8K x 8 Static RAM

Features

- 8K by 8 Static RAM with chip select powerdown, output enable
- □ Auto-Powerdown[™] design
- Advanced CMOS technology
- High speed to 20 ns worst case
- Low Power Operation Active: 290 mW typical at 45 ns Standby: 50 μW typical
- Data retention at 2 V for battery backup operation
- Plug-compatible with IDT7164, Cypress CY7C185/186
- Package styles available:
 - 28-pin Plastic DIP
 - 28-pin Sidebraze, Hermetic DIP
 - 28-pin CerDIP
 - 28-pin Ceramic LCC
 - 28-pin Plastic SOIC (Gull-Wing)
 - 28-pinPlastic SOJ (J-Lead)

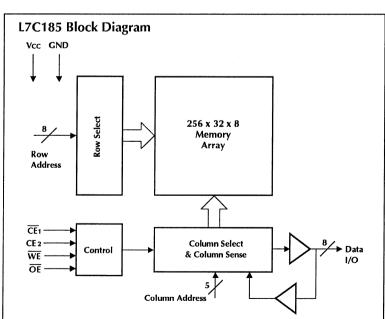
Description

The L7C185 is a high-performance, low-power CMOS static RAM. The storage circuitry is organized as 8,192 words by 8 bits per word. The 8 Data In and Data Out signals share I/O pins. Parts are available in five speeds with worst-case access times from 20 ns to 85 ns.

Inputs and output are TTL compatible. Operation is from a single +5 V power supply. Power consumption is 290 mW (typical) at 45 ns. Dissipation drops to 25 mW (typical) when the memory is deselected (Enable is high).

Two standby modes are available. Proprietary Auto-Powerdown™ circuitry reduces power consumption automatically during read or write accesses which are longer than the minimum access time, or when the memory is deselected. In addition, data may be retained in inactive storage with a supply voltage as low as 2 V. The L7C185 consumes only 3 µW at 2 V (typical), for effective battery back-up operation.

The L7C185 provides asynchronous (unclocked) operation with matching access and cycle times. Two activelow Chip Enables and a three-state I/O bus with a separate output enable simplify the connection of several chips for increased storage capacity.


Memory locations are specified on address pins A0 through A12. Reading from a designated location is accomplished by presenting an address and then taking CE1 low and CE2 high while Write remains high. The data in the addressed memory location will then appear on the Data Out pin within one access time. The output pin stays in a high-impedance state when CE1 is high or CE2 or WE is low.

Writing to an addressed location is accomplished when the active-low \overline{CE}_1 and \overline{WE} inputs are both low, and CE2 is high. Any of these signals may be used to terminate the write operation. Data In and Data Out signals have the same polarity.

Latchup and static discharge protection are provided on-chip. The L7C185 can withstand an injection current of up to 200 mA on any pin without damage.

LOGIC

DEVICES INCORPORATED

Memory Products

2

Maximum Ratings Above which useful life may be impaired (Notes 1, 2)

	Storage temperature	–65°C to +150°C
-	Operating ambient temperature	
	VCC supply voltage with respect to ground	
	Input signal with respect to ground	–3.0 V to +7.0 V
	Signal applied to high impedance output	–3.0 V to +7.0 V
	Output current into low outputs	25 mA
	Latchup current	> 200 mA

Operating Conditions *To meet specified electrical and switching characteristics*

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	0°C to +70°C	$4.5 \text{ V} \leq \text{V} \text{cc} \leq 5.5 \text{ V}$
Active Operation, Military	–55℃ to +125℃	$4.5 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$
Data Retention, Commercial	0°C to +70°C	$2.0 \text{ V} \le \text{Vcc} \le 5.5 \text{ V}$
Data Retention, Military	−55°C to +125°C	$2.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
Vон	Output High Voltage	IOH = -4.0 mA, VCC = 4.5 V	2.4			V
VOL	Output Low Voltage	IOL = 8.0 mA			0.4	V
Viн	Input High Voltage		2.0		Vcc + 0.3	V
VIL	Input Low Voltage	Note 3	-3.0		0.8	V
lıx	Input Current	Ground \leq Vi \leq Vcc	_10		+10	μΑ
loz	Output Leakage Current	Ground \leq Vo \leq Vcc, $\overline{CE} =$ Vcc	-50		+50	μΑ
los	Output Short Current	Vo = Ground, Vcc = Max, Note 4			-350	mA
ICC 2	VCC Current, Inactive	Notes 5, 7		5.0	20	mA
ICC 3	VCC Current, Standby	Note 8		10	250	μA
ICC4	Vcc Current, DR Mode	Vcc = 2.0 V, Note 9		1.5	50	μΑ
Сі	Input Capacitance	Ambient Temp = 25° C, Vcc = 5.0 V			5	рF
Co	Output Capacitance	Test Frequency = 1 MHz, Note 10			7	pF

				L7C185-					
Symbol	Parameter	Test Condition	85	45	35	25	20	15	Unit
ICC1	Vcc Current, Active	Notes 5, 6	45	80	100	140	180		mA

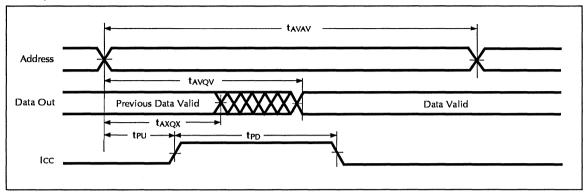
2

Switching Characteristics

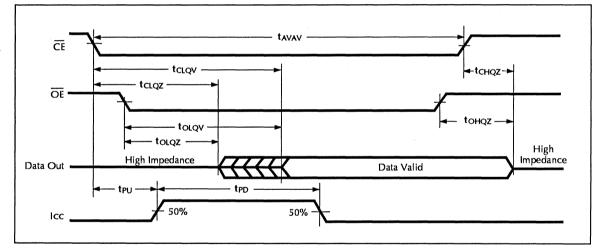
Over Operating Range (ns)

Read Cycle (Notes 11, 12, 21, 22, 23, 24)

	L7C185-												
			85		45		35		25		20		5
Symbol	Parameter	Min	Max	Min	Max								
t avav	Read Cycle Time	85		45		35		25		20		15	
tavqv	Addr Valid to Output Valid (13, 14)		85		45		35		25		20	22	
taxqx	Addr Change to Output Change	5		5		5		5		5		3	
t CLQV	Chip Enable Active to Output Valid (13, 15)		85		30		25		25		20		15
t CLQZ	Chip Enable Active to Output Low Z (20, 21)	5		5		5		5		5		5	
t CHQZ	Chip Enable Inactive to Output High Z (20, 21)		35		15		15		10		8	***	8
tOLQV	Output Enable Low to Output Valid		35		20		15		12		10	2000	8
tolqz	Output Enable Low to Output Low Z (20, 21)	3		3		3		3		3		3	
tonqz	Output Enable High to Output High Z (20, 21)		30		15		12		10		8		8
t₽U	CE Active or WE Low to Power Up (10, 19)	0		0		0		0		0		0	ise.
tPD	Power Up to Power Down (10, 19)		85		45		35		25		20		20

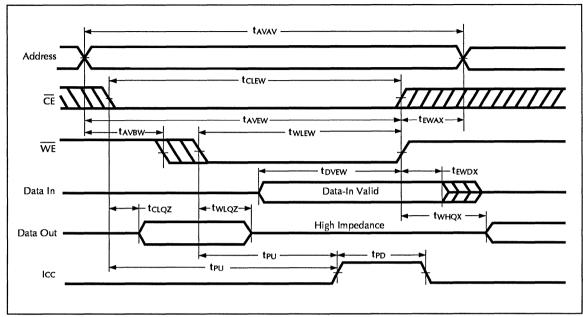

Write Cycle (Notes 11, 12, 22, 23, 24)

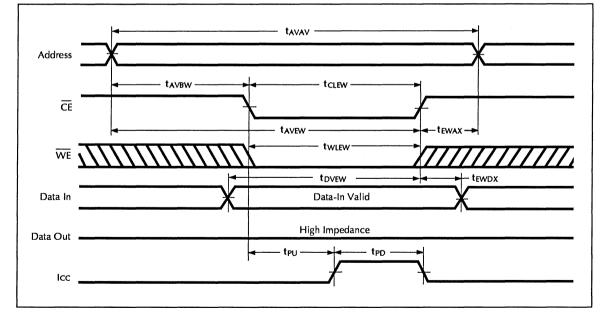
		L7C185-											
		8	5	4	5	3.	5	2	5	20	0	1	5
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
tavav	Write Cycle Time	75		40		25		20		20		15	
t CLEW	Chip Enable Active to End of Write Cycle	65		30		25		20		17		12 [%]	
ta∨bw	Address Valid to Beginning of Write Cycle	0		0		0		0		0		0	
t avew	Address Valid to End of Write Cycle	65		30		25		20		17		12	
t EWAX	End of Write Cycle to Address Change	0		0		0		0		0		0 🐇	0000 0000
t WLEW	Write Enable Low to End of Write Cycle	45		30		20		20		17		12	
t DVEW	Data Valid to End of Write Cycle	35		15		15		15		13		10	
tewdx	End of Write Cycle to Data Change	0		0		0		0		0		0	
twhqz	Write Enable High to Output Low Z (20, 21)	5		5		5		5		5		5	
twlqz	Write Enable Low to Output High Z (20, 21)		35		15		10		7		7		-7
t CHVL	Chip Enable Inactive to Data Retention (10)	0		0		0		0		0		0	



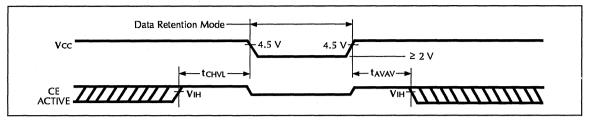
Switching Waveforms

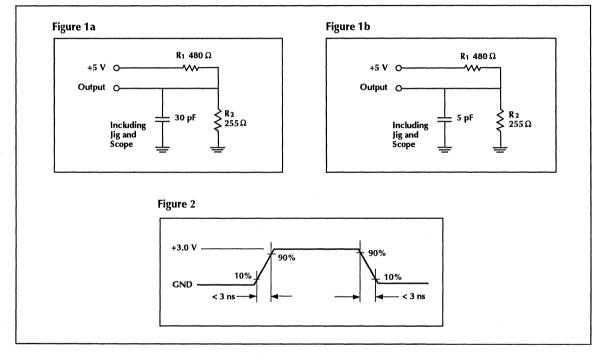
Read Cycle — Address Controlled (Notes 13, 14)


Read Cycle — CE/OE Controlled (Notes 13, 15)



2


Write Cycle — CE Controlled (Notes 16, 17, 18, 19)



8K x 8 Static RAM

Data Retention

Test Loads and Transition Times

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device.

2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.

3. This product provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at -0.6 V. A current in excess of 100 mA is required to reach -2 V. The device can withstand indefinite operation with inputs as low as -3 V subject only to power dissipation and bond wire fusing constraints.

4. Duration of the output short circuit should not exceed 30 seconds.

5. 'Typical' supply current values are not shown but may be approximated. At a VCC of 5.0 V, an ambient temperature of +25°C and with nominal manufacturing parameters, the operating supply currents will be approximately 3/4 or less of the maximum values shown.

6. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously enabled for reading, i.e., $\overline{CE} \leq \text{VIL}$, $\overline{WE} \geq \text{VIH}$.

7. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously disabled, i.e., $\overline{CE} \ge VIH$.

8. Tested with outputs open and all address and data inputs stable. The

DEVICES INCORPORATED

device is continuously disabled, i.e., $\overline{\text{CE}}$ = VCC. Input levels are within 0.5 V of VCC or ground.

9. Data retention operation requires that VCC never drop below 2.0 V. \overline{CE} must be \geq VCC - 0.3 V. For all other inputs VIN \geq VCC - 0.3 or VIN \leq 0.3 V is required to ensure full power down.

10. These parameters are guaranteed but not 100% tested.

11. Test conditions assume input transition times of less than 3 ns, reference levels of 1.5 V, input pulse levels of 0 to 3.0 V, and output loading for specified IOL and IOH plus 30 pF.

12. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. tAVEW, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.

13. $\overline{\text{WE}}$ is high for the read cycle.

14. The chip is continuously selected $(\overline{CE} \text{ low})$.

15. All address lines are valid priorto or coincident-with the \overrightarrow{CE} transition to low.

16. The internal write cycle of the memory is defined by the overlap of \overline{CE} low and \overline{WE} low. Both signals must be low to initiate a write. Either signal can terminate a write by going high. The address, data, and control input setup and hold times should be referenced to the signal that falls last or rises first.

17. If \overline{WE} goes low before or concurrent with \overline{CE} going low, the output remains in a high impedance state. 18. If \overline{CE} goes high before or concurrent with \overline{WE} going high, the output remains in a high impedance state.

19. Powerup from ICC2 to ICC1 occurs as a result of any of the following conditions:

- **a**. Falling edge of \overline{CE}
- b. Falling edge of \overline{WE} (\overline{CE} active)
- c. Transition on any address line (CE active)
- d. Transition on any data line (\overline{CE} and \overline{WE} active)

The device automatically powers down from ICC1 to ICC2 after tPD has elapsed from any of the prior conditions. This means that power dissipation is dependent on only cycle rate, and is not on Chip Select pulse width.

20. At any given temperature and voltage condition, output disable time is less than output enable time for any given device.

21. Transition is measured $\pm 200 \text{ mV}$ from steady state voltage with specified loading in Figure 1b. This parameter is sampled and not 100% tested.

22. All address timings are referenced from the last valid address line to the first transitioning address line.

23. \overline{CE} or \overline{WE} must be high during address transitions.

24. This product is a very high speed device and care must be taken during testing in order to realize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high-inductance leads that cause supply bounce must be avoided by bringing the VCC and ground planes directly up to the contactor fingers. A 0.01 μ F high frequency capacitor is also required between VCC and ground. To avoid signal reflections, proper terminations must be used.

= Memory Products

Ordering Information

Commercial Operating Range (0°C to +70°C)

	Performance								
Package Style	85 ns	45 ns	35 ns	25 ns	20 ns	15 ns			
28-pin Plastic DIP (0.3") — P10	L7C185PC85	L7C185PC45	L7C185PC35	L7C185PC25	L7C185PC20				
28-pin Plastic DIP (0.6") — P9	L7C185NC85	L7C185NC45	L7C185NC35	L7C185NC25	L7C185NC20				
28-pin SOIC U2 (0.300")	L7C185UC85	L7C185UC45	L7C185UC35	L7C185UC25	L7C185UC20				
28-pin SOIC V2 (0.331")	L7C185VC85	L7C185VC45	L7C185VC35	L7C185VC25	L7C185VC20				
28-pin SOJ — W2	L7C185WC85	L7C185WC45	L7C185WC35	L7C185WC25	L7C185WC20	An an an an Anna an Anna an Anna an Anna an Anna A			
28-pin Sidebraze (0.3") Hermetic DIP — D10	L7C185DC85	L7C185DC45	L7C185DC35	L7C185DC25	L7C185DC20				
28-pin Sidebraze (0.6") Hermetic DIP — D9	L7C185HC85	L7C185HC45	L7C185HC35	L7C185HC25	L7C185HC20				
28-pin CerDIP (0.3") C5	L7C185CC85	L7C185CC45	L7C185CC35	L7C185CC25	L7C185CC20				
28-pin CerDIP (0.6") C6	L7C185IC85	L7C185IC45	L7C185IC35	L7C185IC25	L7C185IC20				
28-pin Ceramic LCC — K5	L7C185KC85	L7C185KC45	L7C185KC35	L7C185KC25	L7C185KC20				

Military Operating Range (-55°C to +125°C)

	Performance								
Package Style	85 ns	45 ns	35 ns	25 ns	20 ns				
28-pin Sidebraze (0.3") Hermetic DIP — D10	L7C185DM85 L7C185DME85 L7C185DMB85	L7C185DM45 L7C185DME45 L7C185DMB45	L7C185DM35 L7C185DME35 L7C185DMB35	L7C185DM25 L7C185DME25 L7C185DMB25					
28-pin Sidebraze (0.6") Hermetic DIP — D9	L7C185HM85 L7C185HME85 L7C185HMB85	L7C185HM45 L7C185HME45 L7C185HMB45	L7C185HM35 L7C185HME35 L7C185HMB35	L7C185HM25 L7C185HME25 L7C185HMB25					
28-pin CerDIP (0.3") — C5	L7C185CM85 L7C185CME85 L7C185CMB85	L7C185CM45 L7C185CME45 L7C185CMB45	L7C185CM35 L7C185CME35 L7C185CMB35	L7C185CM25 L7C185CME25 L7C185CMB25					
28-pin CerDIP (0.6") — C6	L7C185IM85 L7C185IME85 L7C185IME85	L7C185IM45 L7C185IME45 L7C185IMB45	L7C185IM35 L7C185IME35 L7C185IMB35	L7C185IM25 L7C185IME25 L7C185IMB25					
28-pin Ceramic LCC — K5	L7C185KM85 L7C185KME85 L7C185KMB85	L7C185KM45 L7C185KME45 L7C185KMB45	L7C185KM35 L7C185KME35 L7C185KMB35	L7C185KM25 L7C185KME25 L7C185KMB25					

Pin	Function	Pin	Function
1	NC	15	l3/O3
2	A12	16	14/04
3	A7	17	l5/O5
4	A6	18	l6/O6
5	A5	19	17/07
6	A4	20	CE1
7	A3	21	A10
8	A2	22	ŌĒ
9	A1	23	A11
10	Ao	24	A9
11	lo/Oo	25	A8
12	l1/O1	26	CE2
13	l2/O2	27	WE
14	GND	28	Vcc

Pin Assignments (*P9, P10, D9, D10, C5, C6, U2, W2*)

Pin Assignments (K5)

Pin	Function	Pin	Function
1	A12	15	l3/O3
2	A7	16	l4/O4
3	A6	17	15/O5
4	NC	18	16/O6
5	A5	19	I7/O7
6	A4	20	CE1
7	A3	21	A10
8	A2	22	ŌĒ
9	A1	23	A11
10	Ao	24	A9
11	lo/Oo	25	A8
12	l1/O1	26	CE2
13	l2/O2	27	WE
14	GND	28	Vcc

4

© 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

628 East Evelyn Avenue • Sunnyvale, CA 94086 • Telephone 408-720-8630 • FAX 408-733-7690

DEVICES INCORPORATED

= Memory Products