OKI semiconductor MSM16811P

1.024 BIT SERIAL E²PROM

FEATURES:

- CMOS Floating Gate Technology
- Single +5-volt supply
- Eight pin plastic package
- 64 x 16 or 128 x 8 user selectable serial memory
- Compatible with NS9346
- Self timed programming cycle with Auto erase
- Word and chip erasable
- Operating Range –40°C to 85°C
- 10,000 erase/write cylces
- 10 year data retention

8

PIN FUNCTIONS						
CS SK DI DO VCC NC GND	Chip Select Clock Input Serial Data Input Serial Data Output +5 V Power Supply Non Connection Ground	ORG	Memory Array Organization Selec- tion Input. When the ORG pin is connected to +5 V the 64 x 16 organization is selected. When it is connected to ground the 128 x 8 organization is selected. If the ORG pin is left unconnected, then an internal pull-up device will select the 64 x 16 organization			

			INSTRUCTION SET					
Start		Start	Address		Data		Comments	
Instruction	Bit	Opcode	128 x 8	64 × 16	128 x 8	64 × 16		
READ	1	10	A ₆ -A ₀	A ₅ -A ₀			Read Address AN-A0	
ERASE	1	1 1	A ₆ -A ₀	A ₅ -A ₀			ERASE Address AN-A0	
WRITE	1	0 1	A ₆ -A ₀	$A_6 - A_0$ $A_5 - A_0$ $D_7 - D_0$ $D_{15} - D_0$		D ₁₅ -D ₀	WRITE Address AN-A0	
EWEN	1	00	11XXXXX	11XXXX			Program Enable	
EWDS	1	00	00XXXXX	00XXXX			Program Disable	
ERAL	1	00	10XXXXX	10XXXX			Erase All Addresses	
WRAL	1	00	01XXXXX	01XXXX	D7-D0	D ₁₅ -D ₀	Program All Addresses	

Power-On Data Protection Circuitry: During power-up all modes of operation are inhibited until V_{CC} has reached a level of between 2.8 and 3.5 volts. During power-down the source data protection circuitry acts to inhibit all modes when V_{CC} has fallen below the voltage range of 2.8 to 3.5 volts.

■ MOS E² PROMS · MSM16811P ■-

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Value	Unit
Supply Voltage	Vcc	CC –0.3 ~ 7		V
Input Voltage	V ₁	Ta = 25 °C	-0.3 ~ V _{CC} + 0.3	V
Output Voltage	Vo		-0.3 ~ V _{CC} + 0.3	V
Storage Temperature	TSTG		-55 ~ + 150	°C

Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as recommended. Exposure to ABSOLUTE MAXIMUM RATINGS for extended periods may affect device reliability.

RECOMMENDED OPERATING RANGE

Parameter	Symbol	Range	Unit
Supply Voltage	Vcc	5 ± 10 %	V
Temperature Range	Та	-40 ~ 85	°c
Data Hold Temperature	Та	-40 ~ 85	°C

DC CHARACTERISTICS

(V_{CC} = 4.5V to 5.5V, Ta = $-40 \sim 85^{\circ}$ C, unless otherwise specified.)

Parameter	Symbol	Condition	MIN	МАХ	Unit
Supply Voltage	Vcc		4.5	5.5	V
	ICC1	V _{CC} = 5.5 V CS = 1		5	mA
Power Supply Current	ICC2	$V_{CC} = 5.5 V$ CS = 0 DI = 0 or V_{CC}		100	μA
"L" Input Voltage	VIL		-0.1	0.8	v
"H" Input Voltage	VIH		2.0	V _{CC} + 1	V
	VOL	TTL I _{OL} = 2.1 mA		0.4	V
		CMOS I _{OL} = 100 μA		0.1	V
"H" Output Valtara	Val	TTL I _{OH} =400 μA	2.4		V
	⊻он	CMOS I _{OH} = −40µA	V _{CC} -0.5		V
Input Leakage Current	ILI.	$0 \le V_{IN} \le V_{CC}$	-15	10	μA
Output Leakage Current	1LO	V _{out} = 5.5 V CS = 0		10	μA

Parameter	Description	Test Condition	Min	Тур	Max	Units
tCSS	CS Setup Time		0.2			μs
^t CSH	CS Hold Time		0			μs
tDIS	DI Setup Time		0.4			μs
tDIH	DI Hold Time		0.4			μs
^t PD1	Output Delay to 1	CL = 100pF			2	μs
^t PD0	Output Delay to 0	V _{OL} = 0.8V, V _{OH} = 2.0			2	μs
tHZ	Output Delay to HiZ	V _{IL} = 0.45V, V _{IH} = 2.4			0.4	μs
tew	Erase / Write Pulse Width				10	ms
tCSMIN	Min CS Low Time		1			μs
^t SKHI	Min SK High Time		1			μs
^t SKLOW	Min SK Low Time		1			μs
tsv	Output Delay to Status Valid	C _L = 100 pF			1	μs
SKMAX	Maximum Frequency		0		250	kHz

AC CHARACTERISTICS (Vcc = 4.5V to 5.5V, Ta = $-40 \sim 85^{\circ}$ C, unless otherwise specified)

Synchronous Timings

DEVICE OPERATION

The MSM 16811 has 7 instructions that allow it to read, erase, or write. Each instruction consists of a start bit logical '1', an opcode field (2 bits or 4 bits) and an address field (6 or 7 bits).

The DO pin is a multiplexed pin. It is used as Data Out during the Read mode. It can also be used as a Ready Busy status indicator in programming mode. In all the other modes DO is tri-stated.

During power-up, all modes of operation are disabled and the device comes up in a program disabled state. An EWEN instruction has to be issued before starting to program.

At power-down, when V_{CC} falls below a level of approximately 3V, the data protection circuitry inhibits all modes of operation and an EWDS instruction is executed internally.

Organization	A _N	D _N
128 x 8	A ₆	D ₇
64 × 16	A5	D15

The READ instruction reads the contents of the addressed register. It outputs data serially on the DO pin. After the instruction is decoded, a dummy bit (logical "0") precedes the output data string.

ERASE/WRITE ENABLE AND DISABLE

After power-up and before starting any programming instruction the EWEN instruction has to be issued. Once it has been issued, it will remain active until an EWDS instruction takes place. The EWDS instruction is provided to avoid any accidental programming of the part. The READ instruction is independent from the EWEN and EWDS instructions.

ERASE MODE

After an ERASE instruction has been shifted in. CS is dropped low. This will set the beginning of the self timed erase sequence. If CS is then brought high (after observing t_{CS} spec) the DO pin will act as a status indicator. It will remain low as long as the chip is programming. It will go high after all the bits of the addressed register have been set to a logical '1'.

WRITE MODE

After a WRITE instruction has been shifted in with the corresponding 8 bits or 16 bits of data, CS is dropped low. This will set the beginning of the self timed programming sequence. The addressed register will first be erased and then the previously shifted data will be written in the register. If CS is brought high during the programming time (after observing the t_{CS} specification), the DO pin will act as a status indicator – it will remain low as long as the chip is programming. It will go high after all the bits of the addressed register have been set to their proper value.

Configuration	A _N	D _N
128 × 8	A ₆	D ₇
64 × 16	A5	D ₁₅

■ MOS E² PROMS · MSM16811P ■

ERASE ALL

This instruction is provided to erase the whole chip. Besides its different opcode, the ERAL instruction is identical to the ERASE instruction.

WRITE ALL

This instruction is provided to write simultaneously all the registers. All the registers must be erased before doing a WRAL operation. Besided its different opcode, the WRAL instruction is identical to the WRITE instruction.