
Microelectronic Products Division
Colorado Springs

NCR 53C700

SCSI I/O Processor

Programmer's Guide Rev. 1.0

Copyright © 1990 by NCR Corporation. Dayton. Ohio U.S.A.
All Rights Reserved, Printed in the U.S.A.

PRINTING HISTORY

While the infonnation herein presented has been checked for both accuracy and reliability, NCR
Corporation assumes no responsibility for either its use or any inaccuracies.

Prepared by NCR Microelectronics Division

Revision No. Print Date NCR internal Part No(s). covered by each manual
Preliminary 10/89 609-3400616 only

609-3400625/631 (up to and including)
1.0 3/90 609-3400634 (includes all previous revisions)

Additional Information

NCR 53C700 Data Manual

Trademarks

SCRIPTS is a registered trademark of NCR Corporation
mM, Micro Channel are registered trademarks of International Business Machines Corporation

Table of Contents

Table of Contents

Chapter Descri ption Page

1. Introduction 1-1

2. SCSI SCRIPTSTM Machine Language Description 2-1
Block Move Command ~: '~ 2-1
I/O Command ... 0 • • • 2-5
Transfer Control Command 0 •••••••• 0 ••••••• 0............ 2-9

3 • Developing NCR SCSI SCRIPTS ... 3-1
Single-Tasking·SCSI Example 0 ••.••••••.•••.• 0... 3-3

4 G NCR SCSI SCRIPTS Utilities 0 ••••••••• 0 •••••••••••••••••••• 0. 4-1

5. The NCR SCSI SCRIPTS Language Syntax 5-1
Notation. 5-1
Input Fonnat .. 0 • • • 5-1
Language Directives.. 5-2
The SCSI SCRIPTS Instructions... 5-3
Block Move Command 0 ••••••••••••••••••••••••••••• 0. 5-3
Jump Command ... 0 0 ••••••••• 0 • • • • • • 5-4
Call Command 0 ... 0..................... 5-5
Return Command 0 ••••••••••••••••••••••••••••• < .••••••••• 0 •••••••••••• 0 •• 0 0 00' .0. 5-6
Interrupt Command. 5-7
SCSI I/O Commands ... 0..................... 5-8

6 . SCSI SCRIPTS to Support Use of Scatter/Gather 0 ••••••• 00 •• ~..... 6-1

7 . NCR SCSI SCRIPTS For An Initiator ... 7-1

8 e Unique Initiator Sequences For The 53C700................................ 8-1
Disk: Drive Initiator Sequence. 8-1
Tape Drive Initiator Sequence... 8-2
SCSI Character Oriented Device in the Initiator Role. • 8-2

90 Special SCRIPTS Situations 0 0........ 9-1
Save Data Pointers (message that can be ignored) 9-1
Save Data Pointers message that must be processed by tht? Initiator. 9-2

10. Multi-Tasking 110 Using SCSI SCRIPTS 10-1
Using SCSI SCRIPTS to Implement Multi-threaded I/O......................... 10-2

NCR 53C700 Programmer's Guide 2/23/90

Table of Contents

Appendices

Chapter Description Page

A High Performance Considerations When Using the
53C700 vs. 53C90 0 0 00 0 .. 0 0 0.0.0.00. A-I

Sample Input Data Structure 0.. A-I
Initializing SCSI SCRIPTS for an I/O ans Starting I/O Operations.... A-I
53C90 Algoritl1m Description 0.0................................. A-I
Conclusion...... A-2

B 53C700 System Bus Utilization o •••••••••••••••••••••••••••••••• '. B-1
Host Bus Time to Fetch A SCSI SCRIPTS Command 0 •• • • B-1
Conclusion ... 0............ B-2

C SCSI SCRIPTS Compiler .. : 0 C-1
SCSI SCRIPTS Compiler Pass 1 0 •• • • •• • • •• • • •• • • • • • • • • • C-1
SCRIPT.xrf File Description 0 0...... C-2
SCSI SCRIPTS Compiler Pass2 0 •• 0.. C-2

D Compiler SCRIPT Examples 0 •••• 0 •• 0 ••••••••••••• 0 •••• 0............ D-1
SCSI SCRIPTS. Compiler Pass 1 SCRIPT Source File 0 ••••••••••••• 00... D-1
SCSI SCRIPTS Compiler Pass 1 0 •••••••• 0 •• 000 ••• 0.0 ••••••••••••••••••••• 0. •• • D-2
SCSI SCRIPTS Compiler Pass 2.. D-3
SCSI SCRIPTS Cross Reference File Listing 0..... D-4

E SCRIPT Compiler Error' Messages 0 •••••••••••• ~. •• • • • ••• • •• • •••• • • • • E-1
Fatal Error: E-l
Error:•.. E-2
Waming: ... E-4

List of Figures

Figure Description Page

1. Block Move Instructions .. '. 2-1
2. I/O Instructions ... o. • • • • • • • • • • 2-5
3. Transfer Control Command 000. •• • •• • • •• • • •• • • • • • • •• • •• • • •• • • • • • • •• • •• 2-9
4. Using SCSI SCRIPTS to implement Multi-Threaded I/O....... 10-2

NCR 53C700 Programmer's Guide 2/23/90

Chapter 1
Introduction

NCR SCSI 1/0 Processor (53C700)

1/0 Performance

The demands on today's I/O interfaces are being
pushed by increased perfonnance of personal
computers and workstations. Extremely fast
CPU's, both CISC and RISC only provide
marginal system performance if their I/O
interfaces are not properly designed. Faster
processors do not equal higher performance.
Amdahl's Law describes this situation.
"Assume I/O represents 10% of the system
activity and its performance is kept constant. If
CPU power is increased by a factor of 10: 1, the
net improvement is only 5: 1. A 100: 1 increase
in CPU power is valueless if the net
improvement in systems perfonnance is only
10:1."

Interrupt service routines often take more than
several hundred microseconds to execute and
can be a large source of performance delays.
Interrupts may be generated for exception
conditions, I/O completion, saving/restoring
buffer data pointers (for system check
point/restart), or low probability events
available as options in todays SCSI
definition. Interrupts can be reduced by
using programmed I/O, however, this can be
time consuming and requires much of the
host computer cycle time. Therefore
programmed I/O is not an adequate solution
for multi-tasking operations.

Another performance issue is the
scatter/gather operation. With virtual storage
so common today, many I/O's gather the data
from several physical addresses in system
memory. Latencies inherent in the reinstruct
DMA operation can cause serious
perfonnance degradation by allowing the disk
drive to slip a latency while the DMA is being
re-instructed.

NCR 53C700 Programmer's Guide 1 - 1

1/0 Flexibility

Options in bus protocol allow increased I/O
flexibility. Need for I/O flexibility is partially
responsible for the popularity of the SCSI
standard. I/O flexibility allows configuration
of systems for a wide range of peripherals
(from high performance disk drives to hand
held scanners). Additionally, I/O flexibility
supports command queueing, asynchronous
or synchronous data transfers, caching
controllers, peer to peer communication, etc ..
Unfortunately, this implies firmware
complexity. If these options are not carefully
implemented, perfonnance will suffer.

A Better Solution

First generation (NCR5380) SCSI devices
are register oriented and require processor
intervention to make the most fundamental
protocol decisions. Users like the flexibility
of these devices because the low-level
fmnware interface provides specific real time
infonnation about the SCSI bus and
improved testability of the SCSI device. This
generation of devices typically requires in
excess of 4,000 lines of code to specify a
SCSI-1 device implementation.

Second generation (NCR53C90) SCSI
devices provide on-chip state machines.
Some complex SCSI sequences can be
perfonned automatically which reduces
protocol overhead. However, these devices
have no decision making capability, because
the internal sequences are fixed in hardware at
VLSI design time. This generation of devices
typically requires in excess of 2,500 lines of
driver software to support this class of SCSI
device.

2/23/90

Introduction

The flexibility of the SCSI bus creates a
dilemma for system integrators and OEM's
alike. The dilemma is: should frrst and
second generation SCSI devices be used as
non-intelligent, stand-alone devices or should
they be integrated into intelligent host adapter
boards. Non-intelligent SCSI host ports or
host bus adapters require a fair amount of
processor intervention, but are inexpensive to
implement Intelligent host adapters are more
expensive than non-intelligent adapters. They
provide slower decision making capabilities
(less powerful CPU's), experience
interpretation delays (2-8 msec required to
start any I/O), and suffer from interprocessor
communication delays. In systems not
requiring a complex buffering scheme, non
intelligent host adapters outperform their
intelligent counterparts. For peripheral
controllers, space is at a premium and
complex peripheral interface~ require
powerful microprocessors to transfer data at
the high rates used by the peripheral interface.
Therefore, SCSI chips requiring intense
finnware can overwork the controller
microprocessor making it unable to perform
required tasks. Limited available space
usually excludes adding an extra processor or
replacing it with a more powerful one.

With MIPS increasing in the system CPU,
the delays caused by intelligent host adapter
cards and slow peripheral controllers pose
problems for the system integrator. The
simplest solution is to build complex,
versatile H/W sequences inside the SCSI
components or to add additional CPU power
in the SCSI device board. Both solutions are
costly (space and component cost) and do not
adequately address the problem.

Third Generation Requirements

To accommodate the flexibility requirements
of the SCSI bus (reducing interrupts and
controlling board cost), an additional level of
intelligence and integration is required for
next generation SCSI devices. Third
generation SCSI devices must make
execution decisions based on phase changes
on the SCSI bus and compare specific

NCR 53C700 Programmer's Guide 1 - 2

incoming data values which will result in a
minimum number of interrupts to the e~ternal
processor.

A programmable SCSI device that executes
SCSI oriented commands is required. These
new devices must reduce interrupt service
routine complexities by providing unique
status values to the external processor for
any interrupts that do occur. Additionally, a
fully integrated DMA channel would allow
full use of available host bus bandwidth.
This is the key to overall I/O performance
given current use of virtual memory schemes
which require the ability to support
scatter/gather memory operations without
processor intervention.

Third generation SCSI devices require only a
few hundred lines of driver code. This code
is required for exception conditions and for
passing addresses of the user data buffer to
the device. Error recovery occurs at the high
level interface. In second generation chips,
the firmware is required to manage every
detail of the error recovery mechanism,
because the high level interface is fixed and
has only one entry point. Programmable
SCSI chips allow error recovery using the
high level interface, because the algorithm can
be entered at any command and error specific
SCSI SCRIPTSTM can be developed.

The NCR SCSI 110 Processor
(SlOP)

The NCR 53C700 is the frrst intelligent SCSI
host adapter on a chip. A high-performance
re-usable SCSI core and an intelligent 32-bit
bus master DMA have been integrated with a
SCSI SCRIPTS processor to accommodate
the flexibility requirements of SCSI-I, SCSI-
2, and eventually SCSI-3. This flexibility is
supported while solving the protocol
performance problems that have plagued both
intelligent and non-intelligent adapter designs.

2/23/90

Introduction

SCSI Component

In addition to the reliability components of
NCR's other SCSI chips:

• 10K volts ESD protection

• >350 mV Bus Hystersis

• Immunity to bus reflections due to
impedance mismatches

• Controlled bus assertion times which
reduces generated RFI, improves
reliability, and increases the chances
for FCC approval

• Latch-up protection >100 rnA '

• Voltage feed-thru protection

The SCSI core in the 53C700 is reusable and
designed to migrate to SCSI-2 wide and fast
requirements. It offers synchronous transfers
up to 6.25 MBytes/sec with asynchronous
transfers greater than 5 MBytes/sec.
Synchronous offsets up to 8 are supported.

The SCSI core offers low-level register
access as well as the high-level control
interface. Like first generation SCSI devices,
the 53C7oo SCSI core can be accessed as a
register oriented chip. The ability to sample
and assert any signal on the SCSI bus can
used for manufacturing test and diagnostic
procedures. Loopback diagnostics are
supported, the SCSI core may perform self
selection and operate as both an initiator and a
target to verify that internal data paths are
operational. The 53C700 can test the SCSI
pins for physical connection to the board or
the SCSI bus.

Unlike previous generation devices, the
53C700 SCSI core is controlled by the
integrated DMA through a high-level logical
interface. High level programming language
commands controlling the SCSI core may be
chained from main host memory. These
commands instruct the SCSI core to select,
reselect, disconnect, wait for a disconnect,

NCR 53C700 Programmer's Guide 1 - 3

transfer user data, transfer SCSI information,
change bus phases, and implement all aspects
of the SCSI protocol.

Also, the SCSI SCRIPTS processor will
transfer execution control Gump, call, return,
and interrupt) based on SCSI bus phase
comparisons. A value in the SCSI SCRIPTS
command can be compared to the actual data
value on the SCSI bus, allowing the same
transfer of control based on input data '
compares. The SCSI SCRIPTS processor is
a special 2 MIPS processor located on the
SCSI chip.

DMA COMPONENT'

The DMA component is a bus master DMA
chip that attaches easily to the 80486, 80386,
80286, 80386SX, and 80376 processors. It
is designed for 25 Mhz 80386 bus timings
and may be externally adapted to ISA (AT),
EISA, Micro Channel™ , etc ..

The 53C700 supports 16 or 32-bit memory
and automatically supports misaligned DMA
transfers. As with the 80386, data bus
enables are provided for each byte lane. An
on-chip, 32 byte FIFO allows 2,4, or 8 long
words to be burst across the memory bus
interface, providing memory transfer rates in
excess of 50 MBytes/sec.

The DMA is tightly coupled to the SCSI core
through the SCSI SCRIPTS processor which
supports uninterrupted scatter/gather memory
operations with only a 500 nanosecond delay
between memory segment transfers.

A Watchdog Timer provides a "bus safety"
feature. The flexible arbitration scheme
allows daisy chained or "ored" memory bus
request implementations.

2/23/90

Introduction

SCSI SCRIPTSTM Processor

The SCSI SCRIPTS processor is a specially
designed 2 MIPS processor that allows both
DMA and SCSI instructions to be fetched
from host memory. Algorithms written in the
SCSI SCRIPTS language and then compiled
control the SCSI and DMA cores and are
executed from 16 or 32-bit system memory.
Complex SCSI bus sequences are executed
independently of the host CPU.

The SCSI SCRIPTS processor can begin a
SCSI I/O operation in 500 nsec. This
compares to the 2-8 msec required for
traditional intelligent adapters. The SCSI
SCRIPTS processor offers performance and
customization. By designing your own
algorithms, you can tune SCSI bus
perfonnance adjusting it to new bus device
types (i.e. scanners, communication
gateways, etc.) or changes in the SCSI
logical bus definitions, or quickly incorporate
new or popular options.

The SCSI SCRIPTS processor is how the
53C700, the NCR third generation SCSI chip
implements flexibility without sacrificing I/O
performance.

NCR SCSI SCRIPTSTM
Description

SCSI SCRIPTS are independent of the CPU
and system bus. SCRIPTS for an EISA
implementation of a 80386 can therefore be
identical to the scripts for a 80386SX Micro
Channel™ implementation.

After power up and initialization of the
53C700, the chip may be operated in one of
two modes:

1) Low level register interface

2) SCSI SCRIPTS chained mode.

In the low level register interface, you have
access to the DMA control logic and the SCSI
bus control logic and can operate the chip like
an NCR 53C80. Access by an external

NCR 53C700 Programmer's Guide 1-4

processor to the SCSI bus signals and the
low level DMA signals, allows use of a
complicated board level test algorithm. The
interface provides backwards compatibility
with SCSI chips requiring unique timings or
bus sequences to operate proper! y. Another
low level feature is loop back testing. In loop
back mode, SCSI core can be directed to talk
to the DMA core, this allows the internal data
paths to be tested all the way to the chip's
pad.

Operating in the SCSI SCRIPTS chained
mode, the 53C700 requires only a SCSI
SCRIPTS start address. All subsequent
commands are fetched from external memory.
Four bytes (or optionally two) at a time are
fetched across the iAPX 286/386 DMA
interface and loaded into the command
register. Command fetch and decode time is
minimal at about 500 nanoseconds.
Commands are fetched until an interrupt
command is encountered or until an external,
unexpected event (e.g. hardware error
detected) causes an interrupt to the external
processor. The full set of SCSI features in
the command set allow re-entry of the SCSI
algorithm at any point. A high level interface
is required for both normal and exception
conditions. Therefore switching to a low
level mode for error recovery as is the case
with today's second generation SCSI VLSI is
never necessary.

2/23/90

Chapter 2
SCSI SCRIPTS TM Machine Language Description

This chapter describes each SCSI SCRJPTrM
command at the programmer, detailed, bit
level. Nonnally you will use the SCSI
SCRIPTS compiler described in following
sections, but for debugging purposes, each
command is described in detail. Each
command description consists of a bit diagram
of the command, a brief overview of the
command and a description of each field
within the command.

BLOCK MOVE COMMAND (00)

Bits 31-30 are SCSI I/O Processor opcodes.

00 equals Block Move Command
01 equals I/O Command
10 equals Transfer Control Command
11 equals NCR Reserved

DCMD Register DBC Register

.. -I
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o
o

I/O
C/O

MSG/

Op Code bit 0

Op Code bit 1

Indirect Addressing

24-bit Block Move Byte Counter

First 32-bit word of -the Block Move Instructions

DNAD Register
31 3029 2827 26252423 2221 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I
Second 32-bit word of the Block Move Instructions

Figure 1. Block Move Instructions

Overview

The Block Move command transfers data
to(from) user memory from (to) the SCSI bus.
No distinction is made between user data and
SCSI information, such as command or
message bytes.

NCR 53C700 Programmer's Guide 2 -1

A series of SCSI SCRIPTS is written to move
all types of data, with no requirement for
separate firmware to distinguish between user
and SCSI data.

2/23/90

SCSI SCRIPTS TM Machine Language Description

Note that the data may come from any
memory address, so scatter/gather operations
for user data are transparent to the chip and the
external processor. Write a separate Block
Move for each piece of data to be moved.
Use the 32 byte DMA data buffer to speed
data transfers between user memory and the
I/O Processor. Synchronous SCSI data in
transfers can use the 8 byte FIFO.

Note: The possible values for each field are
given in binary.

Block Move Command
First SCRIPTS Word

Block Move opcode -- 00
Bits 31-30

Indirect data address flag (I) Bit 29

o SCSI or user data is moved to(from) the
32-bit data start address for the block
move. The value is loaded into the chip's
address register and incremented as data is

transferred.

1 The 32-bit SCSI or user data start
address for the Block Move is the address
of a pointer to the actual data buffer
address. The value at the 32-bit data start
address is loaded into the chip's DNAD
register via a second long word (four byte
transfer across the host computer bus).

This option implies three DMA long word
transfers, rather than two transfers. Once
the data buffer address is loaded, it is
executed as if the chip operates in the
direct mode. This indirect feature allows
specification of a table of data buffer
addresses. Using the NCR SCSI
SCRIPTS compiler, the table offset is
placed in the script at compile time. Then
at the actual data transfer time, the offsets
are added to the base address of the data
address table by the external processor.
This allows the logical I/O driver to build a
structure of addresses for an I/O rather
than treating each address individually.

NCR 53C700 Programmer's Guide 2-2

Also, this feature makes it possible to
locate SCSI SCRIPTS in a PROM.

Block Move Opcodes Bit 28-27

The SCSI role (target or initiator) causes the
chip to react differently, with respect to the
phase line values. A primary difference
between roles is whether the SCSI phase
lines are sensed or driven. There are also
major differences between the two roles in the
command phase. Therefore, the Block Move
functions are described for each SCSI role -
target and initiator.

Tarr:et Role Function--OO

The target role allows DMA user or SCSI data
First the chip detennines whether the previous
command has completed, or a reselect has
occurred. The SCSI phase bits are asserted to
the value requested by the Block Move
command. If the command phase has been
requested, the chip will:

• Wait for the,first byte received.

• Decode the byte to detennine the
number of SCSI command bytes to
receive.

• Write the command length into the
DBC register.

An invalid group code value causes the
chip to use the original value in the
DBC register. A zero value stops
processing, creates an interrupt with
the first byte, and stops transferring
command bytes.

• Transfer the correct number of bytes
into the address designated by the
Block Move command.

If any phase (other than command) is
requested, the chip transfers the number of
bytes requested to (from) the address
requested.

2/23/90

SCSI SCRIPTS TM Machine Language Description

Should the initiator tum on attention at any
time during the transfer, the transfer will be
completed, and then an interrupt will occur.

Target Role Function--01.10. or 11

These are illegal values and will generate an
invalid command interrupt if the chip is in the
target role.

Initiator Role Function--OO

Reserved

Initiator Role Function--Ol

In the initiator role, this operation waits for a
valid phase and DMA data. After.verification
that the previous command is complete or a
reselect has occurred, and the chip waits for a
previously unserviced phase before executing
the Block Move command. You can program
the 53C700 to pause until the SCSI device it is
communicating with goes to the next phase.

A comparison is made between the expected
phase bits in the SCSI SCRIPTS and the
latched phase value. If the two values are not
equal, the chip issues a phase mismatch
interrupt and halts execution. This wait
capability is normally used to allow the target
to pace the chip in the initiator role. When a
phase change is expected, the wait
synchronizes the expected phase with the
Block Move for that phase.

Initiator Role Function--l0. or 11

These are illegal values and will generate an
invalid command interrupt if the chip is in the
initiator role.

SCSI Phase Lines Bit 26-24

These three SCSI phase lines perform
comparisons to the actual SCSI bus phase
lines. The SCSI bus phase value is latched
when REQ goes active. The value is stored in
SSTAT2 (bit 2 through bit 0 -- MSG, C/D, &
I/O). Before any data is moved, the chip
compares the expected value with the actual
value (or waits for a new phase and compare).

NCR 53C700 Programmer's Guide 2-3

24-Bit Byte Count, Bit 23-00

This count value specifies the exact number of
data bytes to be moved between the SCSI bus
and system memory. As the SCSI SCRIPTS
command is decoded, the value is moved into
the DBC register. When the user specified
burst size of data is available in the DMA
FIFO, the SCSI I/O Processor will:

• Gain access to the system bus.

• Transfer the burst size.

• Decrement the byte counter (byte
count).

• Increment the next address register
(data address).

The process will continue until the byte count
is zero~ At that time, the next SCSI SCRIPTS
command will be fetched.

Block Move
Second SCRIPTS Word

Data Start Address for the Block
Move Bits 31-00

This value specifies the address of data in
memory (direct mode) or the address of the
actual address (indirect mode). The DNAD
register is updated with the address of the
actual data and is incremented with each chip
DMA transfer.

The Block Move command is very powetful
for several reasons.

1) No distinction is made between user
data and SCSI command, message, or
status data.

2) Data can be stored in any area of
system memory with little performance
impact (one command fetch).

3) The indirect feature allows a table of
addresses instead of requiring the
address to be in the command.

2/23/90

SCSI SCRIPTS TM Machine Language Description

4) A scatter/gather operation has little
performance impact, because the only
overhead is 500 nanoseconds (direct
mode) or 750 nanoseconds (indirect
mode). So, one Block Move
command for each segment of data in
memory is economical with the SCSI
I/O processor architecture.

In the initiator role, the Block Move wait
feature is useful for high perfonnance SCSI
SCRIPTS that do not compare for any
unexpected phases before executing a Block
Move command. If the phase does not match,
then an external interrupt is generated.

For the high perfonnance SCSI SCRIPTS
algorithm, exceptions are abnonnal and are
handled by the external processor. Nonnally,
the Conditional Transfer command (see I/O
Command) compares actual to expected
phase. The flrst Conditional Transfer
command must have the "wait" option on (to
synchronize the commands with the actual bus
phase) and each subsequent command should
have the "wait" option turned off.

NCR 53C700 Programmer's Guide 2-4 2/23/90

SCSI SCRIPTS TM Machine Language Description

1/0 Command

1
o

DCMD Register DBC Register

SCSIIDO
SCSIID 1

SCSIID2
SCSIID3

Reserved
(must be 0)

SCSIID4
SCSI ID 5

SCSIID6
SCSIID7

Select with A TN
Reserved - must be 0

Reserved - must be 0
Op Code bit 0

Op Code bit 1

Op Code bit 2

SCSI ID = Destination ID
No more than 1 bit may
be set

Set Target role

First 32-bit word of the I/O Instructions

DNAD Register

Assert SCSI A TN

Assert SCSI ACK

31 3029 2827 26252423 1221 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I
Second 32-bit word of the I/O Instructions

Figure 2. 110 Instructions

Overview

The I/O command perfonns select and reselect
SCSI operations. Each function defmed is a
direct command to the SCSI portion of the
53C700. The functions vary if the chip is in
the target or initiator role, so the functions are
described separately for each role.

1/0 Command
First SCRIPTS Word

NCR 53C700 Programmer's Guide 2-5

SCSI I/O Processor opcode -- 01
Bits 31-30

I/O Command Opcodes Bits 29-27

Five functions are defined for target and
initiator role, three are reserved for future
expansion. U sing the reserved function codes
generates an illegal command interrupt
stopping execution.

2/23/90

SCSI SCRIPTS TM Machine Language Description

Target Role -- function 000
Perform reselection -- The chip arbitrates for
the SCSI bus and then performs a reselection.
Arbitration continues until the chip is
successful, unless there is a bus initiated
interrupt (e.g. selection). If arbitration
terminates because of a bus initiated interrupt
(selection or reselection) the chip will use the
32-bit jump address value to fetch the next
instruction and begin execution at that
address. If the command is successful, then
the next sequential instruction is fetched and
executed. Note that the target/initiator role
automatically change to reflect what is actually
happening on the bus.

After completion of the bus initiated interrupt
processing (sequence goes to bus free), the
chip reverts to the role set by the user in the
registers. Some caution is required here. If
the chip is set to an initiator role, gets selected,
changes to the target role automatically,
disconnects, does some processing, and then
issues a reselect command (without being set
to the target role by the external processor), a
selection will occur. Because the chip was in
the initiator role (at the time of selection), it
reverts to that role after the disconnect and bus
free. .

Target Role -- function 00 1
Perform disconnect -- The chip physically
disconnects from the SCSI bus.

Target Role -- function 010
Wait for select -- The chip waits for a SCSI
selection by another device on the SCSI bus.
If the chip is already selected, then the next
SCSI SCRIPTS is fetched and executed.
When a bus initiated interrupt or reselect
occurs, the chip changes to the initiator role
and fetches the next command from the
address pointed to by the 32-bit jump
address, and continues execution.

Target Role -- function 011
Assert bit -- The chip asserts the latches in the
SCSI output data register, but nothing is
driven onto the SCSI bus. Consequently, this
function should not be used in the target role.

NCR 53C700 Programmer's Guide 2-6

Target Role -- function 100
Reset bit -- The chip resets the latches in the
SCSI output data register, but nothing is reset
on the SCSI bus. Consequently, this function
should not be used in the target role.

Target Role -- function 101. 110. 111
These are not currently defmed and will cause
an illegal command interrupt if used.

Initiator Role -- 000
Perform selection -- The chip arbitrates for the
SCSI bus and then perrorms a selection.
Arbitration continues until the chip is
successful or a bus initiated interrupt (e.g.
reselection) occurs. If arbitration terminates
because of a bus initiated interrupt (as a result
of a select or reselect), the chip uses the 32-bit
jump address to fetch the next instruction and
begin execution at that address. The
targetfmitiator role automatically changes to
reflect bus actions.

After completion of the bus initiated interrupt
processing (sequence goes to bus free), the
chip reverts to the role set by the user. If the
selection is successful, the next instruction is
fetched and executed. If bit 24 (the attention
flag) is set, then the chip peIionns a select
with attention.

Note:
Because the chip automatically changes roles
and jumps to an alternate address if the select

or reselect/ails, a bus initiated interrupt can be
processed by the chip with no external

intervention. The alternate jump address
should contain the address 0/ an algorithm/or

a selection or reselection. Include in the
address a wait/or selection (target role)

command. That command's alternate address
is the reselection algorithm (initiator role).
The 53C700 can determine exactly what

happened and transfer control to the
appropriate SCSI SCRIPTS algorithm.

2/23/90

SCSI SCRIPTS TM Machine Language Description

Initiator Role -- 00 1
Wait for disconnect -- The initiator waits for a
disconnect from the SCSI bus. A legal
disconnect is defined as a loss of busy and
select for the specified bus free time following
a DISCONNECf message or a COMMAND
COMPLETE message. If the disconnect is

. legal, the next SCSI SCRIPTS command will
be executed, otherwise an unexpected
disconnect interrupt will be generated.

Initiator Role -- 010
Wait for reselection -- The initiator waits for a
reselection from a previously selected SCSI
device. If the operation completes as
expected, then the next instruction is fetched
and executed by the 53C700. However, if the
chip is selected, then the alternate jump
address should contain the address of an
algorithm for a selection. Include in the
~ess a wait for selection (target role)
command. That command's alternate address
is the error recovery algorithm (for initiator
role -- reselect). The chip can detennine
exactly what happened and transfer control to
the appropriate SCSI SCRIPTS algorithm.

Note:
With the 53C700 byte compare capability of

the transfer control command, the SCSI
SCRIPTS algorithm can determine which

targetreselected the initiator and can jump to
the correct algorithm for that particular target.
SCSI SCRIPTS can be tuned for the various

types of targets available and executed with no
external processor intervention.

Initiator Role -- function 011
Assert bit -- The chip asserts the SCSI bus
bits requested in the flags field. Currently
three bits are defined, allowing the SCSI ACK
target role and A TN bits to be set. Bit lOis
for target, bit 6 is for Acknowledge, and bit 3
is for Attention.

Initiator Role -- function 100
Reset bit -- The chip resets the SCSI bus bits
requested in the flags field. Currently two bits
are defined, allowing the SCSI ACK target
role and ATN bits to be reset. Bit 10 is for
target, bit 6 is for Acknowledge and bit 3 is
for Attention.

NCR 53C700 Programmer's Guide 2-7

Initiator Role -- function 101. 110. 111
These are not currently defined and will cause
an illegal command interrupt if used.

SELECT WITH ATN - Bits 26-24

If bit 24 is set, then the initiator SELECf
command will cause the SCSI attention line to
be set during the SELECf operation.
Attention on is valid only during the initiator
function 000. The bit is invalid for all other
functions and will cause an interrupt.

SCSI I.D. 7-0 .. Bits 23-16

This eight bit field is the LD. for the SCSI
chip to be selected in the initiator role and
reselected in the target role. Set only one bit
for either of the functions requested. These
bits are not used for any function other than
select or reselect.

Flags Field - Bits 15-00

These bits are used during the set or clear
command. Bit 10, on places the chip in the
target/initiator role. Bit 6, on sets/resets the
SCSI acknowledge. Bit 3, on sets/resets the
SCSI attention. Use the clear ACK command
after the last target message-in byte has been
verified for each separate message data Block
Move command. The initiator has the
opportunity to set attention before
acknowledging the last message byte of a
Block Move command. On each byte, if a
parity error was detected on the message in
operation, the ASSERT SCSI ATN is issued
before the clear acknowledge is issued to
accept the message. Use set Acknowledge to
handshake bytes across the SCSI bus. Clear
attention should be issued after the target has
serviced the request for a message out by the
initiator.

2/23/90

SCSI SCRIPTS TM Machine Language Description

I/O Command
Second SCRIPTS Word

Jump Address - Bit 31·00

If the select, wait reselect, or reselect
command fails, this thirty-two bit field
specifies from which memory address to
fetch the next SCSI SCRIPTS for execution.
Normally, the next instruction is fetched in
sequence if the requested operation completes
with no bus initiated interrupt.

NCR 53C700 Programmer's Guide 2-8 2/23/90

SCSI SCRIPTS TM Machine Language Description

Transfer Control Command

DeMD Register DB C Register

31 3029 2827 2625 24 23 2221 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o
1

o
I/O

C/O
MSUI

Op Code bit 0

Op Code bit 1
OpCode bit 2

o

Data to be compared with
o

o
the SCSI First Byte Recei ved

Mask for compare

First 32-bit word of the Transfer Control Command

DNAD Register
31 3029 2827 26252423 2221 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I
Second 32-bit word of the Transfer Control Command

Figure 3. Transfer Control Command

Overview

The Transfer Control Command contains the
JUMP, CALL, RETURN, and INTERRUPT
operation codes. Each opcode is conditionally
perfonned based on compares of SCSI phase
values and incoming SCIS data values. The
Transfer control command allows comparisons
of current phase values on the SCSI bus or the
first byte of data on any incoming bytes and
transfers control to another address depending
on the results of the test.

NCR 53C700 Programmer's Guide 2-9

These commands allow SCSI algorithms to be
written in SCSI SCRIPTS and give the
53C700 characteristics of a general purpose
SCSI processor. With transfer control
commands, you can program the chip, rather
than simply buffering commands to be serially
executed with no real-time decision making
capabilities.

2/23/90

SCSI SCRIPTS TM Machine Language Description

Transfer Control Command
First SCRIPTS Word

SCSI 1/0 Processor opcode .- 10
Bits 31-30

Transfer Opcodes.. Bits 29-27

Four opcodes are currently defmed that allow a
transfer of control in the SCSI SCRIPTS
language. All undefined opcodes cause an
interrupt of illegal command.

JUMP Command -- 000
If the condition evaluates according to the
sequence control bits so the jump must be
taken, the next instruction is fetched from
memo~ at the 32-bit jump address.
Otherwtse, the next sequential address will be
used as the instruction fetch address.

CALL Command -- 001
If the condition evaluates according to the
sequence control bits so the call must be taken
the next ~nstruction is fetched from memory at'
the 32-blt call address. Otherwise the next
sequential address will be used as !he
instruction fetch address.

The address of the next sequential command is
sto~ in. the chip's TEMP register in
antIcIpation of a subsequent return address. If
two CALL instructions are executed without
any intervening RETURN instruction, then the
~rrst re~ address in the chip's TEMP register
IS overwntten by the second CALL.

RETURN Command -- 010
If the condition evaluates according to the
sequence control bits so the return must be
taken, the next instruction will be fetched from
memory at the 32-bit address contained in the
TE~ regist~r, where it was stored by the
prevIous call mstruction. Otherwise the next
sequential address will be used as th~
instruction fetch address. The contents of the
TEMP register may be undefmed if a call
instruction was not previously executed.

INTERRUPT Command -- 011
If the condition evaluates according to the
sequence control bits so the software interrupt
must be taken, the chip halts execution and
issues an interrupt request to the external
processor. Otherwise, the next sequential
address will be used as the instruction fetch
address.

The 32-bitjump address in the instruction is
available in the chip's command register at the
time of the interrupt. You can post a four
byte, user unique error status to be used by the
external processor's interrupt service routine.
Thus, the cause of the interrupt can be easily
decoded by fmnware which reduces fmnware
interrupt service routine overhead.

SCSI Phase Bits .. Bits 26·24

In the SCSI initiator role, these bits compare
the actual SCSI lines (MSG, C/O, and I/O), if
the phase compare bit is set in the sequence
control field. Actual SCSI lines are a copy of
the last valid SCSI phase line values. These
bits are set in the SCSI SCRIPTS command to
compare with the current SCSI bus phase
lines, then branch to the SCSI SCRIPTfM that
processes the particular phase that is currently
active. Bit 26 is SCSI MSG, bit 25 is SCSI
C/D, and bit 24 is SCSI I/O. In the target role
these bits are ignored. '

Bits 23·20

These bits are reserved for future use and must
be zero.

NCR 53C700 Programmer's Guide 2 -10 2/23/90

SCSI SCRIPTS TM Machine Language Description

Sequence Control Bits - Bits 19-16

SCSI SCRIPrS can use the current conditions
on the SCSI bus to determine where to transfer
control and execute alternative algorithms
using the sequence control bits. The bits are
defined as follows:

• Bit 19 -- Transfer if TrueIFalse.

If the bit is set to 1, a transfer of control
occurs if the phase or data values in the
instruction are equal to the actual phase

. value on the SCSI bus or the fIrst byte of
the most recent asynchronous in phase.
The byte could be a message in, data in, or
status for the initiator and message out,
command, or data out for the target role.
When the bit is set to zero, the transfer
control will occur if the comparison yields
a false.

• Bit 18 -- Compare the data byte value
(bit 7 - bit 0 in the instruction) to the
first byte of the most recent data,
message, command, or status byte
received.

The user's SCSI SCRIPTS program can
determine what routine to execute next,
based on actual data values received across
the SCSI bus. For example, the chip can
compare for specific message values and
process an extended message in SCSI
SCRIPTS, with no external interrupt to
the external processor.

• Bit 17 -- In the initiator role, compare
the SCSI phase line value (bit 26 - bit
24) to the recent valid SCSI phase line
values saved in the chip.

Using this feature, the chip can react to
actual bus conditions and detennine which
routines to execute next based on SCSI
bus phase line values. Unexpected phase
values can be compared for and error
conditions or low probability events can
be processed by SCSI SCRIPTS inside
the chip.

NCR 53C700 Programmer's Guide 2 - 11

In the Target role, bit 17 on causes· the
chip to test for the attention line on. If the
initiator has set attention, the chip (in the
target role) can jump to a message out
routine to determine what the initiator
needs. This is normally placed after each
SCSI phase to allow the initiator to turn on
attention if an error is detected during the
transfer.

• Bit 16 -- In the initiator role, wait for a
previously unserviced phase change.

You can program the chip to pause until
the SCSI device it is communicating with
has proceeded to the next phase. One
normally uses this wait capability to pace
the chip in the initiator role. When a phase
change is expected, the wait is used to
synchronize the expected phase with the
actual phase detected on the SCSI bus. If
both data and phase compare bits are set,
the compare must be both true or both
false for the transfer to occur.

Mask Bits - Bits 15-8

The mask bits allow selective comparison of
bits within the data byte using SCRIPTS.
During the compare, any bits that are on will
cause the corresponding bit in the data byte to
be ignored for the comparison. A user can
code a binary sort to quickly determine the
value of a byte.

For instance, a mask of '7F' and data compare
of '80' allows the SCRIPTS processor to
determine whether or not the high order bit is
on.

Data Byte - Bits 7-0

Compare this data byte value to the fIrst byte
of the most recent asynchronous data,
message, command, or status byte receiv.ed.
The user's SCSI SCRIPTS program can
determine what routine to execute next based
on actual data values received. Using a series
of these compares, the algorithm can process
complex sequences with no intervention
required by the external processor.

2/23/90

SCSI SCRIPTS TM Machine Language Description

Transfer Control Command
Second SCRIPTS Word

Data Jump Address • Bit 31-00

This value specifies the address of the next
instruction in memory to transfer control. The
value is ignored both return and interrupt
commands. However, the address is loaded
into the chip's command register and is
available to be read by firmware in the case of
an interrupt command.

If both data compare and phase compare bits
are set, then both comparisons must be true or
both must be false before the requested
transfer will occur. There is no way to test
one for false and the other for true.

If neither the phase or data bit are set, and if
the true/false bit is 1, the operation is executed
unconditionally.

If neither the phase nor the data bit is set and
the true/false bit is 0, then the command has no
operation assignment and can be used as a
delay function, or to reserve SCSI SCRIPTS
patch area.

NCR 53C700 Programmer's Guide 2 -12 2/23/90

Chapter 3
Developing NCR SCSI SCRIPTSTM

NCR Microelectronics has a 53C700 Software
Development kit which supports the
development of SCSI SCRIPTS. This kit
includes:

• Sample SCRIPTS
• SCRIPTS Utilities
• Test/Diagnostic SCRIPTS
• A SCRIPTS compiler
• Hardware Test Support

Your local NCR Sales Office or Factory
Representative will assist you with ordering
information and current board level options.

To develop an executable SCSI SCRIPT, first
define the SCSI functions required. Identify
what functions will be executed in SCRIPTS
and what functions must be contained in
system firmware. Then design the specific
algorithms for the functions that will be
executed in the SCSI SCRIPTS portion of the
SCSI logical I/O driver.

Use the SCRIPTS compiler to code the
algorithms SCRIPTS. Then compile to create
the object code required as input by the
53C700. The compiler output is like an object
module, it includes relocation information
required to load the SCRIPTS object module
into main memory .

At load time, the SCRIPTS jump addresses
must be resolved using one of the utilities
furnished in the software package. At start I/O
time, another utility is used to patch in the
correct buffer addresses, byte counts,
destination 1.0., etc.

Writing a logical I/O driver is an easy task for
the 53C700. This is illustrated in the fIrst
SCSI SCRIPTS example. This code will
perform a read or write function using the
53C700 in the high level chained mode.
Because SCSI algorithms are so simple when
written in SCSI SCRIPTS, you can rapidly
prototype SCSI algorithms for a proof of
concept and concentrate on more complicated,
realistic algorithms.

A SCSI SCRIPTS is comprised of two parts or
areas:

1) Definition area
2) SCRIPT area

In this example, the defmition area is
comprised of variable and absolute values.
These values may describe a variable memory
address location, variable byte count or a fixed
status byte value.

. **************************** , .
; * The following are variable data values provided *
;* external to the compiler and resolved at run-time *
.**************************** ,

Definition area INITIATOR ROLE

Target Device 1.0. to be fixed at Start I/O time.
EXTERNAL device

Ten byte buffer for sending messages
EXTERNAL sendmsg

Ten byte buffer for receiving messages
EXTERNAL rcvmsg

NCR 53C700, Programmer's Guide 3 -1 2/23/90

Developing NCR SCSI SCRIPTSTM

Number of message bytes to send after selection
EXTERNAL idcount

Number of command bytes
EXTERNAL cmd_count

Buffer for the SCSI command
EXTERNAL cmd_adr

Number of user data bytes
EXTERNAL data_count

Address of user data buffer
EXTERNAL data_adr

Error -- not message out after selection

.**************************** ,
;* Absolute values are stored in DNAD Register *
; * for purposes of interrupt processing *
.**************************** ,

.**************************** ,
; * Note that OXO precedes the interrupt status *
; * values and designates a hex value *
.**************************** ,

ABSOLUTE errl = OxOffOl

Error -- unexpected SCSI phase before command phase
ABSOLUTE err2 = OxOff02

. Error -- unexpected SCSI phase after a command transfer
ABSOLUTE err3 = OxOff03

Error -- expected status phase
ABSOLUTE err4 = OxOff04

No Error -- good I/O
ABSOLUTE ok = OxOffOO

Error -- expected message outphase
ABSOLUTE err5 = OxOff05

Error -- expected message command complete
ABSOLUTE err6 = OxOff06

NCR 53C700, Programmer's Guide 3-2 2/23/90

Developing NCR SCSI SCRIPTSTM

Single-Tasking SCSI Example
If an unpredictable event occurs on the SCSI

The following is a simple SCSI SCRIPT that bus, a unique interrupt status value is DNAD
perfonns a single-tasking SCSI operation stored in the 53C700's register ·and is
without disconnecting. available for interrupt processing.

; select the device with attention on
select atn device resel_adr

; if the next phase is not message out, interrupt
. int err! when not MSG_OUT

; sent the i.d. message out to the target
move idcount sendmsg when MSG_OUT

; if the next phase is not command, interrupt
int err2 when not CMD

; send the command bytes
move cmd_count cmd_adr when CMD

; go to process cleanup if status phase
jump end when STATUS

; process data in phase
jump input_data ifDATAIN

; or data out phase
jump output_data if DATA_OUT

; unexpected phase if here
int err3

; process the data in phase
input_data:
move data_count data_adr when DATA_IN

; and go process status
jump end

; process the data out phase
output_data:
move data_count data_adr when DATA_OUT

; interrupt if not status phase
end:
int err4 when not STATUS

NCR 53C700, Programmer's Guide 3-3 2/23/90

Developing NCR SCSI SCRI PTSTM

; move the status byte into memory
move 1 status_adrwhen STATUS

; interrupt if message in is not next
int err5 when not MSG_IN

; move the command complete byte in
move 1 rcvmsg when MSG_IN

; interrupt if it is not a command complete message
int err6 if not 00

; accept the message if there are no problems
clear ack

; wait for a physical disconnect
wait disconnect

; interrupt with an I/O complete
intok

NCR 53C700, Programmer's Guide 3-4 2/23/90

Chapter 4
NCR SCSI SCRIPTS TM Utilities

The development package includes these
utilities and the SCSI SCRIPTS Compiler.

InitSIOP()

Declaration:
void InitSIOP(struct SlOP *)

InitSIOPO accepts a pointer to an SlOP struct
or NULL. If NULL then all the members in
SCSlREGS are assigned a value of O.
Otherwise copy the value from each member
of the passed struct into _SCSlREGS_ and
put those into the chip.

NOTE:
This function will, by default, assign one

struct to another. This is ANSI compatible,
but older compilers may not support it.

Therefore by defined KR to 1 each member
will be assigned in turn.

SetPhaseMMlnt()

Declaration:
void SetPhaseMMlnt(BOOl)

SetPhaseMMlntO turns the phase mismatch
interrupt on or off.

SetComplnt(BOOl)

Declaration:
void SetComplnt(BOOl)

SetCompIntO turns the function complete
interrupt on or off.

SetSe ITi m eo uti nt()

Declaration:
void SetSelTimeoutlnt(BOOl)

SetSelTimeoutIntO turns the select time out
interrupt on or off.

NCR 53C700, Programmer's Guide 4 -1

SetSellnt()

Declaration:
void SetSellnt(BOOl)

SetSelIntO turns the select interrupt on or off.

SetG ross Errl nt()

Declaration:
void SetGrossErrlnt(BOOl)

SetGrossErrIntO turns the SCSI gross error
interrupt on or off.

Set UXDiscl nt()

Declaration:
void SetUXDisclnt(BOOl)

SetUXDiscIntO turns the Unexpected
disconnect interrupt on or off.

SetRSTlnt()

Declaration:
void SetRSTlnt(BOOl)

SetRSTIntO turns the RST/ interrupt on or
off.

SetParlnt()

Declaration:
void SetParlnt(BOOl)

SetParIntO sets the parity error interrupt on or
off.

2/23/90

NCR SCSI 'SCRIPTS TM Utilities

Set286Mode()

Declaration:
void Set286Mode(BOOl)

Set286Mode() puts the chip in 80286 mode
when ON, otherwise it is in the 80386 mode.

ClearDMAFifo()

Declaration:
void ClearDMAFifoO

ClearDMAFifoO clears the DMA FIFO.

SetIO()

Declaration:
void SetlO(BOOl)

SetIO() tells the SlOP to transfer data to an
I/O mapped device when ON, othelWise
transfers are to memory mapped devices.

Set16BitDBus()

Declaration:
void Set16BitDBus(BOal)

Set16BitDBus() causes the SlOP to perfonn
transfers 16-bits at a time when ON, othelWise
transfers are 32-bits at a time.

SetFixedAddr()

Declaration:
void SetFixedAddr(BOal)

SetFixedAddr() disables the address pointer
in the DNAD register so that it is ON, it will
not increment.

NCR 53C700, Programmer's Guide 4-2

Set Abo rtl nt()

Declaration:
void SetAbortlnt(BOOl)

SetAbortIntO makes the SlOP drive the INTI
signal when an abort condition is encountered
and it is set to ON.

SetINTlnstlnt()

Declaration:
void SetlNTlnstlnt(BOOl)

SetINTInstIntO allows the SlOP to drive the
INTI signal when it encounters an INT
instruction in a script and it is set to ON.

SetWatchDoglnt()

Declaration:
void SetWatchDoglnt(BOOl)

SetWatchDogIntO allows the SlOP to drive
the INTI signal when the watch dog timer
decrements to 0 and it is set to ON.

Set III e 9 all ns tin t ()

Declaration:
void Setlllegallnstlnt(BOQl)

SetIllegalInstInt() allows the SlOP to drive
the INTI signal when an illegal instruction is
encountered in a SCRIPT and it is set to ON.

. Set16BitScripts()

Declaration:
void Set16BitScripts(BaOl)

Set16BitScripts() makes the SlOP fetch script
instructions 16-bits at a time when set to ON.
OthelWise fetches are 32-bits at a time.

2/23/90

NCR SCSI SCRIPTS TM Utilities

SelClkFreq()

Declaration:
void SelClkFreq(UBYTE)

SetClkFreq() send the clock speed being used
by the system to the SlOP. It accepts 1 of 3
values; SLOW, MED, or FAST.

/* 0 FAST 37.51 to 50MHz
/* 1 ~ 25.01 to 37.5 MHz
/* 2 SLOW 16.67 to 25 MHz

SetHOSTID()

Declaration:
Baal SetHOSTID(UBYTE)

SetHOSTIDO accepts a byte value to be placed
into the SClD register. It will not allow a value
of 255 (FF hex) to be placed into this register
since the SlOP cannot talk to itself.

SetParity()

Declaration:
void SetParity(Baal)

SetParityO, when ON, the Slap checks the
data bus for odd parity when receiving across
the SCSI bus.

SetAutoATN()

Declaration:
void SetAutoATN(Baal)

SetAutoATNO, the SlOP asserts the ATN/
signal when a parity error is detected and it is
ON.

NCR 53C700, Programmer's Guide 4-3

SetSlowBus()

Declaration:
void SetSlowBus(Baal)

SetSlow BusO, the SlOP adds 1 extra clock
cycle to the data setup time when it is ON.

GetPhysAddr()

Declaration:
UlONG GetPhysAddr(UBYTE far *)

GetPhysAddrO accepts a far pointer in the
80x86 fonnat. Then It takes the segment
portion, multiplies it by 16 and adds it to the
offset portion to return a physical address.

Patch Labels()

Declaration:
void Patchlabels(Base, PatchArray, Count)

UlONG Base[], PatchArray[];
ULONG Count;

PatchLabelsO patches a script that references
labels within that script. Three ULONGs are
passed to it.

The fIrst ULONG is a pointer to the
ULONG array SCRIPT that is going to be
manipulated.

The second is a pointer to the ULONG
PatchArray (LABELPATCHES), the array
whose elements contain the offsets into the
script to be manipulated.

The third ULONG is the count of the
number of elements in the patch array.

2/23/90

NCR SCSI SCRIPTS TM Utilities

PatchRelative()

Declaration:
void PatchRelative (ScriptBase, RelBase,

RelArray, Count)
ULONG ScriptBase[], ReIArray[];
ULONG RelBase, Count;

PatchRelative() requires a little programmer
input. It is very similar to PatchLabelsO.
Passed to it are

a pointer to the ULONG Script array,

the physical relative data base address,

a pointer to the ULONG relative Data
array, and

a count of the number of elements in the
relative array.

PatchID()

Declaration:
void PatchlD(lnstructions, Location, Value)

ULONG far *Instructions;
ULONG Location, Value;

PatchPhase()

Declaration:
void Patch Phase (Instructions, Location,

Value)
ULONG far *Instructions;
ULONG Location, Value;

NCR 53C700, Programmer's Guide 4-4 2/23/90

Chapter 5
The NCR SCSI SCRIPTSTM Language Syntax

Notation

{ } Something enclosed in curly
braces is optional.

{ }" " ... The item enclosed in the curly
braces can be repeated as often
as desired.

KEYWORD A word in all upper case is a
keyword. Case is ignored by
the compiler when looking for
keywords.

Phase must be replaced with only one of the
following keywords:

MSG_IN,
MSG_OUT,
DATA_IN,
DATA_OUT,
CMD,
STATUS,
RES4,
RESS

The word 'address' means a 32-bit
number.

The word 'value' means a 32-bit number.

The word 'count' means a 24 bit number.

The word 'id' means an eight bit number that
has exactly one bit set.

The word 'data' means an eight bit number.

The word 'expression' denotes a
mathematical expression with the form:

<identifier> [<addop> <identifier>]*

<identifier> is any valid variable name or a
numeric constant.

<addop> is the '+' or '_I character to
denote addition or subtraction respectively.

NCR 53C700 Programmer's Guide 5 -1

An 'expression' may be used in any place that
a numeric value would normally be used. The
value of all 'expressions' are automatically
extended to 32-bits. When expressions are
used in a context where the evaluated value is
less then 32-bits, the least significant bits will
be used. For instance, if an 'expression' is
used to represent a count for a move
instruction, the evaluated value will be
truncated to 24 bits. Notification that the
expression has been truncated will occur if the
value of the expression is changed.

The word 'name' represents a string of one
or more consecutive characters chosen from
the letters, the numbers, the underscore, and
the dollar sign. Names used for labels,
externals, and vatiables in the relative data area
are passed on to the Host development
system.

If the Host development system has
restrictions on the format of such names, it is
the responsibility of the SCSI SCRIPTS
writer's to avoid using such names. For
example, Turbo C, which is used as the Host
development system for this application, does
not allow names to begin with a digit or to
contain a dollar sign. Therefore, the SCSI
SCRIPTS writer for DOS and Turbo C should
avoid using' names of this form.

Input Format

SCSI SCRIPTS consist of a series of lines.
Blank lines, lines containing only white space,
and anything after a semi-colon on an input
line are ignored by the front end.

The compiler is "token" oriented. It reads the
input stream and splits it up into tokens.
White space and anything from a semicolon to
the end of the line is not part of any token, and
is ignored by the fIrst pass of the compiler.

2/23/90

The NCR SCSI SCRIPTSTM Language Syntax

There are two types of tokens. A token is any
string of consecutive letters, numbers, dollar
signs, or underscores; a character can be part
of ONL Y one token. The input stream is split
into tokens to minimize the number of tokens.
For example, the string "abc" would be treated
as one token ("abc") rather than multiple
tokens ("a" and "bc")o

The second type of token consists of
characters that are not part of other tokens.
Anything that is not a letter, a digit, an
underscore, or a dollar sign becomes a token.
For example, the string

"xxx=Ox123 ; assign value to xxx"

contains three tokens.

xxx
=
Ox123

Numeric values may be specified in decimal,
hexadecimal, Octal, or binary.

Decimal numbers are specified by a string
of digits not beginning with zero.

Hex numbers are specified by a string
consisting of "Ox" or "OX" and the hex
digits of the number. Both upper and
lower case are allowed

A binary number is similar to a hex
number, except that "~b" or "OB" is used
instead of "Ox" or "OX".

An octal number is specified by a "0"
followed by the octal digits.

Language Directives

Several keywords provide information to the
front end about the compilation of the SCSI
SCRIPTS. They define symbolic names and
indicate things to be passed to the second pass
of the compiler.

NCR 53C700, Programmer's Guide 5-2

ENTRY label {,label ... }

The ENTRY keyword indicates that the
specified labels are SCSI SCRIPTS entry
points. Their names and values are defmed at
the back end, which will also make them
available to the Host development system.

ABSOLUTE name =
expression {,name = expression ... }

This declares symbolic names for numeric
values. For example,

ABSOLUTE bad_cmd = Ox1200"

allows the name
bad_cmd

to be used instead of a number in the SCSI
SCRIPTS. The SCSI SCRIPTS will be
compiled as if the number Ox1200 had been
specified instead of the name "bad_cmd" in
every instruction that uses "bad_cmd".

EXTERNAL name {,name ... }

This tells the compiler that the SCSI SCRIPTS
will refer to variables with specified names
that are declared outside of the SCSI
SCRIPTS. Some host development systems
are not able to support use of this word and
SCSI SCRIPTS requiring this feature may not
be portable to all hosts.

RELATIVE name =
expression {,name = expression.~.}
Use to declare relative data variables.

name the variable name.

expression the offset from the start of the
relative data area where the
variable is located.

A name followed by a colon signifies a labe1.
Use a label name wherever there is a call for
an address.

2/23/90

The NCR SCSI SCRIPTSTM Language Syntax

The SCSI SCRIPTS Instructions

When an instruction calls specifies a count,
use a 24-bit number or a symbolic constant
(declared using the ABSOLUTE keyword).

When an instruction requires an address, use

a 32-bit number,

the label name,

the variable name in the relative data area
(previously declared with the
RELATIVE keyword) , or

the external variable name (previously
declared with the EXTERNAL
keyword).

Labels, external variables, and relative
variables all share the same name space. If a
name is declared more than once, the front end
resolves the conflict. If a problem possibly
exists, a warning will be issued.

If the address field of an instruction contains
an undefined name, then the front end
assumes that it refers to a label that will be
defined later. This is called forward
referencing. If the name is defined later as an
external or relative variable, this will create a
name conflict and the front end will resolve it
A possible problem warning is issued.

NCR 53C700, Programmer's Guide 5-3

Block MOVE Command

There are several forms of the Block Move
instruction.

address Specify the address and byte count
count fields of the instruction. If the

optional keyword PTR is present,
then the indirect bit will be set.

Phase Specifies the phase field of the
instruction

WITH or Specify the Block Move function
WHEN codes

WITH signals the target role
which sets the phase values

WHEN is the initiator "test for
phase" feature

The 53C700 waits for a valid phase (initiator)
or drives the phase lines (target). In the
initiator role, it performs a compare by
looking for a match between the phase
specified in the SCRIPT and the actual value
on the bus. If the phases do not match, an
external interrupt occurs. Data is then
transferred in or out according to the phase
lines. When the count goes to zero, the next
sequential SCRIPTS instruction is fetched.

MOVE count, { PTR } address, WITH Phase
MOVE count, { PTR } address, WHEN Phase

2/23/90

The NCR SCSI SCRIPTSTM Language Syntax

JUMP Command If both 'Phase' and 'data' are
specified, they must be in that order
and they must be separated by the
keyword AND.

The conditional JUMP instructions all have the
same general fonn.

Address The SCSI SCRIPTS address that
will be transferred to if the JUMP is
taken.

ATN The target role version which is
required to test whether the initiator
has set A TN on the bus.

WHEN Sets the Wait bit in the SEQ CNTL
field.

NOT Used for the inverse test of WHEN
and IF. "NOT Phase OR data" is
the negation of "Phase AND data".

IF Do not set the Wait bit
MASK Always use with an 'AND' or 'OR'

keyword The data following the
keyword 'MASK' allows a
SCRIPT to selectively compare the
bits within the data byte.

Phase

data

If NOT follows WHEN or IF, then
the TruelFalse bit of the SEQ CNTL
field is not set; otherwise, the bit
will be set.

When present, the compare Phase
bit of SEQ CNTL will be set;
otherwise, it will be cleared

. Any bits that are ON eliminate the
corresponding bit in the data byte at the time of
the compare. Use this 'binary sort' to quickly
detennine the value of incoming bytes. For
example, a mask of '7F' and a data compare
of '80' allows the SCRIPTS processor to
determine if the high .order bit is ON.

When present, the compare Data bit
of SEQ CNTL will be set;
otherwise, it will be cleared.

NOP
JUMP address
JUMP address,
JUMP address,
JUMP address,
JUMP address,
JUMP address,
JUMP address,
JUMP address,
JUMP address,
JUMP address,
JUMP address,
JUMP address,
JUMP address,
JUMP address,
JUMP address,
JUMP address,
JUMP address,
JUMP address,
JUMP address,
JUMP address,
JUMP address,
JUMP address,
JUMP address,
JUMP address,
JUMP address,
JUMP address,
JUMP address,

IF ATN
IF Phase
IF data
IF data, AND MASK data
IF ATN AND data
IF ATN AND data, AND MASK data
IF Phase AND data
IF Phase AND data, AND MASK data
WHEN Phase
WHEN data
WHEN data ,AND MASK data
WHEN Phase AND data
WHEN Phase AND data, AND MASK data
IF NOT ATN
IF NOT Phase
IF NOT data
IF NOT data, AND MASK data
IF NOT ATN OR data
IF NOT ATN OR data, AND MASK data
IF NOT Phase OR data
IF NOT Phase OR data, AND MASK data
WHEN NOT Phase
WHEN NOT data
WHEN NOT data, AND MASK data
WHEN NOT Phase OR data
WHEN NOT Phase OR data, AND MASK_ data

NCR 53C700, Programmer's Guide 5-4 2/23/90

The NCR SCSI SCRIPTSTM Language Syntax

CALL Command If both Phase and data are specified,
they must be in that order and they
must be separated by the keyword
AND.

All conditional CALL instructions have the
same general fonn.

ie WHEN Phase AND data ...

Address The SCSI SCRIPTS address
transferred to if the JUMP is taken. ATN The target role version which is

required to test whether the initiator
has set A TN on the bus. WHEN Set the Wait bit in the SEQ CNTL

field.
U sed for the inverse test of WHEN
and IF.

NOT

IF Do not set the Wait bit

If WHEN or IF are followed by NOT,
then the True/False bit of the SEQ
CNTL field is not set Otherwise,
the bit will be set MASK

"NOT Phase OR data" is the negation
of "Phase AN D data" .

Phase When present, the compare Phase
bit of SEQ CNTL will be set;
otherwise, it will be cleared

Always use with an 'AND' or 'OR'
keyword. The data following the
keyword MASK allows a SCRIPT to
selectively compare the bits within
the data byte.

data When present, the compare Data bit
of SEQ CNTL will be set;
otherwise, it will be cleared

Any bits that are ON eliminate the
corresponding bit in the data byte at the
compare. Use this 'binary sort' to quickly
detennine value of incoming bytes. For
example, a mask of '7F'and a data compare of
'80' allows the SCRIPTS processor to
detennine if the high order bit is ON.

CALL address
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,
CALL address,

IF ATN
IF Phase
IF data
IF data, AND MASK data
IF ATN AND data
IF ATN AND data, AND MASK data
IF Phase AND data
IF Phase AND data, AND MASK data
WHEN Phase
WHEN data
WHEN data, AND MASK data
WHEN Phase AND data
WHEN Phase AND data, AND MASK data
IF NOT ATN
IF NOT Phase
IF NOT data
IF NOT data, AND MASK data
IF NOT ATN OR data
IF NOT ATN OR data, AND MASK data
IF NOT Phase OR data
IF NOT Phase OR data, AND MASK data
WHEN NOT Phase
WHEN NOT data
WHEN NOT data, AND MASK data
WHEN NOT Phase OR data
WHEN NOT Phase OR data, AND MASK data

NCR 53C700, Programmer's Guide 5-5 2/23/90

The NCR SCSI SCRIPTSTM Language Syntax

RETURN Command If both Phase and data are specified,
they must be in that order and they
must be separated by the keyword
AND.

All conditional RETURN instructions have the
same general form.

Address The SCSI SCRIPTS address that ATN The target role version which is
required to test whether the initiator
has set ATN on the bus.

will be transferred to if the JUMP is
taken.

WHEN Set the Wait bit in the SEQ CNTL
field.

NOT U sed for the inverse test of WH EN
and IF. "NOT Phase OR data" is the
negation of "Phase AND data".

IF Do not set the Wait bit

. Phase

data

If WHEN or IF are followed by NOT,
then the TrueIFalse bit of the SEQ
CNTL field is not set. Otherwise,
the bit will be set.

When present the compare Phase bit
of SEQ CNTL will be set;
otherwise, it will be cleared.

When present, the compare Data bit
of SEQ CNTL will be set;
otherwise, it will be cleared.

RETURN
RETURN, IF ATN
RETURN, IF Phase
RETURN, IF data

MASK Always use with an 'AND' or 'OR'
keyword. The data following the
keyword 'MASK' allows a SCRIPT
to selectively compare the bits
within the data byte.

Any bits that are ON eliminate the
corresponding bit in the data byte at the time of
the compare. Use this 'binary sort' to quickly
determine value of incoming bytes. For
example, a mask of '7F'and a data compare of
'80' allows the SCRIPTS processor to
determine if the high order bit is ON.

RETURN, IF data, AND MASK data
RETURN, IF ATN AND data
RETURN, IF ATN AND data, AND MASK data
RETURN, IF Phase AND data
RETURN, IF Phase AND data, AND MASK data
RETURN, WHEN Phase
RETURN, WHEN data
RETURN, WHEN data, AND MASK data
RETURN, WHEN Phase AND data
RETURN, WHEN Phase AND data, AND MASK data
RETURN, IF NOT ATN
RETURN, IF NOT Phase
RETURN, IF NOT data
RETURN, IF NOT data, AND MASK data
RETURN, IF NOT ATN OR data
RETURN, IF NOT ATN OR data, AND MASK data
RETURN, IF NOT Phase OR data
RETURN, IF NOT Phase OR data, AND MASK data
RETURN, WHEN NOT Phase
RETURN, WHEN NOT data
RETURN, WHEN NOT data, AND MASK data
RETURN, WHEN NOT Phase OR data
RETURN, WHEN NOT Phase OR data, AND MASK data

NCR 53C700, Programmer's Guide 5-6 2/23/90

The NCR SCSI SCRIPTSTM Language Syntax

INTERRUPT Command If both Phase and data are specified,
they must be in that order and they
must be separated by the keyword
AND.

All conditional INT instructions have the same
general form.

Address The SCSI SCRIPTS address that
will be transferred to if the ruMP is
taken.

ATN The target role version which is
required to test whether the initiator
has set A TN on the bus.

WHEN Set the Wait bit in the SEQ CNTL
field.

NOT U sed for the inverse test of WH EN
and IF. "NOT Phase OR data" is the
negation of "Phase AND data".

IF Do not set the Wait bit.

Phase

data

If WHEN or IF is followed by NOT,
then the True/False bit of the SEQ
CNTL field is not set. Otherwise,
the bit will be set.

When present, the compare Phase
bit of SEQ CNTL will be set;
otherwise, it will be cleared.

When present, the compare Data bit
of SEQ CNTL will be set;
otherwise, it will be cleared.

INT address
INT address, IF ATN
INT address, IF Phase
INT address, IF data

MASK Always use with an AND or OR
keyword. The data following the
keyword MASK allows a SCRIPT to
selectively compare the bits within
the data byte.

Any bits that are ON eliminate the
corresponding bit in the data byte at the
compare. Use this 'binary sort' to quickly
detennine value of incoming bytes. For
example, a mask of '7F'and a data compare of
'80' allows the SCRIPTS processor to .
determine if the high order bit is ON.

INT address, IF data, AND MASK data
INT address, IF ATN AND data
INT address, IF ATN AND data, AND MASK data
INT address, IF Phase AND data
INT address, IF Phase AND data, AND MASK data
INT address, WHEN Phase
INT address, WHEN data
INT address, WHEN data, AND MASK data
INT address, WHEN Phase AND data
INT address, WHEN Phase AND data, AND MASK data
INT address, IF NOT ATN
INT address, IF NOT Phase
INT address, IF NOT data
INT address, IF NOT data, AND MASK data
INT address, IF NOT ATN OR data
INT address, IF NOT ATN OR data, AND MASK data
INT address, IF NOT Phase OR data
INT address, IF NOT Phase OR data, AND MASK data
INT address, WHEN NOT Phase
INT address, WHEN NOT data
INT address, WHEN NOT data, AND MASK data
INT address, WHEN NOT Phase OR data
INT address, WHEN NOT Phase OR data, AND MASK data

NCR 53C700, Programmer's Guide 5-7 2/23/90

The NCR SCSI SCRIPTSTM Language Syntax

SCSI I/O Commands

SELECT {A TN} ID, Address

Initiator mode function O.
If ATN is present, the "select with A TN'
bit is turned on. 'id' specifies the
destination SCSI ID.

RES ELECT id, address

Target mode function 0

WAIT DISCONNECT

. Initiator mode function 1

DISCONNECT

Target mode function 1

WAIT RESELECT address

Initiator mode function 2

WAIT SELECT address

Target mode function 2
If the 53C700 is connected as an initiator,
the following set and clear commands ':Vill
have no meaning (the SCSI target role IS
not active) and should not be used.

SET TARGET

Function 3 with the target bit set in the
flags field.

NCR 53C700, Programmer's Guide 5-8

SET ACK

Function 3 with the ACK bit set in the
Flags field.

SET ATN

Function 3 with the A TN bit set in the
Flags field.

SET ACK and ATN and TARGET

Function 3 with ACK, ATN, and
TARGET bits set in the flag field. All
three or any two of the keywords (ACK,
ATN, or TARGET) may be used .

CLEAR TARGET

Function 4 with the target bit set in the
flags field.

CLEAR ACK

Function 4 with the ACK bit set in the
Flags field.

CLEAR ATN

Function 4 with the A TN bit set in the
Flags field.

CLEAR ACK and ATN and TARGET

Function 4 with ACK, ATN, and
TARGET bits set in the Flags field. All
three or any two of the keyw·ords (ACK,
A TN, or TARGET) may be used.

2/23/90

Chapter 6
SCSI SCRIPTS TM to Support Use of Scatter/Gather

Virtual memory schemes are common in
todays systems, they are used to keep user
data in small, manageable pages in main
memory. Memory management units track
actual, physical locations. This memory
scheme is called scatter/gather because user
data is scattered through memory and gathered
for a write to disk. One I/O may include
several pages, so current SCSI ports must re
instruct the DMA controller at the beginning of
each user data page.

The extra time required to re-instruct for each
page causes some delay for the external
processor interrupt and DMA setup time. A
potentially undesirable side effect occurs when
the delay makes the disk slip a revolution,
because there is no place to put data coming
off the media.

The 53C700 has an efficient solution to the
scatter/gather performance degradation
problem. Each page of user data is
represented by a Block Move command. The
only overhead required to move to the next
page of data is a SCSI SCRIPTS fetch (500
nanoseconds). No flrmware interrupt is
required (normally a minimum of 80
microseconds in a system environment). Nor
is a fmnware instruction required to re-instruct
a DMA controller.

NCR 53C700 Programmer's Guide 6 -1

Chapter 7 contains a SCSI SCRIPTS model
for the scatter/gather situation. First, separate
the set of Block Move commands that are
required to process the user data and code the
SCSI SCRIPTS to call this user data section
to move. Determine a maximum number of
pages per I/O and code one SCSI SCRIPTS
Block Move for each possible page. At the
start I/O time, the logical I/O routine
determines exactly how many block moves are
required and patches a return command over
the next SCSI SCRIPTS command after the
last required Block Move command. The
group of Block Move commands is called, the
correct number of moves is performed, and
the return is executed. At the completion of
the I/O, the return is overwritten with a Block
Move to prepare the set of Block Move
commands for the next I/O.

The 53C700 can process scatter/gather
requests in a very simple manner and
simultaneously, dramatically reduce I/O
overhead.

2/23/90

Chapter 7

NCR SCSI SCRIPTSTM for an Initiator

Definition area INITIATOR ROLE

Target Device I.D. to be fIxed at Start I/O time.
EXTERNAL device

Ten byte buffer for sending messages
EXTERNAL sendmsg

Ten byte buffer for receiving messages
EXTERNAL rcvmsg

Number of message bytes to send after selection
EXTERNAL idcount

Number of command bytes
EXTERNAL cmd_count

Buffer for the SCSI command
EXTERNAL cmd_adr

Number of user data bytes
EXTERNAL data_count

Address of user data buffer
EXTERNAL data_adr

Error -- not message out after selection
ABSOLUTEerrl=OxlliIDl

; Error -- unexpected SCSI phase before command phase
ABSOLUTE err2 = OxlliID2

Error -- unexpected SCSI phase after a command transfer
ABSOLUTEerr3=OxlliID3

Error -- not msg in phase after status phase
ABSOLUTE err4 = OxlliID4

No Error -- good I/O
ABSOLUTE ok = OxOffOO

SCSI status'returned is check condition
ABSOLUTE check_cond = Oxlliffe

SCSI status returned is busy
ABSOLUTE busy = OxOfffd

SCSI status returned is reservation conflict
ABSOLUTE reserved = OxOfffc

NCR 53C700, Programmer's Guide 7 - 1 2/23/90

NCR SCSI SCRIPTSTM for an Initiator

SCSI status returned is unknown
ABSOLUTE bad_status = OxOfffb

Error -- unexpected phase after a data transfer
ABSOLUTE err5 = OxOff05

; Error -- unexpected msg in phase before command phase
ABSOLUTE err6 = OxOff06

; Error -- extended msg present before a command phase
ABSOLUTE err7 = OxOff07

; Error -- save data pointers before a command phase
ABSOLUTEerr8=OxOff08

; Error -- disconnect before command phase
ABSOLUTE err9 = OxOff09

Error -- Save data pointers after the command phase
ABSOLUTE err10 = OxOff10

Error -- unexpected msg after command phase
ABSOLUTE err11 = OxOff11

; Error -- extended message present after the command phase
ABSOLUTE err12 = OxOff12

Error -- disconnect after a command phase
ABSOLUTE err13 = OxOff13

; Error -- save data pointers after a data transfer
ABSOLUTE err14 = OxOff14

Error -- unexpected message after a data transfer
ABSOLUTE err15 = OxOff15

. Error -- extended message after a data transfer
ABSOLUTE err16 = OxOff16

Error -- disconnect after a data transfer
ABSOLUTE err17 = OxOff17

Error -- Message in not received after reselection
ABSOLUTE err18 = OxOff18

Error -- Data in phase after reselection and Ld. msg rcvd
ABSOLUTE err19 = OxOff19

; Error -- Data out phase after reselection and Ld. msg rcvd
ABSOLUTE err20 = OxOff20

NCR 53C700, Programmer's Guide 7-2 2/26/90

NCR SCSI SCRIPTS'rM for an Initiator

Error -- Msg in phase after reselection and i.d. msg rcvd
ABSOLUTE err21 = OxOff21

Error -- Status phase after reselection and i.d. msg rcvd
ABSOLUTE err22 = OxOff22

Error -- Msg out phase after reselection and Ld. msg rcvd
ABSOLUTE err23 = OxOff23

Error -- Unknown phase after reselection and Ld. msg rcvd
ABSOLUTE err24 = OxOff24

Error -- Selected as a target
ABSOLUTE err25 = OxOff25

Error -- Unexpected message rcvd instead of command complete
ABSOLUTE err26 = OxOff26

SCSI I/O entry point. This address must be loaded into the
53C700 before initiating a SCSI I/O.

ENTRY start_up

SCRIPTS AREA

This is -the entry point for a SCSI I/O

start_up:

This is the SCRIPT for a standard SCSI I/O

First, select the device with attention and go to an
alternate reselect address. If a reselection or selection
happens before the selection can execute, the chip will
change roles if required.

SELECf A TN device resel_adr

If the next phase is status, go to end. Wait for valid
phase before performing the comparison.

JUMP end WHEN STATUS

If not msg out phase, interrupt. Do not wait for phase.
!NT err1 IF NOT MSG_OUT

NCR 53C700, Programmer's Guide 7-3 2/23/90

NCR SCSI SCRIPTSTM for an Initiator

**
Label for retry loop to resend I.D. msg on error
**

retry:

The expected case after selection is I.D. message out to the
device. Move the I.D. message from the send message buffer.
Do not wait for a phase change.

MOVE idcount sendmsg when MSG_OUT

If the target remains in the message out phase after the
initial messages have been sent to the device, retransfer
the messages. Wait for a valid phase (req asserted).

JUMP retry WHEN MSG_OUT

Now check for all expected phases.
JUMP end IF STATUS

Process a message in before the command phase here
JUMP msgl IF MSG_IN

If it is not status, msg in, or command, stop
Interrupt if not command phase

INT err2 IF NOT CMD

Transf~r command bytes to the host
MOVE cmd_count cmd_adr when CMD

Detennine what is coming next. Is there a message in after
, the command phase?

JUMP msg2 WHEN MSG_IN

Status phase after the command?
JUMP end IF STATUS

Check for data in phase
ruMP input_data IF DA TA_IN

Is this a data out phase?
JUMP output_data IF DATA_OUT

Error -- an unexpected phase after a command transfer
INTerr3

NCR 53C700, Programmer's Guide 7-4 2/26/90

,
end:

NCR SCSI SCRIPTSTM for an Initiator

Label to process the status phase

; Move the status byte in to the buffer area
MOVE 1 status_adr when STATUS

NOTE: an alternative at this point -is to detennine what the
status byte is and jump to a set of routines that will
process the command complete message, physical disconnect,
and then interrupt with the appropriate status byte error
value. Here, the algorithm interrupts if good I/O is not
the status byte returned by the target.

Was there a check condition
!NT check_cond IF Ox02

Is the device busy
INT busy IF Ox08

Is the device reserved
INT reserved IF Ox018

Interrupt for unknown state
INT bad_status IF NOT OxOO

Status value is good I/O, so process the command complete
Stop if the next phase is not message in.

INT err4 WHEN NOT MSG_IN

; Message iIi if here. It should be a command complete.
MOVE 1 rcvmsg when MSG_IN

Process the message if it is not a command complete
INT IF NOT OxOO

At this point, instead of interrupting, the best course
would be to examine the message received and react, or to
interrupt with a more specific error code.

Command complete was received, acknowledge it
CLEARACK.

A physical disconnect should be next
WAIT DISCONNECT

Good I/O if here
INTok

NCR 53C700, Programmer's Guide 7-5 2/23/90

" ,
,

NCR SCSI SCRIPTSTM for an Initiator

**********************************~,!*~-~***
This the data out section of the algorithm
**

output_data:

If a scatter/gather requirement exists, then this section
can be· multiple block moves to allow for mu1tiple segments
of data. Also, this section could actually be a jump to a
;,group·ofblockmoves that can be patched appropriately at
start I/O for the number of segments needed. The overhead
between segment block moves is 500-600 nanoseconds.

**
Process 'what comes "after the data transfer
~*************************************

; Status phase is the normal next step
~end~NSTATUS

Is there a message in phase after ~ta transfer
JUMP msg3IF MSG_IN

Unexpected phase detected after data transfer
INTerr5

.....

******************************~****.*-,,**************
This is the data in phas, portion, of the. algorithm
**************************************~************

input_data:

If a scatter/gather requirement exists, then this section
can be multiple block moves to allow for mu1tiple segments
of data.", Also, this section could aQ~ally be ajump to a
group of block moves that can be patfl1ed appropriately at
start I/O for the number of segments needed. The overhead
between segment block moves is,500~OOn.~oseconds.

MOVE data_count data_adr when DATA._IN

; Go check the phase after data in
. JUMP check_it

NCR 53C700r:Programmer's Guide ,7-6 ,;} 2/23/90

NCR SCSI SCRIPTSTM for an Initiator

**
Process a message in before the command phase
** ,

msgl:

MOVE I rcvmsg when MSG_IN

Is this an extended message?
JUMP ext_msgi IF OxOI

Is this save data pointers? Interrupt with ACK set.
!NT err8 IF Ox02

Is this a disconnect?
JUMP discI IF Ox04

Interrupt if any other message with ACK set
INTerr6

Message is an extended message
ext_msgl:
; Acknowledge the message just received
CLEARACK

Move two more messages into the buffer to get the extended
message length and opcode for the processor to have
available on the interrupt.

MOVE 2 ext_buf when MSG_IN

Interrupt the processor
INTerr7

, Message is a disconnect
discI:

Acknowledge the disconnect message
CLEARACK

Disconnect before the command if here
WAIT DISCONNECT

Interrupt the processor on a disconnect
INTerr9

NCR 53C700, Programmer's Guide 7-7 2/23/90

NCR SCSI SCRIPTSTM for an Initiator

Message in after the command phase
************************************ ,

msg2:
MOVE 1 rcvmsg when MSG_IN

Is this an extended message?
JUMP ext_msg2 IF OxOl

Is this save data pointers? Interrupt with ACK set.
INT errlO IF Ox02

Is this a disconnect?
JUMP disc2 IF Ox04

Interrupt if any other message with ACK set
INT errl1

Message is an extended message
ext_msg2:

Acknowledge the message just received
CLEARACK

Move two more messages into the buffer to get the extended
message length and opcode for the processor to have

; available on the interrupt.
MOVE 2 ext_buf when MSG_IN

interrupt the processor
INT errl2

, Message is a disconnect
disc2:

Acknowledge the message
CLEARACK

Disconnect after the command if here
WAIT DISCONNECT

Interrupt the processor on a disconnect
INTerrl3

NCR 53C700, Programmer's Guide 7-8 2/23/90

NCR SCSI SCRIPTSTM for an Initiator

; Message in after the data transfer phase

msg3:
MOVE 1 rcvmsg when MSG_IN

Is this an extended message?
JUMP ext_msg3 IF OxOl

Is this save data pointers? Interrupt with ACK set.
!NT err14 IF Ox02

Is this a disconnect?
JUMP disc3 IF Ox04

Interrupt if any other message with ACK set
INTerr15

Message is an extended message
ext_msg3:

Acknowledge the message just received
CLEARACK

Move two more messages into the buffer to get the extended
message length and opcode for the processor to have
available on the interrupt.

MOVE 2 ext_buf when MSG_IN

Interrupt the processor
INT err16

, Message is a disconnect
disc3:

Acknowledge the message
CLEARACK

Disconnect before the data transfer if here
WAIT DISCONNECf

Interrupt the processor on a disconnect
INTerr17

NCR 53C700, Programmer's Guide 7-9 2/23/90

,

NCR SCSI SCRIPTSTM for an Initiator

This is the section of code to process a reselect or select
when a select 1/0 command was executed

resel_adr:

Wait for reselect as the most probable event
WAIT RESELECf select_adr

The initiator was reselected, so process the possibilities
INT err18 WHEN NOT MSG_IN

I.D. message in is the only expected SCSI phase here
MOVE 1 rcvmsg when MSG_IN

At this point, if the system integrator knows the possible
SCSI device I.D.'s possible, the algorithm can compare for
each known I.D. and react accordingly. An I/O could even be
restarted if the SCSI bus configuration is exactly known.

Data in phase after reselection and i.d. transfer
!NT err19 WHEN DATA_IN

Data out phase after reselection and Ld. transfer
!NT err20 IF DATA_OUT

Message in phase after reselection and i.d. transfer
INT err21 IF MSG_IN

Status phase after reselection and Ld. transfer
INT err22 IF STATUS

Message out phase after reselection and i.d. transfer
INTerr23 IF MSG_OUT

Unknown phase after reselection and i.d. transfer
INTerr24

NCR 53C700, Programmer's Guide 7 - 10 2/23/90

NCR SCSI SCRIPTSTM for an Initiator

The chip was in an initiator role, but it has been selected
by another device on the SCSI bus. It is now in the target
role. One could implement the complete SCSI SCRIPTS target
algorithm here, or simply interrupt with an error message.

select_adr:

INTerr25

Definition Area TARGET ROLE

.********************************* ,
;* The following are variable data values provided *
;* external to the compiler and resolved at run-time *
.********************************* ,

Buffer area where the initiator device Ld. is kept
EXTERNAL device

Message out buffer area
EXTERNAL msg_buf

Command byte buffer area
EXTERNAL cmd_buf

Input m~ssage buffer
EXTERNAL msg_buf2

Buffer address for the initiator Ld.
EXTERNAL initiator

Count of user data bytes to be moved
EXTERNAL data_count

Address of the user data buffer
EXTERNAL data_addr

Target got reselected

Address of the status buffer
EXTERNAL stat_adr

NCR 53C700, Programmer's Guide 7 - 11 2/23/90

NCR SCSI SCRIPTSTM for an Initiator

.******************************* ,
;* Absolute values are stored in DNAD Register *
; * for purposes of interrupt processing *
.******************************* ,

ABSOLUTE errorl = OxOffOl

A TN is on after the i.d. message is sent in to the initiator
ABSOLUTE error2 = OxOff02

A TN is on after the command bytes are sent to the initiator
ABSOLUTE error3 = Ox0ff03

Atn is on after the disconnect message is sent to the ;initiator
ABSOLUTE error4 = OxOff04

A TN on after i.d. message sent to the initiator after a
reselect operation is complete

ABSOLUTE error5 = OxOff05

A TN is on after user data is sent into the initiator
ABSOLUTE error6 = OxOff06

A TN is on after the status byte is sent
ABSOLUTE error7 = OxOff07

A TN is on after the command complete message is sent
ABSOLUTE error8 = OxOff08

Entry Point for the target role
ENTRY start_up

Entry point for a target reselect
ENlRY resel_in

NCR 53C700, Programmer's Guide 7 -12 2/23/90

NCR SCSI SCRIPTSTM for an Initiator

SCRIPTS AREA

This is the entry point for a SCSI target I/O

start_up:

First wait for a selection by the initiator and jump to the
alternate address if reselected

WAIT SELECf resel_adr

Move the Ld. message into the message buffer
retry_id:
MOVE 1 ms~bufWITHMSG_OUT

If the initiator sets A TN, go process that condition
JUMP id_atn IF A TN

; Move the command bytes in to the target buffer
MOYE 1 cmd_bufWITH CMD

Note that though a 1 is in the command count field, the chip
will automatically transfer in the correct number of bytes
based on the SCSI command op code.
If the initiator sets A tN, go process that condition

JUMP cmd_atn IF A TN

In this algorithm, an automatic disconnect is assumed after
the SCSI command is received into the buffer. However, the
first byte of the command may be compared against a set of
opcode values to determine if this specific command should
disconnect or not.

Send in the disconnect message
MOVE 1 ms~buf2 WITH MSG_IN

If the initiator sets A TN, go process that condition
JUMP disc_atn IF A TN

Now get off the bus
DISCONNECf

NCR 53C700, Programmer's Guide 7 - 13

· .

2/23/90

,

NCR SCSI SCRIPTSTM for an Initiator

Entry point for reselecting the initiator

resel_in:

Perform the reselect and jump to resel_adr if a reselection
happens while trying to do the reselect

RESELECf initiator resel_adr

Move the reselect Ld message into the initiator
retry _resel:
MOVE 1 msLbuf2 WITH MSG_IN

If the initiator sets A TN, go process that condition
JUMP resel_atn IF ATN

continue_resel:

; Now move the data bytes into the initiator
MOVE data_count data_adr WITH DATA_IN

Note that this could easily be changed to a data out command
by patching the phase section of the command, or using a
jump command that can be patched to transfer control to a
section of code that is either the data out or data in algorithm.
If the initiator sets A TN, go process that condition.

ruMP data_atn IF A TN

NCR 53C700, Programmer's Guide 7 -14 2/23/90

NCR SCSI SCRIPTSTM for an Initiator

**
If a scatter/gather requirement exists, then this data
transfer section can be multi pie block moves for the
multiple segments of data. Also, the section could be a
jump to a group of block moves that had been patched
appropriately at start 110 for the exact number of segments desired.

Now move in the status byte
.MOVE 1 stat_adrWITHSTATUS

If the initiator sets A TN, go process that condition
JUMP stat_atn IF A TN

Move the command complete message in
MOVE 1 msg_buf2 WITH MSG_IN

If the initiator sets A TN, go process that condition
JUMP cc_atn IF ATN

Now physically disconnect
DISCONNECT

**
If the wait for select or reselect· fails, this is the label
for the alternate address
**

resel_adr:

INT errorl

NCR 53C700, Programmer's Guide 7 -15 2/23/90

NCR SCSI SCRIPTSTM for an Initiator

**
If the initiator turns on ATN after the i.d. message comes
out, this is the code for processing what comes next.
**

Move the message byte from the initiator out to the message buffer
MOVE 1 msLbufWITH MSG_OUT

At this point, the user may decide to use scripts to program
at a very detailed level or simply interrupt with one user
error code. Scripts may be used to check for:

• no-:-op message -- ignore and jump to continue
• initiator detected error -- jump to retry
• message parity error -- jump to retry
• extended message -- as a minimum, get the opcode and

byte count before interrupting the processor

INTerror2

All the A TN subroutines have the same basic function

cmd_atn:
MOVE 1 msLbufWITHMSG_OUT
INTerror3

disc_atn:
MOVE 1 ms~bufWITHMSG_OUT
INTerror4

resel_atn:
MOVE 1 msLbufWITHMSG_OUT
INTerror5

data_atn:
MOVE 1 msLbufWITHMSG_OUT
INTerror6

stat_atn:
MOVE 1 mSLbufWITHMSG_OUT
INTerror7

cc_atn:
MOVE 1 mSLbufWITHMSG_OUT
INTerror8

NCR 53C700, Programmer's Guide 7 -16 2/23/90

Chapter 8
Unique Initiator Sequences for the 53C700

Disk Drive Initiator Sequence

Arbitrate and Select With Atn
Transfer the I.D. message
Transfer the command bytes
Accept the message in -- DISCONNECT
Reselected -- I.D. message in
Data transfer of 1 - 4 user data blocks
Accept SCSI status byte, COMMAND COMPLETE message and wait for bus free

53C700 strengths in the disk drive
environment

• A large number of commands are typically
issued to the disk, and the 53C700 offers
very little SCSI bus overhead and a
minimum of time to initiate an I/O in the
host computer.

• The 53C700 can continue to the next
scheduled SCSI I/O within SCRIPTS with
no interrupt to the external processor for
the following:

Compare for Good I/O status byte

Interrupt if non-zero

Jump to the next scheduled I/O if the
status is zero (Good I/O)

NCR 53C700, Programmer's Guide 8 -1

• The 53C700 can mask certmn disk
idiosyncrasies.

For example, if the disk does a SAVE
DATA POINTERS before the first
DISCONNECT message after the
command bytes are transferred, the
53C700 can be programmed to absorb this
message with no interrupt to the external
processor.

2/23/90

Unique Initiator Sequences for the 53C700

Tape Drive Initiator Sequence

Arbitrate and Select With Atn
Transfer the I.D. message
Transfer the command bytes
Accept the message in -- DISCONNECT
Reflected -- 1D. message in
Data transfer of 16k of user data
Accept the message in -- SA VE DATA POINTERS followed by DISCONNECT.
Reselected -- 1D. message in
Data transfer of 16k of user data

* '*
*

Reselected -- 1D. message in
Data transfer of 16k of user data
Accept SCSI status byte, COMMAND COMPLETE message and wait for bus free

Each disconnect (on a 16k boundary) causes
an interrupt to the external processor if there
are multiple SCSI devices on the SCSI bus.
Reselect causes an· interrupt in the general
case. If this were a single device bus or the
system was designed to perform tape only
activity on the SCSI bus during backup, then
the 53C700 could be programmed specifically
for this system. Knowing the tape drive was
alone on the bus, the 53C700 could be
programmed to:

1) Absorb the SAVE DATA POINTERS.

2) Execute a SCRIPTS command of wait
for reselect.

3) Process the SCSI reselect sequence
with no interrupts.

4) Initiate the next 16k user data block
move.

5) If there is ever a restore pointers, the
53C700 interrupts to allow the external
processor to restart the tape I/O.

The 53C700 allows systems integration
designs using the SCSI bus with no
performance impact to I/O throughput

NCR 53C700, Programmer's Guide 8-2

SCSI Character Oriented Device
in the Initiator Role

A SCSI port can be dedicated by the system
designer for terminal control. First, a SCSI
read command is transferred to the target
temrinal controller. A stream of user data
typed in at the temrinals, plus the inserted
control bytes in the stream comes back to the
initiator. A SCRIPT can be written which
looks at the byte stream coming in and sends
line control bytes to the processing buffer and
data bytes to the data buffer. When certain
control bytes are received, the 53C700 can
tenninate the READ operation and generate a
unique interrupt to the external processor.

Writes to the tenninal controller can begin
automatically when a certain read threshold is
reached. The 53C700 can process the READ
command cleanup, jump to the WRITE
command portion of the SCRIPTS, and
automatically start sending data to the tenninal
controller. The 53C700 can be used in
unusual areas to offload any processor and
improve performance.

Another implementation of the 53C700 is
SCSI printer design, where WRITE is the
only operation and control characters also play
in important role.

2/23/90

Chapter 9
Special Scripts™ Situations

SAVE DATA POINTERS message
that can be Ignored.

CASE 1

An unexpected Phase change occurs in the
middle of a data transfer.

The Block Move command was developed to.
transfer 4K of user data, as well as anomalies
such as an unexpected phase change after
transferring 2K of the data.

Data may be left in the chip on a data out
phase, so an interrupt is required to:

1) Clean up the chip on Data Out Phase

2) Change the data address and byte count
in the active SCSI SCRIPTS

3) Receive the message byte via SCSI
SCRIPTS (eg. load the new entry
point for resumption of the message in
operation).

The routine described in steps 1-3 will receive
the message byte, verify that the message byte
is a SAVE DATA POINTERS (ifnot,
interrupt the external processor), and jump to
the SCSI SCRIPTS entry point that will
resume the data transfer previously
interrupted.

CASE 2

The expected burst size is known ahead of
time and is extremely predictable.

At systems integration time, set this burst size,
so that each Block Move command can equal
the burst size. The SCSI SCRIPTS logic
becomes the following:

NCR 53C700 Programmer's Guide 9 - 1

• Block Move of burst size.

• Call subroutine (after waiting) if the
next phase is not a data phase. (The
subroutine should process the SA VE
DATA POINTERS message in and
return.)

• Block Move of burst size

• Call subroutine (after waiting) if the
next phase is not a data phase.

Using this logic, all phase changes are
assumed to come on a Block Move command
boundary" so no bytes will be left in the chip
when a phase change occurs. There is a small
penalty for fetching the call subroutine
command (500 nsec per SCSI SCRIPTS).
But a system interrupt (minimum 80
microseconds) will be saved by avoiding the
extra interrupt

CASE 3

The expected burst size is NOT known ahead
of time.

Use the same logic as in Case 2, but make the
Block Move byte count equal to the device
block size. The assumption is that a phase
change will come only on the device's block
boundary. The SCSI SCRIPTS fetching
overhead depends on the ratio of the device
block size to the burst size. However, an
extra 10 microseconds is small when
compared to the external processor interrupt
time of at least 80 microseconds.

2/23/90

Special Scripts™ Situations

SAVE DATA POINTERS message
that must be processed by the
initiator.

CASE 1

A message received during a Block Move
command offers 2 possibilities:

1. Data in phase

2. Data out phase

Data in phase

During the data in phase, an bytes in the
53C700 are sent to the DMA core and into
system memory. When no bytes are left in the
chip, all execution stops and an interrupt is
generated to the external processor. To save
the I/O state, update the current SCSI
SCRIPTS with the memory address and byte
count located in the 53C700. Save a pointer
to this SCSI SCRIPTS in the system I/O
structure so that the I/O can easily be
rescheduled. The chip's SCSI SCRIPTS
pointer value is actually the current SCSI
SCRIPTS address plus eight. So the saved
value must be the SCSI SCRIPTS pointer
value minus eight

Data Out Phase

If the phase is data out, the 53C700 is full of
data bytes going out to the SCSI bus.
!3xecutio~ stops after the phase change and an
mterrupt IS generated to the external
processor. At that time, the processor should
c~culate the number of bytes in the chip, add
this value to the chip's byte count, subtract
from the chip's memory address pointer, and
store these values in the current SCSI
SCRIPTS. A pointer to the SCSI SCRIPTS
(minus eight) must be saved in some I/O
structure for rescheduling. This saved value
is the entry point for resuming the data
transfer portion of the I/O, depending on the
outcome of the phase change.

NCR 53C700, Programmer's Guide 9-2

~ASE 2

A message comes in on a Block Move
command boundary.

If no test for data phase was placed between
Block Move commands, then the 53C700
will fetch the next command and start
processing it. When the phase change actually
occurs, the 53C700 may have data in it, so the
processing is exactly the same as CASE 1
above.

If a wait and test for data phase command is
inserted between each Block Move (burst size
is known or the block size is used in each
Block Move command), then an interrupt is
generated to signal the processor to save a
pointer to the next Block Move command. A
SCSI SCRIPTS to receive message bytes is
executed, ~d the I/O can be resumed by
reloading the saved SCSI SCRIPTS pointer.

Alternatively, the message processing SCSI
SCRIPTS could have a jump command as its
last command. The jump to address would be
the entry point of the resume SCSI SCRIPTS
pointer so that the interrupted I/O can start up
again easily.

2/23/90

Chapter 10
Multi-Tasking 1/0 Using SCSI SCRIPTSTM

To accommodate multi-tasking I/O entirely
within SCSI SCRIPTS, some special
techniques are required. A standard SCSI
SCRIPTS algorithm (the I/O descriptor) must
be developed for each concurrent I/O. I/O's
can be linked together by making the last
SCSI SCRIPTS command of each scheduled
I/O descriptor a jump to the next scheduled I/O
descriptor. This last command address is
effectively a mailbox for communication
between the host computer and the 53C700.
The external processor can patch the last
command to a jump command if the next I/O
descriptor has been scheduled by the logical
I/O, or patch an interrupt command if it has
not been scheduled. The 53C700 will fetch a
complete SCSI SCRIPTS (all 8 bytes),
blocking out the processor. The iAPX
286/386 can write 4 bytes, blocking out the
53C700. The patch must be to the four byte
opcode to allow a test/set capability. Thus,
the second four bytes must be the SCSI
SCRIPTS jump address and the interrupt
value. All of the SCSI SCRIPTS algorithms
are arranged in memory in a linked list. To
schedule an I/O, the host processor must:

• Find the address of the fIrst open I/O
descriptor (SCSI SCRIPTS program).

• Update the variable addresses of user
and SCSI data within the I/O
descriptor.

• Change the last command of the I/O
descriptor (currently an interrupt
command) to an interrupt with the I/O
descriptor 1.0. as the last four bytes.
At interrupt time, this infonnation
allows a fast identification of the
I/O just completed (when no other I/O
is scheduled).

• Change the last command of the
previous I/O descriptor (currently
functioning as an interrupt command)
to a jump to the beginning of the
newly scheduled I/O descriptor.

NC~ 53C700 Programmer's Guide 10 - 1

A series of I/O's can be scheduled by the host
processor. When an I/O completes, if there is
no other scheduled I/O, then the 53C700
interrupts the command register using the I/O
descriptor 1.0.; otherwise it jumps to the next
scheduled I/O. The processor knows that an
I/O has completed when:

• An interrupt occurs for a given I/O
because of an error.

• The address of the SCSI SCRIPTS
command being executed is outside
the address space of the I/O descriptor
being tested for completion. Wrap
around must be considered in this test.

The host processor can trigger this test
through a timer interrupt or a polling
scheme.

• The SCSI status byte is written into a
known address to flag that the I/O is
complete. The host processor can use
a timer interrupt or a polling scheme.

• , Some types of hardware assists
generate an interrupt at the completion
of the I/O. The interrupt occurs when
SCSI status byte being written into a
main memory address interrupts the
host processor.

When an I/O is completed, the last SCSI
SCRIPTS command of the I/O descriptor
must be changed to an interrupt command to
initialize it for the next I/O to be scheduled (the
1.0. value is set to an invalid value). The I/O
driver must take care that an infInite loop is
NOT established with the SCSI SCRIPTS
jump command. This simple software
mechanism allows the 53C700 to schedule I/O
requests without a sophisticated host bus
adapter.

2/23/90

Multi-Tasking I/O Using SCSI SCRIPTSTM

Using SCSI SCRIPTS to Implement Multi-Threaded 1/0

lID #1

SCSI
SCRIPTS

Jump

110 #4

SCSI
SCRIPTS

. Jump

110 #2

SCSI
SCRIPTS

Jump

I/O #5

SCSI
SCRIPTS

Jump

I/O #3

SCSI
SCRIPTS

I/O #6

SCSI
SCRIPTS

Interrupt

Figure 4. Using SCSI SCRIPTS to Implement Multi-Threaded 110

In this example, all six I/O's have been scheduled by patching the last SCSI SCRIPT in each I/O
descriptor to jump to the next scheduled I/O descriptor. When each I/O is complete, the linked
list is broken by patching out the jump instruction to the next I/O descriptor.

NCR 53C700, Programmer's Guide 10 - 2 2/23/90

Appendix A
High Performance Considerations for 53C700 vs 53C90

This chapter compares fnmware required for
the 53C700 and the 53C90 to determine how
much of a performance boost the 53C700 can
offer at a system level (I/O's per second).
One microsecond is the time assumed for
execution of each external processor
instruction.

Sample Input Data Structure

The following data structure is typical at the
SCSI H/W driver level when perfonning an
I/O.

1.0. message byte count
Input message buffer address
Output message buffer address
SCSI command byte count
SCSI command buffer address
User data byte count 1
User data buffer address 1

*
*

User data byte cou nt 'n'
User data buffer address 'n'
SCSI status buffer address
Command Complete message address

Initializing SCSI SCRIPTSTM for an
1/0 and Starting 1/0 Operations

53C700 Algorithm Description

Refer to the sample initiator SCSI, SCSI
SCRIPTS for details about the exact sequence
and values to be updated. At the firmware
level, the Initiator SCSI, SCSI SCRIPTS
must be updated with the address and count
for the various SCSI data and user data
required to perform an I/O. In the sample
initiator algorithm, fIfteen values must be
updated: Basically, all the Block Move
commands must be altered. The fnmware
sequence requires:

Load Address Of Data/Count In Main Memory
Load Value Desired From Main Memory
Load SCSI SCRI PTSTM Offset
Store Value in SCSI SCRIPTSTM Offset

NCR 53C700, Programmer's Guide A-1

Approx
time in LLs

Assuming that the sequence above
takes about four microseconds.

the total time is 6 0

Executing the initiator algorithm
takes about 30 SCSI SCRIPTS
fetches and decodes.

the total overhead is 15

If disconnect from the target after
transferring the SCSI command, there
will be two interrupts to the host
processor. Each interrupt takes about
80 micro seconds.

the total time is 160

60 + 15 + 160 = 235 J.l.sec overhead.

Note that the SCSI portion of the interrupt
service routine is only two or three lines of
code because both interrupting situations are
controlled by SCSI SCRIPTS, requiring only
a read of the interrupt code.

53C90 Algorithm Description

The fmnware begins the sequence by
preloading the 53C90 FIFO with the SCSI
1.0. message followed by a ten byte SCSI
command. The fmnware sequence involved
requires:

Loop: Read Next Byte
Write Next Byte
Go To Loop If Count Not Zero

For eleven bytes, the above sequence requires
about 33 microseconds. Once the SCSI
operation. begins, the 53C90 requires the
overhead listed below. (Note that each
interrupt requires some reads and processing
to detenninethe exact cause of the chip's
interrupt.) Assume that an extra 20
microseconds is required for each interrupt for
a total of 100 (80 + 20) microseconds.

2/23/90

· High Performance Considerations for 53C700 vs 53C90

The following sequence is required to perform
a SCSI operation.

~
Send the SCSI command 033
Interrupt -- msg in phase 100
Interrupt -- msg accepted 100
Interrupt -- physical disc 1 00
Interrupt -- reselected 100
Initialize DMA Logic 025
Interrupt -- transfer complete 1 00
Interrupt -- completion seq 100
Interrupt -- msg accepted 100
Interrupt -- physical disc 100

Total time 858 microseconds

Conclusion

The 53C7oo requires about 25% of the nonnal
fmnware overhead associated with a 53C90,
in the simplest case. To further compare the
chips, note that a SA VB DATA POINTER
?peration in the 53C90 requires two processor
mterrupts (200 Jlsec) and only one interrupt
using the 53C7OO
(80 - 90 Jlsec). Each data segment in a
scatter/gather situation requires 125 Jlsec on
the 53C90 (one interrupt plus DMA initialize)
but only .5 Jlsec on the 53C7OO (500
nanosecond instruction fetch). So, an I/O that
required four data segments in a scatter/gather
mode would require 500 J.1sec on the 53C90
and 2 Jlsec on the 53C700 for user data
transfer. These factors translate into a four
segment data transfer as follows.

53C90
(858) + (3x125) = (858+375)

1233 J.Lsec per 1/0

53C700
237 J.Lsec per 1/0

To translate this improvement into I/O's per
second, assume a 4K data transfer size,
consisting of four 1K segments in host
memory, a target overhead of one millisecond
(excluding seek times), and a 4 megabyte per
second user data transfer rate on the SCSI
bus.

Function 53C90 53C700
in msec in msec

Data Transfer Time 1.00 1.00

Target overhead 1.00 1.00

Host Overhead ~ 0.25

Tota/times 3.25 2.25

1/0's Per Second 307 444

In this projected environment, a system can
increase its throughput rate by fifty percent by
using the 53C700 and reducing host computer
firmware overhead. With the types of
buffered SCSI disk drives currently available,
the 53C700 eliminates the host computer
firmware as the high performance bottleneck.

Remember that a 125 Jlsec delay between user
data segments may cause a disk drive to slip a
revolution translating into a dramatic decrease
in data throughput.

Without the 53C700, to increase system level
performance, designers must eliminate each
delay. The 53C700 can remove much of the
host overhead associated with each I/O.

NCR 5~C700, Programmer's Guide A-2 2/23/90

Appendix B
53C700 System Bus Utilization

The 53C700, in the laboratory environment
transfers 512 bytes of user data at the rate of
6,666 transfers per second (150 microseconds
per I/O). The synchronous SCSI burst rate is
set at 5 Mbytes per second. This I/O's per
second rate is a limit for the 53C700, because
no fIrmware intervention is required.

A real concern is host bus utilization, or "Does
the 53C700 affect host computer performance
significantly?" This appendix provides
information about host bus usage when the
SCSI bus is saturated at a block size of 512
bytes.

Host Bus Time To Fetch A SCSI
SCRIPTS Command

80 nsec -- Arbitrate and bus settle
80 nsec -- Fetch 4 bytes
80 nsec -- Fetch 4 bytes
40 nsee - Bus settle time
280 nsee - Total time

Completing an I/O requires 14 SCSI
SCRIPTS.

select with ATN
jump error, when not MSG_OUT
move, msg_buf, when MSG_OUT
jump error, when not CMD phase
move, cmd_buf, when CMD
jump error, when not DATA_IN
move, data_buf, when DATA_IN
jump error, when not STATUS
move, status buf, when STATUS
jump error, when not MSG_IN
move, msg_buf, when MSG_IN
clearack
wait disconnect
int Ox001
error:
int OxOff

NCR 53C700, Programmer's Guide B-1

The time required to execute the SCSI
SCRIPTS with no exception conditions is as
follows.

14 X 280 = 3.92 J.Lsec

6,666 X 3.92 = 26.13 J.Lsec
(total fetch time per second)

The fetch time is 2.6 % of the available
system bus time (one second).

Fetching data across the system bus requires:

Time in
nsec Instruction

200 1.0. msg fetch = 80 (data fetch)

+ 80 (arbitrate)
+ 40 (settle)

360 command fetch = 240 (three data fetches)
+ 120 (arbitrate + settle)

200 Status byte fetch

200 COMMAND COMPLETE message

960 Total time per SCSI command

Total SCSI related data fetch time is:

6,666 X 960 = 6.4 msec

which is 0.64% of the available system time
(one second).

Total overhead time is:

0.64% + 2.60/0 = 3.24% of the time available

The effective user data transfer rate is 3,333
Mbytes per second, or about 6.66% of the
available system bandwidth. Including time
for bus arbitration, the available system
bandwidth being absorbed by user data
transfer is increased to about 8%.

2/23/90

53C700 System Bus Utilization

Conclusion

So the total time to saturate the SCSI bus takes
11.2% of the iAPX 286/386 system bus
available with a block size of 512 bytes per
SCSI command.

Using larger block sizes lowers SCSI
command overhead (fewer commands per
second) and increases the data transfer rates.
For example, a 1K block implies 250 J.Lsec per
I/O (50 J.Lsec SCSI overhead as measured in a
lab environment and 200 J,1sec for user data).
This is 4000 I/O's per second or 4 Mbytes'per
second. The total 386 bus overhead is
reduced to about 1.95% of the available time
(4000/6666 X 3.24%). As the block size
increases, the overhead decreases.

NCR 53C700, Programmer's Guide B-2 2/23/90

Appendix C
SCSI SCRIPTSTM Compiler

The SCSI SCRIPTS Compiler is a two pass
compiler.

The fIrst pass compiler creates an output
file in generic format from a SCRIPTS
source fue. This may be included in the
user's source code for any language.

The second pass compiler takes the pass 1
file and creates a C file which may be used
in any C program.

To provide portability this compiler does not
support directory paths. The compiler and the
files to be compiled must reside in the same
directory.

SCSI SCRIPTS Compiler Pass 1
(ss.exe)

A SCRIPTS source file may be created using
any standard text editor that can create an
ASCII fue output. In the example below, the
SCRIPT source file is SCRIPT.ss. To
compile SCRIPT.ss use the following format:

ss<input SCRIPT.ss> <output SCRIPT FilE> <options>

Example:

ss SCRIPT.ss SCRIPT.ps1 Is

This creates two output files:

SCRIPT.ps1

SCRIPT.xrf

compiled output of the
SCRIPT source file

cross reference listing.

If there are syntax errors in the SCRIPTS
source file, the line number and error message
are displayed on the screen. The error
messages can be saved into a file by adding
the /s option to your compile command. If
there were errors in this example, the fue name
generated would be SCRIPT.ERR. Appendix
D lists the compiler error messages.

NCR 53C700, Programmer's Guide C -1

Output File Description

The passl compiled output, SCRIPT.ps 1 is in
a generic format. The SCRIPT instruction list
is always generated first. The first instruction
column contains the long word instruction.
The second column contains the
corresponding long word address.

Example."

INSTRUCTIONS
90008000
90008017

OOOOOOOA
00000023

The next list contains a relative or absolute
variable followed by its value. The next line
contains the long word offsets in the SCRIPT
where the variable is used.

Example:

R_data_buf 00000020
OOOOOOOd

The variable entry is followed by the SCRIPT
entry label values.

Examole.· .

Ent_alt_adr = 00000078

The SCRIPT entry label values are followed
by the list of long word offsets for labels in
the SCRIPT. These offsets are used to patch
in the absolute addresses at runtime.

EXample."

LABELPATCHES
00000001
00000019
0000001b

The last item is a count of the number of
instructions and patches in the SCRIPT.

Example:

INSTRUCTIONS
PATCHES

00000011
00000003

2/23/90

SCSI SCRIPTSTM Compiler

SCRIPT.xrf File Description
(SCRIPT cross-reference file)

For every instruction, the cross reference file
(.xrf) lists

an offset from the beginning of the script,
the long word instruction,
the long word address, and
the corresponding source SCRIPT

instruction.

Labels appear on a line by themselves as they
are encountered in the SCRIPT. After the
cross reference is a list consisting of the
absolute or relative variable, the variable name
and location in the SCRIPT.

This is followed by a list of labels and label
locations that appear in the SCRIPT. The
location is an offset from the beginning of the
SCRIPT.

The last information list gives the label
patches. Label patches are offsets into the
SCRIPT where a label is referenced. They are
called patches because the absolute address of
the labels must be patched into the SCRIPT at
program runtime. Use the Patch Utilities
described in Section 4 of the NCR 53C700
Programmer's Guide.

NCR 53C700, Programmer's Guide C-2

SCSI SCRIPTS Compiler Pass2
(pass2.exe)

Pass2 creates a C fonnat file from the pass 1
compiler output. If the pass1 output file is
SCRIPT~ps1, then the fonnat for using Pass2
will be as follows.

pass2 <pass1 file> <Cfile>

Example:

pass2 SCRIPT.ps1 SCRIPT.ps2

.When you run the compile, the following
message will be displayed on your screen.

SCSI Scripts (TM) Compiler Pass2,
VO.01Beta

Copyright (C) 19989 NCR

Requires Ox3e7 bytes of memory 0

The memory requirement is the number of
bytes in the SCRIPT.ps 1 file. Without this
amount of memory, the compiler will not
execute properly.

Pass2 reads in clusters of characters called
tokens until a separator is encountered, such
as space, tab, line feed, or end of file. Tokens
can be identifiers, variables, or numbers.
When an identifier is encountered, an array of
unsigned long elements is generated in the C
output file. First, a value is defined for a
variable, then an array of unsigned long
elements is generated. These elements indicate
where in the SCRIPT the variable is used.
Numeric values are given an "Ox" prefix for
hexadecimal numbers in C fonnat.

The SCRIPT instructions array is always
generated fIrst The first column contains the
long word instruction and the second the
corresponding long word address.

2/23/90

SCSI SCRIPTSTM Compiler

Example:

ULONG SCRIPT[] = {

};

Ox90008000, OxOOOOOOOA,
Ox90008017, Ox00000023

The variable name prefix will have an "A_" for
absolute or an "R_ "for relative. This is
followed by the variable value. The define
statement is followed by an array which
contains the long word offsets into the
SCRIPT where the variable is used. The array
name is the variable name appended with
"_Used".

Example.'

#defineR DATA BUF OX00000020
ULONG R_data_buf_Used[] = {
};

Next define the SCRIPT entry label values that
are prefixed with an "Ent_".

Example.'

#define Ent_alt_adr Ox00000078

The SCRIPT entry labels values are followed
by an array of long word offsets for labels in
the SCRIPT. These offsets patch in the
absolute addresses at runtime.

Example.'

ULONG LABELPATCHES[] = {
Ox00000001, Ox00000019,
Ox0000001b

};

Next is the last item, the number of
instructions and patches in the SCRIPT.

Example.'

ULONG INSTRUCTIONS = Ox00000011 ;
ULONG PATCHES = Ox00000003;

Since an error file was generated with the
Pass! compile, Pass2 does little error
checking. Do not give Pass2 a file in a
different fonnat (Le. other than Pass!).

NCR 53C700, Programmer's Guide C-3 .2/23/90

Appendix D
Compiler Script Examples

SCSI SCRIPTS Compiler Pass1 SCRIPT Scource File (sample.ss)

RELATIVE ms~buf=O, cmd_buf=ms~buf+ 1, staebuf=cmd_buf+ 10
RELATIVE ms~in_buf=staebuf+l, data_buf = ms~buf+32

ENTRY aleadr, alt2, s_ write

;INITIATOR WRITE SCRIPT

s_write:
select A 1N 01, aleadr

int 6, when not MSG_OUT
move 1, ms~buf, when MSG_OUT

int 7, when not CMD
move 6, cmd_buf, when CMD

int 75, when not DATA_OUT
move 512, data_buf, when DATA_OUT

int 8, ~hen not STATUS
move 1, staebuf, when STATUS

int 9, when not MSG_IN
move 1, ms~in_buf, when MSG_IN
int 95, if not 00
clear ACK alt2

wait disconnect alt2

int 10

; end Initiator Write SCRIPT

; select the target

; check for message out phase next
; move the message byte in

; check for command phase next
; move the command bytes out next

; interrupt if not data out phase
; move data bytes

; check for status phase next
; move the status byte in

; check for message in phase
; move the command complete message in
; interrupt if not a command complete message
; accept the message byte

; wait for the bus free interrupt

; interrupt when the command is completed

int 11 ;interrupt if jump to aleadr during selection

alt2:
int 12 ;interrupt if jump to alt2

;end of SCRIPT

NCR 53C700, Programmer's Guide D -1 2/23/90

Compiler Script Examples

SCSI SCRIPTS Compiler Pass 1
Passl Compiler Output (smple.psl)

INS1RUCTIONS
41010000
9E03()()()()
06000001
9A030000
02000006
98030000
()()()()()200
9B030000
03000001
9F030000
07000001
98040000
60000040
48000000
98080000
98080000
98080000

00000078
00000OO6
OOOOOOOO
00000007
00000001
0000004B
00000020
00000008
()()()()()()()B

00000OO9
()()()()()()()C

0000OO5F
00000080
00000080
OOOOOOOA
()()()()()()()B
()()()()()()()c

R_ms&-in_buf ()()()()()()()c

00000015

R_data_buf 00000020
()()()()()()()d

EncalCadr 00000078
Encalt2 00000080
Encs_ write OOOOOOOO
LABEL PATCHES

00000001
00000019
OOOOOOlb

COUNTS
INS1RUCTIONS
PATCHES

00000011
00000003

NCR 53C700, Programmer's Guide D-2 2/23/90

Compiler Script Examples

SCSI SCRIPTS Compiler Pass2
Pass2 Compiler Output (sample.ps2)
typedef unsigned long ULONG;

ULONG SCRIPTD = (
Ox41010000, OxOOOOOO78,
Ox9E030000, Ox()()()()()()()6,
Ox06OOOOO 1, Ox()()()()()()()O,
Ox9 A030000, Ox()()()()()()()7,
Ox02000006, Ox()()()()()()() 1,
Ox98030000, Ox()()()()()()4 B,
OxOOOOO200, OxOOOOOO20,
Ox9B030000, Ox()()()()()()()8,
Ox0300000 1, OxOOOOOOOB,
Ox9F030000, Ox()()()()()()()9,
Ox07000001, OxOOOOOOOC,
Ox98040000, OxOOOOOO5F,
Ox60000040, OXOOOOOO80,
Ox48000000, OXOOOOOO80,
Ox98080000, OxOOOOOOOA,
Ox98080000, OxOOOOOOOB,
Ox98080000, Ox~

};

#define R_msLbuf Ox()()()()()()()(
ULONG R_msLbuf_UsedO = {

Ox()()()()()()()5
};

#define R_cmd_buf OxOOOOOOOl
ULONG R_cmd_buf_UsedO = {

Ox()()()()()()()9
};

#define R stat buf OxOOOOOOOB
ULONG R_staebuf_UsedO = {

OxOOOOOOll
};

#define R_msg_in_buf Ox~
ULONG R_ms~in_buf_UsedO = (

OxOOOOOO15
};

#define R_data_buf OxOOOOOO20
ULONG R_data_buf_UsedO = (

OxOOOOOOOd
};

#define Enealeadr OxOOOOOO78
. #define Enealt2 OxOOOOOO80
#define Ent s write Ox()()()()()()()(
ULONG LABELPATCHESD = (

Ox()()()()()()() 1, OxOOOOOO 19,
OxOOOOOOlb

};
ULONG
ULONG

INSTRUCTIONS
PATCHES

= OxOOOOOOll;
= OxOOOOOO03;

NCR 53C700, Programmer's Guide 0-3 2/23/90

Compiler Script Examples

SCSI SCRIPTS Cross Reference File Listing (sample.xrf)

SCRIPI' FILE: sample.psl

s_write:
select ATN 01, alcadr ; select the target
int 6, when not MSG_OUT ; check for message out phase next
move 1, mS1Lbuf, when MSG_ OUT ; move the message byte in
int 7, when not CMD ; check for command phase next

0000 41010000 00000078
0008 9E030000 ()()()()()()()6
00 10 060000O 1 ()()()()()()()(
00 18 9 A030000 ()()()()()()()7
0020 02()()()()()6 ()()()()()()() 1
0028 98030000 ()()()()()()4B
0030 ()()()()()200 00000020
0038 9B030000 ()()()()()()()8
0040 0300000 1 ()()()()()()()B
0048 9F030000 ()()()()()()()9

0050 07000001 oooooooc
0058 98040000 0000005F
0060 60000040 00000080
0068 48000000 00000080
0070 98080000 ()()()()()()()A
aleadr:

move 6, cmd_buf, when CMD ; move the command bytes out next
int 75, when not DATA_OUT ; interrupt if not data out phase
move 512, data_buf, when DATA_OUT ; move data bytes
int 8, when not STATUS ; check for status phase next
move 1, staCbuf, when STATUS ; move the status byte in
int 9, when not MSG_IN ; check for message in phase
move 1, msg_in_buf, when MSG_IN ; move the command complete message in
int 95, if not 00 ; interrupt if not a command complete message
clear ACK alt2 ; accept the message byte
wait disconnect alt2 ; wait for the bus free interrupt
int 10 ; interrupt when the command is completed

0078 98080000 ()()()()()()()B
alt2:
0080 98080000 OOOOOOOC

int 11

int 12

RELATIVE mS1Lbuf = 00000000
00000010

RELATIVE cmd_buf = 00000001
00000020

RELATIVE staCbuf = ()()()()()()()b
()()()()()()40

RELATIVE mS1Lin_buf = 0000000c
00000050

RELATIVE data_buf = 00000020
00000030

EN1RY LABEL: alCadr at address 00000078

EN1RY LABEL: alt2 at address 00000080

EN1RY LABEL: s_ write at address OOOOOOOO

LABEL PATCH at
LABEL PATCH at
LABEL PATCH at

00000001
00000019
000000lb

NCR 53C700, Programmer's Guide

;interrupt if jump to aleadrduring selection

;interrupt if jump to alt2

0-4 2/23/90

Appendix E
SCRIPTSTM Compiler Error Messages

Fatal Error: ...

Fatal Error: No memory. Aborting complier ... :

There is not enough available memory to read the SCRIPT into RAM.

Fatal Err-or: Local stack overflow. Aborting compile ... :

Please contact NCR immediately, you have an obsolete version of SCRIPTS.

Fatal Error: Cannot open file:

The SCRIPT file cannot be opened or one of the output files (.ERR or .XRF) are
corrupt. Compilation is tenninated.

Fatal E~ror: Cannot read file: .

The file was opened, but could not be read. Compilation is terminated.

NCR 53C700, Programmer's Guide E -1 2/23/90

SCRIPTSTM Compiler Error Messages

Error: II ...

Error: Expected digit:

While evaluating a number, a character other than a legal digit was encountered.

Error: Expected a separator:

A separator was expected, insert a comma, EOL character or any other legal
separator.

Error: Numeric constant has too many digits:

A number, either decimal, hex or binary contains too many digits.

Error: Expected a value:

A value was expected, but instead an operator, pseudo-op, or instruction was
encountered.

Error: Undefined variab.le:

A variable was encountered that was not defmed at the beginning of the SCRIPT.

Error: Unknown identifier:

An identifier was encountered that was not a "+", "_", or any other expected
separator.

Error: Expected an Identifier:

A reserved word was encountered where there should have been an identifier.

Error: Expected a variable:

A pseudo op, instruction, or reserved word was encountered where a variable was
expected.

Error: Expected an expression:

A mathematical expression was expected but not found. If you encounter this error
message, contact NCR, you have an old version of SCRIPTS.

Error: Expected a reserved word:

A reserved word was expected (WITH, WHEN, IF, etc.) but was not encountered.

NCR 53C700, Programmer's Guide E-2 2/23/90

SCRIPTSTM Compiler Error Messages

Error: Expected a PHASE:

An instruction was used in which a phase was expected and but was not found in the
instructions.

Error: Cannot use a RELATIVE In a non address field:

A relative variable was used in a field that was not an address field.

NCR 53C700, Programmer's Guide E-3 2/23/90

SCRIPTSTM Compiler Error Messages

Warning: IIDil

Warning: Identifier truncated:

An identifier, such as a label contained more than 32 characters and was truncated.

Warning: Redefinition of variable:

A variable was defmed two or more times.

Warning: Duplicate ATN:

A TN has already been set and you are attempting to set it again.

Warning: Duplicate ACK:

ACK has already been set and you are attempting to set it again.

Warning: Undefined label used as entry point:

The label was not defined as an entry point.

Warning: Unused variable:

A variable was defined but not used in the SCRIPT.

Warning: Lost resolution:

A number encountered was too large. For example, using 8 as a SCSI ID. SCSI ID
numbers can be no larger than 7.

Warning: Duplicate label:

A label was defmed more than once.

UNKNOWN ERROR!

You have just experienced a phenomenon a known as cosmic ray bombardment. This is
believed to be associated with increased solar flare activity. Fortunately, the
effects are not permanent, try again.

NCR 53C700, Programmer's Guide E-4 2/23/90

NCR Microelectronic Products Division - Sales Locations

For Uterature on any NCR
MicroelectroDica product or aervlce
caU the NCR hotliDe toU-free:

1-800-334-5454

NCR MicroelectroDic Produeta Di_ion
Worldwide Sales Headqaarten
3130 De La Cruz Boulevard, Suite 209
Santa Cara, CA 95054
(408) 980-6200

DiviSion Plants
NCR MicroelectroDic Products Di_ion
2001 Danfield Court
Fort Collins, CO 80525
(303) 226-9500

Commercial ASIC Products
Customer OrJmedTooling
Communications Products
Memory Products
So/tzoare Products

NCR Microe1ectroDic Products Division
1635 Aeroplaza Drive
Colorado Springs, CO 80916
(719) 596-5611
1-800-525-2252

High Reliability ASIC

Military Products
AutomotifJe Products
Logic Products
SCSI Products
Internal ASIC

NCR is the name and mark of NCR Corporation
@1989NCRCorporation
Printed in the u. S. A-

0 2 is a trademark of NCR Corporation

NCR reserves the right to make any changes or
discontinue altogether without notice any hardware
or software product or the technical content herein.

64

North American Sales Offices
Northwest Sales
3130 De La Cruz Boulevard, Suite 209
Santa Cara, CA 95054
(408) 771-6575

Southwest Sales
3300 Irvine Avenue, Suite 255
Newport Beach, CA 92660
(714)474-7095

1940 Century Park East
Los Angeles, CA 90067
(213) 556-5231

North Central Sales
8000 Townline Avenue, Suite 209
Bloomington, MN 55438
(6l2) 941-7075
(612) 941-6340

SC)uth Central Sales
400 Chisholm Place, Suite 100
Plano, TX 75075
(214) 578-9113

Northeast Sales
500 West Cummings Parkway,Suite 4000
Woburn,MA01801
(617) 933-0778

SoutheaatSales
700 Old Roswell Lakes Parkway,Suite 250
Roswell,GA30036
(404)587-3136 "

International Sales Offices
Europe
Gustav-Heinemann-Ring133
8000 Munchen 83
West Germany
4989632202

AaiaJPacific
2501 Vicwood Plaza
199 Des Voeux Road
Central Hong Kong
852 5 8596888

