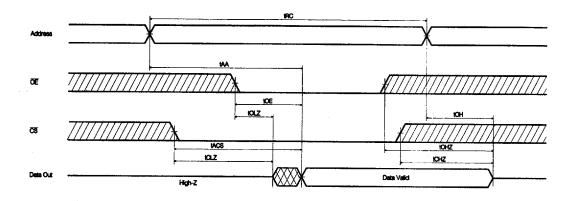
(TA=25°C, f= 1MHz)

SYMBOL	PARAMETER	CONDITION	MAX.	UNIT
CIN	Input Capacitance	VIN=0V	6.	рF
Cvo	Input/Output Capacitance	Vvo=0V	8	рF

4675088 0006057 T65 I

Note:

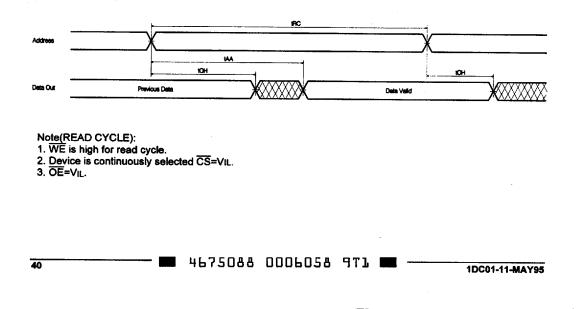
1. This parameter is sampled and not 100% tested.


1DC01-11-MAY95

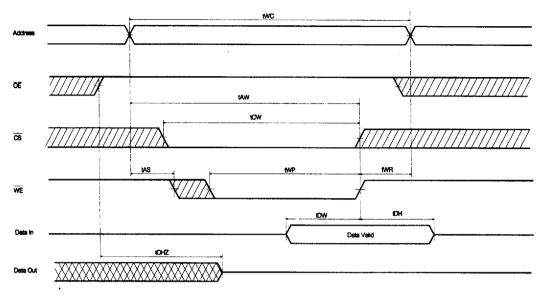
This Material Copyrighted By Its Respective Manufacturer

39

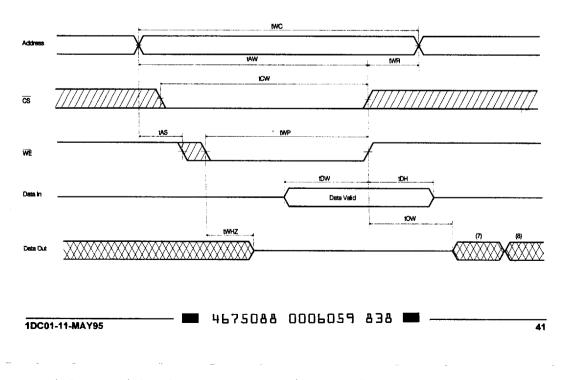
TIMING DIAGRAM


READ CYCLE 1

Note (READ CYCLE):


- 1. tCHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, t_{CHZ} max. is less than t_{CLZ} min. both for a given device and from device to device.
- 3. WE is high for read cycle.

READ CYCLE 2



-WYUNDAI

WRITE CYCLE 1 (DE Clocked)

WRITE CYCLE 2 (OE Low Fixed)

Note (WRITE CYCLE):

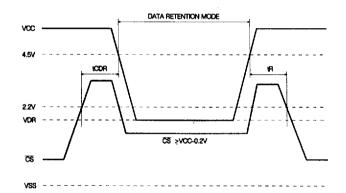
- A write occurs during the overlap of a low CS and a low WE. A write begins at the latest transition among CS going low, and WE going low: A write ends at the earlist transition among CS going high WE going high. twp is measured from the beginning of write to the end of write.
- 2. tow is measured from the later of CS going low to end of write.
- 3. tas is measured from the address valid to the beginning of write.
- 4. two is measured from the end of write to the address change. two applied in case a write ends as \overline{CS} , or \overline{WE} going high.
- 5. If OE and WE are in the read mode during this period, the I/O pins are in the output low-Z state, inputs of opposite phase of the output must not be applied because bus contention can occur.
- If CS goes low simultaneously with WE going low or after WE going low, the outputs remain in high impedance state.
- 7. DOUT is the same phase of lastest written data in this write cycle.
- 8. DOUT is the read data of the new address.

42 4675088 0006060 55T 🖬 1Dc01-11-МАУ95

DATA RETENTION CHARACTERISTICS

(TA=0°C to 70°C)

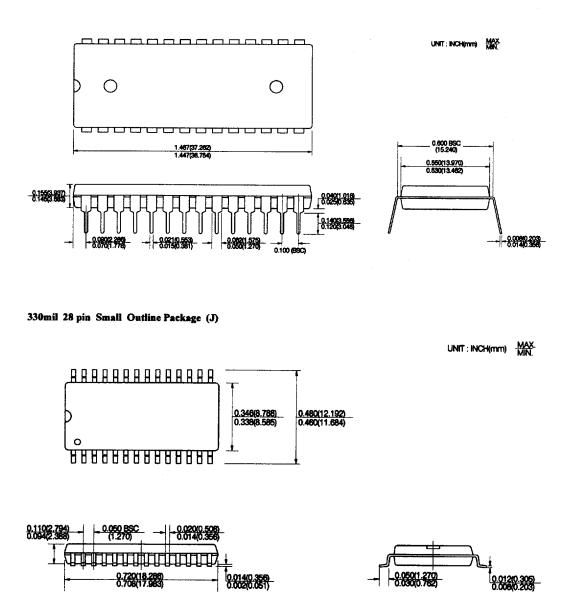
SYMBOL	PARAMETER	TEST CONDITION	POWER	MIN.	TYP.	MAX	UNIT
VDR	VCC for Data Retention	CS≥Vcc-0.2V, Vss≤Vin≤Vcc		2.0	-	-	v
ICCDR	Data Retention Current	Vcc=3.0V,	L	-	1	50	μA
		CS ≥ Vcc-0.2V Vss ≤ ViN ≤ Vcc	LL	-	1	15 ⁽²⁾	μA
tCDR	Chip Disable to Data Retention Time	See Data Retention Tim	ning Diagram	0	-	-	ns
tR	Operating Recovery Time			tRC ⁽³⁾	-	-	ns


Notes :

1. Typical values are at the condition of TA=25°C.

2. 3µA max. at TA=0°C to 40°C

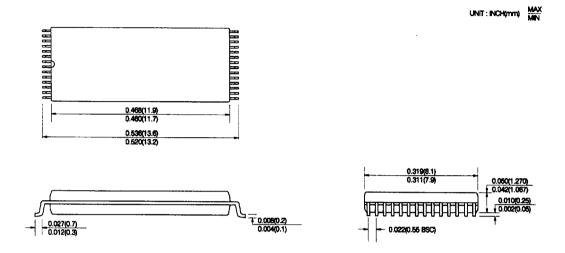
3. tRC is read cycle time.


DATA RETENTION TIMING DIAGRAM

1DC01-11-MAY95 4675088 0006061 496 43

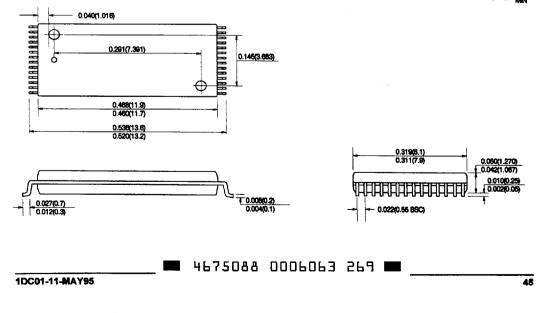
PACKAGE INFORMATION

600 mil 28 pin Dual In-line Package(P)



This Material Copyrighted By Its Respective Manufacturer

·XYUNDAI


HY62256A Series

28 pin Plastic Thin Small Out Line Package(T1)

28 pin Thin Small Out Line Package(R1)

UNIT : INCH(mm) MAX

ORDERING INFORMATION

PART NO.	SPEED	POWER	PACKAGE
HY62256AP	55/70/85/100		PDIP
HY62256ALP	55/70/85/100	L-part	PDIP
HY62256ALLP	55/70/85/100	LL-part	PDIP
HY62256AJ	55/70/85/100		SOP
HY62256ALJ	55/70/85/100	L-Part	SOP
HY62256ALLJ	55/70/85/100	LL-Part	SOP
HY62256AT1	55/70/85/100		TSOP-I Standard
HY62256ALT1	55/70/85/100	L-Part	TSOP-I Standard
HY62256ALLT1	55/70/85/100	LL-Part	TSOP-I Standard
HY62256AR1	55/70/85/100		TSOP-I Reversed
HY62256ALR1	55/70/85/100	L-Part	TSOP-I Reversed
HY62256ALLR1	55/70/85/100	LL-Part	TSOP-I Reversed

46 4675088 0006064 ЪТ5 🛲 _____ 10c01-11-мау95
