

Appendix B

53C720 System Bus Utilization

The 53C720, in the laboratory environment
transfers 512 bytes of user data at the rate of
6,666 transfers per second (150 microseconds
per 1/0). The synchronous SCSI burst rate is
set at 5 Mbytes per second. This IIO's per
second rate is a limit for the 53C720, because
no firmware intervention is required.

A real concern is host bus utilization, or
"Does the 53Cl20 affect host computer perfor­
mance significantly?, This appendix provides
information about host bus usage when the
SCSI bus is saturated at a block size of 512
bytes.

Host Bus Time To Fetch A SCSI SCRIPTS
Command

80 nsec - Arbitrate and bus settle
80 nsec - Fetch 4 bytes
80 nsec - Fetch 4 bytes
40 nsec - Bus settle time
280 nsec - Total time

Completing an 1/0 requires 14 SCSI SCRIPTS.

select with A TN
jump error, when not MSG_OUT
move FROM msg_huf, when

MSG_OUT
jump error, when not CMD phase
move FROM cmd_buf, when CMD
jump error, when not DATA_IN
move FROM data_buf, when

DATA_IN
jump error, when not STATUS
move FROM status_buf, when STATUS
jump error, when not MSG_IN
move FROM msg_huf, when MSG_IN
clear ack
wait disconnect
int OxOOl

error:
int OxOff

NCR 53C720 Programmer's Guide

The time required to execute the SCSI
SCRIPTS with no exception conditions is as
follows:

Indirect fetch 5x280 = 1.40J.1Sec
SCRIPT fetch 14x 280 = 5.32J.1Sec

Total:
6,666 x 5.32 = 35.4 Blsec
(total fetch time per second)

The fetch time is 3.5% of the available system
bus time (one second).

Fetching data across the system bus requires:

Time in
nsec Instruction
200 ID msg fetch = 80 (data fetch)

+80 (arbitrate)
+40 (settle)

360 command fetch = 240 (three data fetches)
+ 120 (arbitrate + settle)

200 Status byte fetch
200 COMMAND COMPLETE message
960 Total time per SCSI command

Total SCSI -related data fetch time is:

6,666 X 960 = 6.4 msec

which is 0.64% of the available system time
(one second).

Total overhead time is:

0.64% + 35% = 4140/0 of the time available

The effective user data transfer rate is 3,333
Mbytes per second, or about 6.66% of the
available system bandwidth. Including time
for bus arbitration, the available system
bandwidth being absorbed by user data
transfer is about 8°/0.

B-1

Appendix B

Conclusion
Therefore, the total time to saturate the SCSI
bus takes 12.2°~ of a processor bus available
with a block size of 512 bytes per SCSI com­
mand.

U sing larger block sizes lowers SCSI com­
mand overhead (fewer commands per sec­
ond) and increases the data transfer rates. As
the block size increases, the SCSI overhead
per byte of user data decreases.

B-2

53C720 System Bus Utilization

NCR 53C720 Programmer's Guide

Appendix C

Use of the Sig_p Bit in the 53C720

Use of the standard commands to route a bus
initiated interrupt, assuming that the 53C720
compatibility bit is on, and the device is in the
initiator role. The assumption is that sig-p is
only used to signal that an I/O is ready for
execution, and has already been scheduled. If
selection is in progress or a select/reselect
happens, then sig-p can be reset, because the
new I/O will be executed when the scheduler
function gets to it. The system processor will
check the connected bit before setting the
sig-p bit to signal that an I/O is to be ex­
ecuted immediately.

SELECT FROM buffer, alternate1
; selection happened if execution gets here

•
•
•

alternate1 :
; assume a reselect if here

WAIT RESELECT, alternate2
; reselected if here, proceed with processing

•
•
•

alternate2:
; got here because of a sig-p bit set or was
; selected. Did the sig-p bit get set after the
; sel/resel occurred and just before the wait?

MOVE 1ST AT and slg_blt to SFBR
; reset it and do the wait again

Move CTEST3 to SFBR
JUMP alternate1 if sig_bit

alt2:
; can only have been selected if here

WAIT SELECT, alternate3
SET TARGET

; selected if here, proceed with processing in
; target mode

•
•
•

NCR 53C720 Programmer's Guide

alternate3:
; got here because of a sig-p bit set or error
; Did the sig-p bit get set after the select
; occurred and just before the wait select?

MOVE ISTAT and sig_bit to SFBR
; reset it and do the wait again

Move CTEST3 to SFBR
JUMP alt2 if sig_bit

; should never get here
INT big_error

Aborting a Wait Reselect or Wait Selection SCSI
SCRIPT, assuming that the 53C720 compatibility
bit has been set and the device is in the initiator
role.

reselect_entry:
WAIT RESELECT, alt_sig-p1

; if here, got reselected
•
•
•

select_entry:
WAIT SELECT, alt_sig-p1
SET TARGET

; if here,Ogot selected - change to target
•
•
•

alt_sig--p1 :
MOVE ISTAT and connect_bit to SFBR

; test the SCSI connected bit
JUMP alt_sig-p2, if connect_bit

; either the chip got selected, reselected, or the
; sig-p bit was set

MOVE 1ST AT and sig_bit to SFBR
; test the sig-p bit first

JUMP sig-p_set, if sig_bit
; big error if here - not connected and sig-p was
; not set

INT big_error1

C-l

Appendix C

alt_sigj)2:
; Bus initiated interrupt occurred if here-
; connected bit is on. First reset the sig-p bit, so
; the alternate jump is NOT taken.

MOVE CTEST2 to SFBR
WAIT RESELECT, alt_sig....p3

; process the reselection

alt_sigj)3:
; got selected

•
•
•

SET TARGET
•
•
•

sigj)_set:
; System processor has set the sig-p bit.
; Reset it and service the system request.

MOVE CTEST2 to SFBR
•
•
•

C-2

Use of the Sig_p Bit

NCR 53C720 Programmer's Guide

Appendix D
Compiler SCRIPTS Examples

SAMPLE SCSI SCRIPTS Source File

.*** ,
;* The following are variable data values provided *
;* external to the compiler and resolved at run-time *
.*** ,

EXTERN device
EXTERN status_adr
EXTERN sendmsg
EXTERN rcvmsg
EXTERN cmd_adr
EXTERN data_adr

; Definition area INITIATOR ROLE
; Target Device ID offset in the data table.

; Ten byte buffer address offset.
; Ten byte buffer address offset.
; Buffer address offset for the SCSI command
; Address of user data buffer

.*** ,
;* Absolute values are stored in DSPS Register *
;* for purposes of interrupt processing *
.*** ,

.*** ,
;* Note that OXO precedes the interrupt status *
;* values and designates a hex value *
.*** ,

ABSOLUTE errl = OxOffOl
ABSOLUTE err2 = OxOff02
ABSOLUTE err3 = OxOff03
ABSOLUTE err4 = OxOff04
ABSOLUTE ok = OxOffOO
ABSOLUTE err5 = OxOff05
ABSOLUTE err6 = OxOff06

; Error - unexpected SCSI phase before command phase
; Error - unexpected SCSI phase after a command
; Error - expected status phase
; No Error - good 110
; Error - expected message outphase
; Error - expected message command complete

.*** ,
;* The following shows how you can use the PASS
;* capability of the compiler to pass C code to the
;* output file

*
*
*

.*** ,

PASS(#include "NCR.h,,}
P ASS(extern char line[];)

PROC .ample:
select atn from device, REL (resel_adr)
int errl when not MSG_OUT
move FROM sendmsg, when MSG_OUT
int err2 when not CMD
move FROM cmd_adr, when CMD
jump REL (end) when STATUS
jump REL (input_data) if DATA_IN
jump REL (output_data) if DATA_OUT
int err3

NCR 53C720 Programmer's Guide

; select the device with attention on
; if the next phase is not msg_out, interrupt
; sent the id message out to the target
; if next phase is not command, interrupt
; send the command bytes
; go to process cleanup if status phase
; process data-in phase
; or data-out phase
; unexpected phase if here

D-l

Appendix D

input_data:
move FROM data_adr, when DATA_IN
jump REL (end)

output_data:
move FROM data_adr, when DATA_OUT

end:
int err4 when not STATUS
move FROM status_adr, when STATUS
int err5 when not MSG_IN
move FROM rcvmsg, when MSG_IN
int err6 if not 00
clear ack
wait disconnect
int ok

relel_adr:
int ok

D-2

Compiler SCRIPTS Examples

; process the data-in phase

; and go process status

; process the data-out phase

; interrupt if not status phase

; move the status byte into memory
; interrupt if message-in is not next
; move the command complete byte in
; interrurt if not command complete
; accept the message if there are no problems
; wait for a physical disconnect
; interrupt with an I/O complete

NCR 53C720 Programmer's Guide

Compiler SCRIPTS Examples Appendix D

SAMPLE LIST FILE

1
2
3
4
5
6
7

.*** ,
;* The following are variable data values provided
;* external to the compiler and resolved at run-time

*
*

.*** ,

; Definition area INITIATOR ROLE

8 ; Target Device ID offset in the data table.
9 EXTERN device
10
11 EXTERN status_adr
12
13
14 EXTERN sendmsg
15
16
17 EXTERN rcvmsg
18
19
20 EXTERN cmd_adr
21
22
23 EXTERN data_adr
24

; Ten byte buffer address offset.

; Ten byte buffer address offset.

; Buffer address offset for the SCSI command

; Address of user data buffer

25
26
27
28
29
30
31
32
33
34 .

.*** ,
;* Absolute values are stored in DSPS Register *
;* for purposes of interrupt processing *
.*** ,

.*** ,
;* Note that OXO precedes the interrupt status
;* values and designates a hex value

*
*

.*** ,

35 ABSOLUTE errl = OxOffOl
36
37
38 ABSOLUTE err2 = OxOff02
39
40
41 ABSOLUTE err3 = OxOff03
42
43
44 ABSOLUTE err4 = OxOff04
45
46
47 ABSOLUTE ok = OxOffOO
48
49
50 ABSOLUTE err5 = OxOff05
51

NCR 53C720 Programmer's Guide

; Error - unexpected SCSI phase before command phase

; Error - unexpected SCSI phase after a command

; Error - expected status phase

; No Error - good 1/0

; Error - expected message outphase

D-3

Appendix D

52
53 ABSOLUTE err6 = OxOff06
54

Compiler SCRIPTS Examples

; Error - expected message command complete

55 ;***
56 ; The following shows how you can use the PASS *
57 ; capability of the compiler to pass C code to the *
58 ; output file *
59 ;***
60 #include "NCR.h" PASS(#include "NCR.h")
61 extern char line[]; P ASS(extern char line[];)
62
63 00000000: PROC .ample:
64
65 00000000: 47000000 00000098
66
67
68 00000008: 9E0300oo OOooFFOI
69
70
71 00000010: lEOooOoo 00000000
72
73
74 00000018: 9A030oo0 0000FF02
75
76
77 00000020: lAOooOoo 00000000
78
79
80 00000028: 838BOOoo 00000030
81
82
83 00000030: 818AooOO 00000010
84
85
86 00000038: 808AOOoo 00000018
87
88
89 00000040: 98080000 0000FF03
90
91
92 00000048: input_data:
93 00000048: 19000000 00000000
94
95
96 00000050: 80880000 00000008
97
98
99 00000058: output_data:
100 00000058: 18000000 00000000
101
102
103 00000060: end:

D-4

; select the device with attention on
select atn from device, REL (resel_adr)

; if next phase is not msg_out,interrupt
int errl when not MSG_OUT

; sent the id message out to the target
move FROM sendmsg, when MSG_OUT

; if next phase is not command, interrupt
int err2 when not CMD

; send the command bytes
move FROM cmd_adr, when CMD

; go to process cleanup if status phase
jump REL (end) when STATUS

; process data-in phase
jump REL (input_data) if DATA_IN

; or data-out phase
jump REL (output_data) if DATA_OUT

; unexpected phase if here
int err3

; process the data-in phase

move FROM data_adr, when DATA_IN

; and go process status
jump REL (end)

; process the data-out phase

move FROM data_adr, when DATA_OUT

; interrupt if not status phase

NCR 53C720 Programmer's Guide

Compiler SCRIPTS Examples

104 00000060: 9B03OO00 0000FF04
105
106
107 00000068: 1BooOooO 00000000
108
109
llO 00000070: 9F03OO00 OooOFF05
III
112
113 00000078: lFOooOOO 00000000
ll4
115
ll6 00000080: 98040000 OooOFF06
ll7
ll8
ll9 00000088: 60000040 00000000
120
121
122 00000090: 48000000 00000000
123
124
125 00000098: 98080000 ooOOFFOO
126 ooOooOAO: resel_adr:
127 OooOooAO: 98080000 OooOFFoo

Symbol Name

device
status_adr
sendmsg
rcvmsg
cmd_adr
data_adr
errl
err2
err3
err4
ok
errS
err6
include "NCR.h"
extern char line[];
sample
resel_adr
end
input_data
output_data

NCR 53C720 Programmer's Guide

int err4 when not STATUS

; move the status byte into memory
move FROM status_adr, when STATUS

; interrupt if message in is not next
int errS when not MSG_IN

; move the command complete byte in
move FROM rcvmsg, when MSG_IN

; interrupt if not command complete
int err6 if not 00

; accept the message if there are no problems
clear ack

; wait for a physical disconnect
wait disconnect

; interrupt with an 1/0 complete
int ok

int ok

Value Type

00000000
00000000
00000000
00000000
00000000
00000000
OooOFFOl
0000FF02
0000FF03
OooOFF04
OooOFFoo
OooOFF05
OooOFF06
00000000
00000000
00000000
OooOooAO
00000060
00000048
00000058

EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
EXTERNAL
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
PASS_LABEL
PASS_LABEL
PROC_LABEL
LABEL (REL)
LABEL (REL)
LABEL (REL)
LABEL (REL)

Appendix D

D-5

Appendix D

SAMPLE OUTPUT FILE

include "NCR.h"
extern char line[];
typedef unsigned long ULONG;

ULONG sample[] = (
Ox47000000,
Ox9E030000,
OxlEOOOOOO,
Ox9A030000,
OxlAOOOOOO,
Ox838BOOOO,
Ox818AOOOO,
Ox808AOOOO,
Ox98080000,
Oxl9000000,
Ox80880000,
Oxl8000000,
Ox9B030000,
OxlBOOOOOO,
Ox9F030000,
OxlFOOOOOO,
Ox98040000,
Ox60000040,
Ox48000000,
Ox98080000,
Ox98080000,

};

OxOOOOO098,
OxOOOOFFOl,
OxOOOOOOOO,
OxOOOOFF02,
OxOOOOOOOO,
OxOOOOOO30,
OxOOOOOOlO,
OxOOOOO0l8,
OxOOOOFF03,
OxOOOOOOOO,
OxOOOOOO08,
OxOOOOOOOO,
OxOOOOFF04,
OxOOOOOOOO,
OxOOOOFF05,
OxOOOOOOOO,
OxOOOOFF06,
OxOOOOOOOO,
OxOOOOOOOO,
OxOOOOFFOO,
OxOOOOFFOO

#define E_device OxOOOOOOOO
ULONG E_device_UsedD = (

OxOOOOOOOO
};

#define E_status_adr OxOOOOOOOO
ULONG E_status_adr_Used[] = (

OxOOOOOOlb
};

#define E_sendmsg OxOOOOOOOO
ULONG E_sendmsg_UsedD = (

OxOOOOOO05
};

#define E_rcvrnsg OxOOOOOOOO
ULONG E_rcvmsg_UsedD = (

OxOOOOOOlf
};

D-6

Compiler SCRIPTS Examples

NCR 53C720 Programmer's Guide

Compiler SCRIPTS Examples

#define E_cmd_adr OxOOOOOOOO
ULONG E_cmd_adr_UsedD = (

OxOOOOOOO9
);

#define E_data_adr OxOOOOOOOO
ULONG E_data_adr_Used[] = (

OxOOOOOO13,
OxOOOOOO17

);

ULONG INSTRUCTIONS = OxOOOOO0l5;
ULONG PATCHES = OxOOOOOOOO;

NCR 53C720 Programmer's Guide

Appendix D

D-7

Appendix D Compiler SCRIPTS Examples

Notes

D-8 NCR 53C720 Programmer's Guide

APPENDIX E

53C720 Test SCRIPTS Examples

.*** ,
; Filename: 720TEST .sS
; This sample SCRIPT shows the Memory to Memory Move, Carry, and
; Register ReadlWrite capabilities of the 53C720 .
. *** ,

; Memory to Memory Move instructions can be done to/from the 53C720's
; internal registers if the address given decodes to the memory mapped
; address of the 53C720. Below are the addresses for the SeRA TCHA and SCRATCHB
; registers in little endian mode when the base address of the card is DOOO.
; Converting DOOO:6034 to an absolute address gives OxD6034. Converting DOOO:
; 605C to an absolute address gives OxD605C.

ABSOLUTE ScratchA_Zero_Addr = OxOD6034
ABSOLUTE ScratchA_One_Addr = OxOD6035
ABSOLUTE ScratchA_Two_Addr = OxOD6036
ABSOLUTE ScratchA_Three_Addr = OxOD6037
ABSOLUTE ScratchB_Zero_Addr = OxOD605C
ABSOLUTE ScratchB_One_Addr = OxOD605D
ABSOLUTE ScratchB_Two_Addr = OxOD605E
ABSOLUTE ScratchB_Three_Addr = OxOD605F

; Note: When doing memory to memory moves to/from the chip's address space,
; the buffers must be long word alligned. This is because the chip's
; registers are long word aligned, and memory to memory move instructions
; require that the last two address bits of the source and destination
; addresses be the same. If the software doesn't load the SCRIPTS starting
; at a long word boundary, then the relative buffers will not be long word
; aligned and illegal instruction interrupts will occur when executing the
; memory to memory moves to/from the chips address space. A simple way to
; fix this is to add a small (1, 2, or 3) byte buffer to the beginning of
; the relative buffers that will force the rest of the buffers to be
; long word aligned. A better way to fix this is to force your software
; to load the SCRIPTS starting at a long word boundary.

; Relative buffers in memory

RELATIVE Temp_Buff! = 0
RELATIVE Temp_Buff2 = Temp_Buff! + 4
RELATIVE Byte_O = Temp_Buff2 + 4
RELATIVE Byte_1 = Byte_O+1
RELATIVE Byte_2 = Byte_1+1
RELA TIVE Byte_3 = By t e_2 +1

NCR 53C720 Programmer's Guide E-1

Appendix E

ENTRY start

start:

; Use Register Write to put OxFF's in SCRATCHA register
move OxFF to SCRATCHAO
move OxFF to SCRATCHAl
move OxFF to SCRATCHA2
move OxFF to SCRATCHA3

53C720 Test SCRIPTS Examples

; Use Memory-to-Memory Move instruction to cove 1 byte into the SCRATCHA
; register from memory.

move memory 1, Temp_Buffl, ScratchA_Zero_Addr

; Now move that byte back out of the SCRA TCHA register
move memory 1, ScratchA_Zero_Addr, Temp_Buff2

; Use 2 Register Read/Write instructions to copy one register to another.
; When moving from one register to another, the SFBR must be used as an
; intermediate step.

move SCRA TCHBO to SFBR
move SFBR to SCRA TCHAO

; Move 4 bytes from memory to the SCRATCHA register using 4 separate
; byte wide moves to show different allignments

move memory 1, Byte_O, ScratchA_Zero_Addr
move memory 1, Byte_I, ScratchA_One_Addr
move memory 1, Byte_2, ScratchA_ Two_Addr
move memory 1, Byte_3, ScratchA_Three_Addr

; Move 4 bytes out of the SCRA TCHA register and put them in memory
move memory 1, ScratchA_Zero_Addr, Byte_O
move memory 1, ScratchA_One_Addr, Byte_I
move memory 1, ScratchA_Two_Addr, Byte_2
move memory 1, ScratchA_Three_Addr, Byte_3

; Re-initialize the SCRA TCHA register to all OxFF's.
move OxFF to SCRATCHAO
move OxFF to SCRATCHAI
move OxFF to SCRATCHA2
move OxFF to SCRATCHA3

E-2 NCR 53C720 Programmer's Guide

53C720 Test SCRIPTS Examples

; Now move 4 bytes at a time from memory into the SCRATCHA register
; to show 32 bit accesses. Note that the address's of Temp_Buffl and
; ScratchA_Zero_Addr must have the same long word allignment (AO-AI
; must be the same).

move memory 4, Temp_Buffl, ScratchA_Zero_Addr

; Now move the data back out of the SCRA TCHA register using a long
; word access

move memory 4, ScratchA_Zero_Addr, Temp_Buff2

; Move 1 byte from memory to memory
move memory 1, Temp_Buffl, Temp_Buff2

; Move 2 bytes from memory to memory
move memory 2, Temp_Buffl, Temp_Buff2

; Move 3 bytes from memory to memory
move memory 3, Temp_Buffl, Temp_Buff2

; Move 4 bytes from memory to memory
move memory 4, Temp_Buffl, Temp_Buff2

; The next section implements a counter that counts from 0 to OxFFFF. It
; shows how the SFBR register can be used in conjunction with a transfer
; control instruction to compare for certain data values.

; Use Register Write to put OxOO's in SCRA TCHA register
move OxOO to SCRATCHBO
move OxOO to SCRATCHBI
move OxOO to SCRATCHB2
move OxOO to SCRATCHB3

addbyteO:
move SCRA TCHBO + OxOI to SCRATCHBO
move SCRA TCHBO to SFBR
jump addbyteO if not Oxff

move SCRA TCHBI + OxOI to SCRATCHBI
move SCRA TCHBI to SFBR
jump addbyteO if not Oxff

; End of 0 to OxFFFF counter routine

NCR 53C720 Programmer's Guide

Appendix E

E-3

Appendix E 53C720 Test SCRIPTS Examples

; The rest of this SCRIPT demonstrates how the carry can be used to make
; a 32 bit counter. As is, this SCRIPT will count from 0 to 232. This
; will most likely take hours depending on the hard ware surrounding the
; 53C720. To execute this SCRIPT in a reasonable amount of time, I
; recommend you put an interrupt instruction after the first two loops.
; This will make it count from 0 to 216 which doesn't take long at all.

; Use Register Write to put OxOO's in SCRA TCHA register
move OxOO to SCRATCHBO
move OxOO to SCRATCHBI
move OxOO to SCRATCHB2
move OxOO to SCRATCHB3
clear carry

addtest:
move SCRA TCHBO + OxOI to SCRATCHBO
jump addtest if not carry

move SCRA TCHBI + OxOO to SCRATCHBI with carry
jump addtest if not carry

; int OxOb
move SCRA TCHB2 + OxOO to SCRATCHB2 with carry
jump addtest if not carry

move SCRA TCHB3 + OxOO to SCRA TCHB3 with carry
jump addtest if not carry

; Interrupt saying we are all done

int OxOA

E-4 NCR 53C720 Programmer's Guide

Appendix F

SCRIPTS ™ Compiler Error Messages

The NCR SCSI SCRIPTS compiler diagnostic messages fall into four classes: Fatal Errors,
Errors, and Warnings.

Fatal Errors
When a fatal error occurs, compilation immediately stops. You must take appropriate action
and then restart compilation.

No memory. Aborting compiler
There is not enough available memory to read the SCRIPT into RAM.

Local stack overflow. Aborting compile
Please contact NCR immediately, you have an obsolete version of SCRIPTS.

Cannot open file
The SCRIPT file cannot be opened or one of the output files (.ERR or XRF) are

corrupt. Compilation is terminated.

Cannot read file
The file was opened, but could not be read. Compilation is terminated.

NCR 53C720 Programmer's Guide F-l

Appendix F SCRIPTSTM Compiler Error Messages

Errors
Errors indicate program syntax errors, disk or memory access errors, and command line errors.

Expected digit
While evaluating a number, a character other than a legal digit was encountered.

F-2

Expected a separator
A separator was expected, insert a comma, EOL character or any other legal separator.

Numeric constant has too many digits
A number, either decimal, hex or binary contains too many digits.

Expected a value
A value was expected, but instead an operator, pseudo-op, or instruction was
encountered.

Undefined variable
A variable was encountered that was not defined at the beginning of the SCRIPT.

Unknown identifier
An identifier was encountered that was not a "+", "-", or any other expected separator.

Expected an identifier
A reserved word was encountered where there should have been an identifier.

Expected a variable
A pseudo op, instruction, or reserved word was encountered where a variable was
expected.

Expected an expression
A mathematical expression was expected but not found. If you encounter this error
message, contact NCR, you have an old version of SCRIPTS.

Expected a reserved word
A reserved word was expected (WITH, WHEN, IF, etc.) but was not encountered.

Expected a PHASE
An instruction was used in which a phase was expected and but was not found in the
instructions.

Cannot use a RELATIVE in a non address field
A relative variable was used in a field that was not an address field.

NCR 53C720 Programmer's Guide

SCRIPTSTM Compiler Error Messages Appendix F

Warning
Warnings do not prevent the compilation from finishing.

Identifier truncated
An identifier, such as a label contained more than 32 characters and was truncated.

Redefinition of variable
A variable was defined two or more times.

Duplicate ATN
A TN has already been set and you are attempting to set it again.

Duplicate ACK
ACK has already been set and you are attempting to set it again.

Undefined label used as entry pOint
The label was not defined as an entry point.

Unused variable
A variable was defined but not used in the SCRIPT.

Lost resolution
A number encountered was too large. For example, using 8 as a SCSI ID.

SCSI ID numbers can be no larger than 7.

Duplicate label
A label was defined more than once.

NCR 53C720 Programmer's Guide F-3

Appendix F SCRIPTSTM Compiler Error Messages

Notes

F-4 NCR 53C720 Programmer's Guide

Appendix G

Miscellaneous Design Topics

The following paragraphs detail design
topics.

Design Topics
The following design topics are discussed.

• SCSI Timers
• Longitudinal Parity Register
• BiglLittle Endian Support
• SCRIPTS in a host adapter

SCSI Timers
Some SCSI systems have a system require­
ment with respect to activity on the SCSI bus.

If there are long periods with no SCSI activity
then the SCSI driver must notify the system
software that a time-out has occurred. The
53C720 provides programmable select!
reselect, handshake to handshake, and gen­
eral purpose timers. The time-out period is
programmable from 100 J.1Sec to greater than
1.6 seconds. A maskable interrupt is available
for each of the timers. Timers are masked in
the SIENl register and status of the timers are
checked in the SISTI register.

Longitudinal Parity Register (SLPAR)
For a simple error check of any data passing
through the 53C720, there is an 8-bit register
that contains a continual exclusive OR of the
data. The value in the chip is cleared by any
write to the register. A designer can use the
information by performing the following:

1. Clear the value with a SCRIPTS write.

2. Move data through the 53C720.

3. Move the generated byte to the SCSI
target to be stored with the data.

4. Read in the extra byte on a read, and
compare it to the byte generated during
the move.

All the extra moves and compares can be
done by the 53C720 or by the system proces­
sor, depending on the designer's preference.

NCR 53C720 Programmer's Guide

Note that the SLPAR doubles as the SFBR
during a select or reselect. The device id is
always written into the SLPAR. Because ~
SCRIPT could be writing to the SFBR dUring
a SCSI bus-initiated interrupt, the value
could be destroyed. Optionally, therefore,
the chip can be set to write the device id
only to the SLP AR.

Big/Little Endian Support
There is some support for both Big and Little
Endian in the 53C720. Four areas must be
considered when discussing the byte order­
ing.

L SCRIPTS Order

To ensure that all SCSI SCRIPTS are in the
correct order, each SCRIPT must be com­
piled in the target architecture .. The.C
output is a longword value, which Will be .
stored in the memory by the processor and In
the correct order for the subsequent execu­
tion. If a little Endian SCRIPT is to be
executed on a big Endian machine, th~ bytes
will need to be reversed before execution by
the 53C720 (in big Endian mode). Note t?at
a PROM cannot be moved from one envI­
ronment to another without re-ordering
bytes within each word.

Z. 53C720 Register Acceu from Firmware

There is a big Endian and a little Endian
address mode for the registers. To develop
code that works in either mode, simply use
equates with an Endian switch that includes
the appropriate set of address values. Note
that the change is only for byte access. If 32
bits are accessed, there is no change from big
to little Endian.

3. 53C7Z0 Replter Accell from SCSI SCRIPTS

The compiler offers a set of logical names
that can be used to access registers. Names
do not change when the mode changes, and
the binary code required to access a register
does not change either.

G-I

Appendix G

4. U.er Data Byte Ordering

Data transfers tolfrom system memory froml
to the SCSI bus always start at the beginning
address and continue until the last byte is
sent. No internal re-ordering of the data for
either mode occurs. A serial stream of data is
assumed, and the first byte on the SCSI bus is
associated with the lowest address in system
memory.

SCRIPTS in a Host Adapter
Some designs require that SCSI SCRIPTS be
fetched from a local ROM rather than from
system memory across the bus. Typically,
this requirement comes from the desire to
avoid traffic on the bus or is caused by large
overheads associated with bus arbitration.
The 53C720 allows several options in the
placement of SCRIPTS and table indirect
data

SCRIPTS and data structures can be placed
in system memory.

Using the FETCH pin, external system bus
interface hardware can read SCRIPTS locally
and all other data from system memory.
During SCRIPT fetches, the pin is active, and
thus, the access can go locally rather than
across the system bus.

In the CTESTB register is the fetch mode bit.
When set, the FETCH pin will deassert
during indirect and table indirect read opera­
tions. FETCH will be active during SCRIPT
fetches only. Thus, external hardware can
drive the opcode fetch to one memory area
(local ROM) and table indirect fetches to
another area (system RAM). If the bit is not
set, then fetch is asserted throughout the
instruction fetch.

Thus, the designer can place SCRIPTS, user
data, and table indirect data in the most
convenient area of memory. Note that the
options can be changed dynamically by
writing to the registers from SCRIPTS.

G-2

Compiler SCRIPT Examples

NCR 53C720 Programmer's Guide

Appendix H

Using the 53C720 in Low Level Mode

Low-level SCSI Code
Pseudocode examples of selection, message-out, command, data-in, status, and message-in.

Selection: *

parity check, generation
SCNTLO=OXCC

C700 id=7, target id=2
SODL=OX84

assert BSY
SOCL=OX20

assert SODL, connected; if not connected, ATN cannot be asserted
SCNTLl=OX50

low-level mode (Note: Disable low-level mode before starting the SCRIPTS' processor.)
DCNTL=OX08

assert SEL, ATN, BSY
SOCL=OX38

deassert BSY, keep SEL, ATN
SOCL=OX18

wait for BSY, asserted by Target
(SBCL & OX20)=OX20

deassert SEL, keep A TN
SOCL=OX08

Message-Out *

look for REQ and message-out
(SBCL & OX87)=OX86

identify message
SODL

message-out phase; a phase match asserts SODL onto the SCSI bus
SOCL=OXOE

assert ACK, message-out, keep A TN
SOCL=OX4E

wait for REQ deasserted
wait for (SBCL & OX80)=OXOO

deassert ACK, ATN; keep message-out
SOCL=OX06

NCR 53C720 Programmer's Guide H-l

Appendix H U sing the 53C720 in Low Level Mode

**

Command *
**

look for REQ and command
(SBCL & OX87)=OX82

initialize command byte
SODL=eommand byte

assert ACK, command
SOCL=OX42

wait for REQ deasserted
wait for (SBCL & OX80)=OXOO

deassert ACK, keep command
SOCL=OX02

repeat until last command byte

Data-In *

look for REQ and data-in
(SBCL & OX87)=OXBl

SBDL=data byte
assert ACK, data-in

SOCL=OX41
wait for REQ deasserted

wait for (SBCL & OXBO)=OXO
deassert ACK, keep command

SOCL=OX02
repeat until last data byte

Status *

look for REQ and status
(SBCL & OXB7)=OxB3

ACK, status phase
SOCL=OX43

SBDL contains status byte
status=SBDL

wait for REQ deasserted
wait for (SBCL & OXBO)=OXOO

deassert ACK; keep status phase
SOCL=OX03

H-2 NCR 53C720 Programmer's Guide

Using the 53C720 in Low Level Mode

Message-in *

look for REQ and message-in
(SBCL & OX87)=OX87

ACK, message-in phase
SOCL=OX47

SBDL contains message byte
message-in=SBDL

wait for REQ deasserted
wait for (SBCL & OX80)=OXOO

deassert ACK; keep message-in phase::
SOCL=OX07

NCR 53C720 Programmer's Guide

Appendix H

H-3

Appendix H U sing the 53C720 in Low Level Mode

Notes

H-4 NCR 53C720 Programmer's Guide

-e[errorfilename] - 3-1
-1[ListFilename] - 3-1
-o[OutputFile name] - 3-1
-u - 3-1
-v - 3-1
-w - 3-1
-z[debugfilename] - 3-1

53C7XO - 4-1
53C90 Algorithm Description. - A-I
53C720 Algorithm Description - A-I

Index

53C720 Performance Compared to 53C90 - A-I
53C720 Register Access from Firmware - G-l
53C720 Register Access from SCSI SCRIPTS - G-l
53C720 Strengths in the Disk Drive Environment - 7-1
53C720 System Bus Utilization - B-1
53C720 Test SCRIPTS Examples - E-l
68030 - 1-4
80386 - 1-4
80386SX - 1-4

A
A SCSI Solution - 1-1
ABSOLUTE - 2-3,4-3,4-5
ACK - 4-3
AND - 4-3
array - 1-5
ASCII - 3-1
ATN - 4-3

B
back-end - 4-1
Big/Little Endian Support - G-l
binary - 4-1
Bit 16 Wait for Valid Phase - 10-16
Bit 17 Compare Phase - 10-16
Bit 18 Compare Data - 10-16
Bit 19 Jump If - 10-16
Bit 20 Interrupt on the Fly (INTFL Y) - 10-16
Bit 21 Carry Test - 10-15

Index - 1

Bit 22 Reserved - 10-15
Bit 23 Relative Addressing - 10-15
Bit 23 Reserved - 10-13
Bit 24 Carry Enable - 10-13
Bit 24 SELECT With ATN - 10-10
Bit 25 Table Indirect Mode - 10-10
Bit 26 Relative Addressing Mode - 10-10
Bit 27 Block Move Opcode - 10-3
Bit 28 = 0 Table Direct Mode - 10-2
Bit 28 = 1 Table Indirect Mode - 10-2
Bit 28 Table Indirect Field - 10-2
Bit 29 = 0 Direct Addressing - 10-2
Bit 29 = 1 Indirect Addressing - 10-2
Bit 29 Indirect data address flag - 10-2
Bits 7-0 Data Byte - 10-16
Bits 7-0 Reserved - 10-13
Bits 15-0 Flags Field - 10-10
Bits 15-8 Immediate Data Field - 10-13
Bits 15-8 Mask Bits - 10-16
Bits 19-16 Sequence Control Bits - 10-16
Bits 22-16 Register Address Field - 10-13
Bits 23-0 Block Move Byte Count - 10-4
Bits 23-00 24-bit Byte Count - 10-19
Bits 23-16 SCSI ID 7-0 - 10-10
Bits 26-24 SCSI Phase Bits - 10-15
Bits 26-24 SCSI Phase Lines - 10-4
Bits 29-24 Reserved Section - 10-19
Bits 29-27 = 000 (JUMP) - 10-15
Bits 29-27 = 001 (CALL) - 10-15
Bits 29-27 = 010 (RETURN) - 10-15
Bits 29-27 = 011 (INTERRUPT) - 10-15
Bits 29-27 = 101 (Move from SFBR) -10-12
Bits 29-27 = 110 (Move to SFBR) - 10-12
Bits 29-27 = 111 (Read-Modify-Write) - 10-13
Bits 29-27 1/0 Instruction Opcodes - 10-7
Bits 29-27 Transfer Opcodes - 10-15
Bits 31-0 Data Jump Address - 10-17
Bits 31-0 Data Start Address - 10-5
Bits 31-0 Jump Address - 10-13
Bits 31-00 Destination Address of the Memory Move - 10-20
Bits 31-00 Source Address of the Memory Move - 10-19
Bits 31-30 Block Move (00) - 10-2
Bits 31-30 1/0 Instruction (01) - 10-7

Index - 2

Bits 31-30 Read/Write Instructions (01) -10-11
Bits 31-30 SCSI I/O Processor (10) - 10-14
Bits 31-30 SCSI I/O Processor Opcode (11) - 10-19
Block Move Instruction - 10-2
Block Move Instruction - 10-5
Block Move Instructions - 10-1
Block Move Overview - 10-2
Block Move - 4-7
brackets - 3-1

c
C Source Code - 1-5
CALL Instruction - 4-12
CALL - 4-1
Cannot open file - F-l
Cannot read file - F-l
Cannot use a RELATIVE in a non address field - F-2
CARRY - 4-3
Chained Block Move - 4-8
Chained Move Instruction - 10-5
chained mode - 1-4
CHMOV - 4-1
CLEAR - 4-1
Clear Instruction - 4-18
Compiled Output - 3-2
Compiler Directives Syntax - 4-5
Compiler Directives - 4-3
Compiler SCRIPTS Examples - D-l
compiler - 1-5
count - 4-4
CPU - 1-1,1-6

D
data - 4-4
Data-in Phase - 8-2
Data-out Phase - 8-2
debugger - 3-1
Decimal - 4-1
Definition area - 2-1
Design Topics - G-l
Direct Block Move - 4-7
Direct Chained Block Move - 4-9

Index - 3

DISCONNECT - 4-1
Disconnect Instruction - 4-17
Disconnect SCSI SCRIPTS - 9-2
Disk Drive Initiator Sequence - 7-1
DMA Component - 1-3
DMA - 1-1,1-3
DSA - 1-4
Duplicate ACK - F-3
Duplicate ATN - F-3
Duplicate label - F-3

E
ENTRY - 4-4, 4-5
Errors - F-2
Example of a SCRIPTS Operation - 1-6
Expected a PHASE - F-2
Expected a reserved word - F-2
Expected a separator - F-2
Expected a value - F-2
Expected a variable - F-2
Expected an expression - F-2
Expected an identifier - F-2
Expected digit - F-2
expression [,name = expression_l - 4-5
expression [,name = expression_l - 4-6
expression - 4-4
EXTERNAL name [,name-l - 4-5
EXTERNAL - 2-2

F
Fatal Errors - F-l
First 32-bit word of the 1/0 Instructions - 10-7
First generation - 1-1
FROM - 4-3
front-end - 4-1

H
hex - 4-1
Hexadecimal - 4-1
high level - 1-4
Host Bus Time To Fetch A SCSI SCRIPTS Command - B-1
Host System - 1-6
How SCSI SCRIPTS becomes part of a C Language Program - 1-5

Index - 4

I
I/O Instructions Overview - 10-7
I/O Instructions - 10-7, 10-13
id - 4-4
Identifier truncated - F-3
IF - 4-3
Indirect Block Move - 4-7
Indirect Chained Block Move - 4-9
Initiator Mode Bit 27 = 0 (CHMOV) - 10-4
Initiator Mode Bit 27 = 1 (MOVE) - 10-4
Initiator Mode Bits 29-27 = 000 (Selection) - 10-8
Initiator Mode Bits 29-27 = 001 (Wait Disconnect) - 10-9
Initiator Mode Bits 29-27 = 010 (Wait Reselect) - 10-9
Initiator Mode Bits 29-27 = 011 (Set) - 10-9
Initiator Mode Bits 29-27 = 100 (Reset) - 10-9
Instruction Keywords - 4-1, 4-7
INT - 4-1
INTERRUPT Instruction - 15
INTERRUPT on the FLY Instruction - 4-16
INTFLY - 4-1
Invoking the SCSI SCRIPTS Compiler - 3-1

J
JUMP Instruction - 4-11
JUMP - 4-1

K
KEYWORD count, address - 4-6
KEYWORD - 4-1, 4-4

L
Labels - 3-1
lines of code - 1-1
Linker - 1-5
Local stack overflow. Aborting compile - F-1
Longitudinal Parity Register (SLPAR) - G-1
Lost resolution - F-3
Low level - 1-4
Low-level SCSI Code - H-1

Index - 5

M
Main SCSI SCRIPTS - 9-1
MASK - 4-3
MEMORY MOVE - 10-19,10-20
MEMORY - 4-3
Memory Move Overview - 10-18
Memory to Memory Move - 4-10, 10-19, 10-18
MIPS - 1-1
Miscellaneous Design Topics - G-l
Miscellaneous Instructions - 4-16
Miscellaneous Keywords - 4-3
MOVE Instructions - 4-7
MOVEMEMORY - 4-1
MOVE - 4-1
Multi-Tasking I/O Using SCSI SCRIPTS - 9-1
Multi-Threaded I/O Using SCSI SCRIPTS - 9-1

N
name - 4-4
NCR 53C720 SCSI I/O Processor Chip Block Diagram - 1-2
NCR SCSI SCRIPTSTM Description - 1-4
No memory. Aborting compiler - F-l
NOP - 4-1
NOT - 4-3
Numeric constant has too many digits - F-2

o
octal - 4-1
offset - 4-4
OR - 4-3

p
P-Calbe - 1-3
PASS (#include "NCRh,,) - 4-5
P ASS (literal string) - 4-5
P ASS Option - 4-5
PASS - 2-3, 4-4
Phase Keywords - 4-2
Phase - 4-4
PROC label - 4-5

Index - 6

PROC - 4-4
Processing a SAVE DATA POINTERS Message - 8-2
PTR - 4-3

R
ReadlWrite Overview - 10-11
ReadlWrite Register Instructions - 10-11
Redefinition of variable - F-3
REG - 4-3
Register Keywords - 4-2
Register Read/Write Instruction - 4-18
REL - 4-3
RELATIVE name = - 4-6
RELATIVE - 4-4
RESELECT - 4-1
Reselect Instruction - 4-17
reserved word - 4-1
Resume SCSI SCRIPTS - 9-3
RETURN Instruction - 4-14
RETURN - 4-1

S
SAMPLE SCSI SCRIPTS Source File - D-1
Sample Input Data Structure - A-I
Scheduler SCSI SCRIPTS - 9-1
SCRIPT area - 2-1
SCRIPTS for the Initiator Role - 6-1
SCRIPTS for the Target Role - 6-7
SCRIPTS in a Host Adapter - G-2
SCRIPTS Keywords - 4-1
SCRIPTS Notation - 4-4
SCRIPTS Order - G-l
SCRIPTS TM Compiler Error Messages - F-1
SCSI Character Oriented Device in the Initiator Role - 7-2
SCSI SCRIPTS Compiler Output - 3-2
SCSI SCRIPTS Compiler - 1-5
SCSI SCRIPTS Machine Language Description - 10-1
SCSI SCRIPTS - 4-1
SCSI SCRIPTSTM Processor - 1-3
SCSI Timers - G-l
Second 32-bit word of the I/O Instructions - 10-7
Second generation - 1-1

Index -7

SELECT [ATN] FROM offset, Address - 4-17
SELECT [ATN] FROM offset, REL (Address) - 4-17
SELECT [A TN] ID, Address - 17
SELECT [A TN] ID, REL (Address) - 4-17
SELECT - 4-1
Select Instruction - 4-17
Set Instruction - 4-18
Source Code - 3-2
SSC Sourcefine Options - 3-1
Syntax - 4-18

T
Table Indirect Block Move - 4-8
Table Indirect Chained Block Move - 4-9
Tape Drive Initiator Sequence - 7-1
TARGET - 4-3
Target Mode Bit 27 = 0 (MOVE) - 10-3
Target Mode Bit 27 = 1 (CHMOV) - 10-4
Target Mode Bits 29-27 = 000 (Reselect) - 10-8
Target Mode Bits 29-27 = 001 (Disconnect) - 10-8
Target Mode Bits 29-27 = 010 (Wait Select) - 10-8
Target Mode Bits 29-27 = 011 (Set) - 10-8
Target Mode Bits 29-27 = 100 (Reset) - 10-8
The NCR SCSI I/O Processor - 1-3
The NCR SCSI SCRIPTS Language Syntax - 4-1
Third generation - 1-1
token - 4-1
TRANSFER CONTROL INSTRUCTION - 10-14,10-17
Transfer Control Instructions - 10-14
Transfer Control Overview - 10-14
Transferring Large Blocks of User Data - 8-1

U
Undefined label used as entry point - F-3
Undefined variable - F-2
Unknown identifier - F-2
Unused variable - F-3
Use of the Sig-p Bit in the 53C720 - C-l
User Data Byte Ordering - G-2
Using the 53C720 in Low Level Mode - H-l

v
Index - 8

value - 4-4
VLSI - 1-1

W
WAIT - 4-3
Wait Disconnect Instruction - 4-17
Wait Reselect Instruction - 4-17
Wait Reselect PASS(&alt_addr) - 4-5
Wait Select Instruction - 4-17
Warning - F-3
WHEN - 4-3
WITH - 4-3

Index - 9

Notes

Index - 10

READER'S COMMENT FORM
F-8763 0687

BOOK TITLE I BOOK NO. I PRINT DATE

To help us plan future editions of this document, please take a few minutes to answer the following questions.
Explain in detail using the space provided. Include page numbers where applicable.

Are there any technical errors or misrepresentations in the document?

Is the material presented in a logical and consistent order?

Is it easy to locate specific information in the document?

Is there any information you would like to have added to the document?

WI
~I
~: Are the examples relevant to the task being described?

1-1
~I
°1
~I
1-1
51

Could parts of the document be deleted without affecting the document's usefulness?

Did the document help you to perform your job?

Any general comments?

NAME ________________________________ __

TITLE ___________________ _

COMPANY __________________________ _

ADDRESS ______________________ _

TELEPHONE NO. (

Thank you for your evaluation of this document.
Fold the form as indicated and mail to NCR. No postage is
necessary in the U.S.A.

-------------------------------------fDld--------

llflrr
-------~1~ii£~;---i

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 3 DAYTON, OHIO

POSTAGE WILL BE PAID BY ADDRESSEE

NCR Corporation
ATIENTION: Publication Services
WHQ-4
1700 S. Patterson Blvd.
Dayton, Ohio 45409

IN THE
UNITED STATES

, - fold --1

NCR Corporation
Microelectronic Products Division

Colorado Springs, CO 80916
53C720 Programmer's Guide 0691

