

Implementing Real-Time MIDI
Music Synthesis Algorithms,
ABS/OLA, and SMS for the
TMS320C32 DSP

APPLICATION REPORT: SPRA355

Authors: Susan Yim (yim@hc.ti.com)
Yinong Ding (ding@hc.ti.com)
E.Bryan George (george@hc.ti.com)

 DSP Research and Development Center
 P.O. BOX 655474, MS 446
 Dallas, TX 75265

Digital Signal Processing Solutions
 January 1998

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents
Abstract7
Product Support on the World Wide Web ...8
Introduction ... 9
System Components...11
MIDI Interface to Host Computer..12
Description of the Microsoft Windows MIDI Application Software..........................13

Parameter Update Problem (Handshake between PC and DSP).............................14
PC Interrupt ...16
Floating-Point Format Conversion (UNIX to PC IEEE, IEEE to DSP)17
Key Mapper ...17
MIDI Message Processor ..17

Music Synthesis Engine ...19
Music Synthesis Algorithms ..20

Descriptions of Music Synthesis Algorithms ..20
Analysis-By-Synthesis OverLap-Add (ABS/OLA)...21
Spectral Modeling System (SMS)..21

TMS320C32 Implementation and Optimization..22
Compiler Optimization ...22
Code Optimization...22
Reduction on External Memory Fetches..24
Hand Assembly Coding ...25

Discussion and Summary...26
ABS/OLA Resources Usage..27
SMS Resources Usage ...28
Conclusion ..28

References...29

Figures
Figure 1. MIDI Music Synthesis System ...11
Figure 2. Interface between the MIDI Device, Host, and DSP ..14
Figure 3. Handshake between PC and DSP...16
Figure 4. Key Mapping for Music Synthesis..17

Tables
Table 1. Computational Loading for ABS/OLA (5 ms Frame Rate)................................27
Table 2. Memory Usage for ABS/OLA (5 ms Frame Rate) ..27
Table 3. Computational Loading for SMS (2.5 ms Frame Rate)28
Table 4. Memory Usage for SMS (2.5 ms Frame Rate)...28

Implementing Real-Time MIDI Music Synthesis Algorithms, ABS/OLA, and SMS 7

Implementing Real-Time MIDI Music
Synthesis Algorithms, ABS/OLA, and

SMS for the TMS320C32 DSP

Abstract

This application report describes a real-time MIDI music synthesis
system using a low cost digital signal processor (DSP) such as the
Texas Instruments (TI™) TMS320C32 in a PC environment. The
system consists of a MIDI device with a MIDI interface, an IBM
compatible personal computer, and a TMS320C32 development
board where the core of the music synthesis engine resides.

The MIDI device generates music synthesis commands. The host
computer handles communications between the MIDI device and
the DSP, where music samples are synthesized using sinusoidal
modeling-based music synthesis techniques. Two sinusoidal
model-based music synthesis algorithms are discussed: the
Spectral Modeling System (SMS) and the Analysis-By-Synthesis
and OverLap-Add (ABS/OLA).

This report details the interoperability of the three processes, the
control and handshake for data flow, the input file structure, and
the mechanism used for synthesis.

Keywords: DSPRDC, MIDI, Music Synthesis, Digital Audio Signal
Processing, TMS320C32, DSP

SPRA355

8 Implementing Real-Time MIDI Music Synthesis Algorithms, ABS/OLA, and SMS

Product Support on the World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. Users
registering with TI&ME can build custom information pages and
receive new product updates automatically via email.

SPRA355

Implementing Real-Time MIDI Music Synthesis Algorithms, ABS/OLA, and SMS 9

Introduction

Music synthesis plays an important role in multimedia
applications, modern entertainment, and professional music
systems. Popular music synthesis techniques used in the market
include

� Sampling/wavetable synthesis

� Frequency modulation (FM)

� Physical modeling

Most PC sound cards in the market use a combination of FM and
sampling technology where only limited control capabilities are
provided.

In the REALMS (Real-time Environment and ALgorithms for Music
Synthesis) project, we aim to contribute to this rapidly growing
market by combining TI’s proprietary music synthesis algorithms
with TI’s state-of-the-art DSP technologies. We designed this
MIDI-driven real time music synthesis system to demonstrate our
music synthesis algorithms using a TI TMS320C3X digital signal
processor as a music synthesis engine. This system is intended to
provide a foundation and a reference design for future
development of a music synthesis card or single music synthesis
IC, as well as for low cost fixed-point implementation of music
synthesis engines for the moderate quality music synthesis
market.

One challenge in implementing the MIDI-driven real time music
synthesis system is to integrate MIDI signal with the music
synthesis engine and the necessary Input/Output control. The
other challenge is to synthesize music samples using our music
synthesis algorithms in real time on the TI TMS320C3X digital
signal processor.

The MIDI-driven real-time music synthesis system consists of
three major components:

� MIDI device that generates the MIDI data stream

� TMS320C3X development card

� IBM compatible PC (a sound generator that receives MIDI data
stream)

SPRA355

10 Implementing Real-Time MIDI Music Synthesis Algorithms, ABS/OLA, and SMS

The communications or handshake between the MIDI device and
DSP are controlled by the host computer running under the
Windows 3.1/95 operating environment. Hence, the MIDI device is
the initiator, the host computer is the recipient of the MIDI data
which interprets the received MIDI messages and drive the DSP-
based synthesis engine accordingly.

The Music Instrument Digital Interface (MIDI) is simply a data
communications protocol for music equipment, computers and
software to exchange information and control signals to
synthesize music [1]. It symbolically describes instructions for
synthesizers to generate sounds. The MIDI data stream is a
unidirectional asynchronous bit stream at 31.25 kbits/sec with 10
bits transmitted per byte (a start bit, 8 data bits, and one stop bit).
A MIDI message is made up of an eight-bit status byte which is
generally followed by one or two data bytes. For example, a MIDI
message can include the type of instruments, the notes, the
loudness or effects and many other types of control information
that the user has selected/issued. The quality of the actual sound
is dependent on the algorithms that the synthesizer adopts. Some
of the popular methods that are currently used in the market are
the sampling/wavetable synthesis, FM synthesis, physical
modeling using waveguides. Another promising technology is the
sinusoidal model-based music analysis and synthesis. We have
been investigating and evaluating two of the approaches, the
Spectral Modeling System (SMS) and the Analysis-By-Synthesis
and OverLap-Add (ABS/OLA). Currently, we have implemented a
signal-note synthesizer in real-time using either the ABS/OLA or
SMS synthesis algorithm.

The paper is organized as follows:

� System Components describes the real-time MIDI driven
music synthesis system.

� MIDI Interface to Host Computer introduces the MIDI keyboard
and Opcode Note1/++ external MIDI interface.

� Description of the Microsoft Windows MIDI Application
Software describes the MIDI application software.

� Music Synthesis Engine describes how music synthesis is
performed on the TMS320C32 DSP.

� Music Synthesis Algorithms describes the music synthesis
algorithms using sinusoidal modeling.

� Discussion and Summary includes results and discussion.

SPRA355

Implementing Real-Time MIDI Music Synthesis Algorithms, ABS/OLA, and SMS 11

System Components

Our MIDI-driven real-time music synthesis system consists of
three major components:

� MIDI device

We use the Yamaha W7 MIDI keyboard with an external MIDI
interface “Note/1++” from Opcode.

� TMS320C3X development board

Tiger32EVM board with the TMS320C32 low cost DSP
operating as the music synthesis engine

� Host machine

IBM compatible PC (Pentium)

The MIDI device initiates the music synthesis process by
generating MIDI data. The host computer receives MIDI data,
interprets the received MIDI messages, and drives the DSP-based
synthesis engine accordingly. That is, the MIDI device
communicates with the DSP via the host computer under the
Windows 3.1/95 operating environments. Figure 1 shows the
system setup.

Figure 1. MIDI Music Synthesis System

1. Interpret MIDI message
2. Load parameter files
3. Modify parameters

Music Synthesis

Engine

M I D I I N T E R F A C E

T M S 32 0 C 3 2D S P

A /D

P CM I D I K E Y B O A R D

S P E A K E R S

Send parameters

(DMA) (DMA)

(Interrupt)

MIDI data-->MIDI message

MIDI data

SPRA355

12 Implementing Real-Time MIDI Music Synthesis Algorithms, ABS/OLA, and SMS

MIDI Interface to Host Computer

In this system, the MIDI keyboard generates a stream of serial
MIDI data. The fundamental function of a MIDI interface is to
convert the serial MIDI data to parallel data bytes, perform the
necessary buffering (along with the required start and stop bits)
and then transmit the data stream to the host computer.

The Opcode Note1/++ is an external MIDI interface which
communicates to the host computer via the printer port.

SPRA355

Implementing Real-Time MIDI Music Synthesis Algorithms, ABS/OLA, and SMS 13

Description of the Microsoft Windows MIDI Application
Software

A MIDI application must handle two levels of communications:

� Signal path from the MIDI interface to the host computer

� Handshake between the host computer and the DSP-based
music synthesizer

We have developed MIDI application software under Windows 3.1
(this can be upgraded to Windows 95 if necessary). Microsoft
Windows applications address hardware devices (such as MIDI
interfaces and synthesizers) by means of device drivers. Device
drivers provide application software with a common interface
through which hardware can be accessed. This simplifies the
hardware compatibility issue and increases the flexibility of the
application software. That is, the application software can be used
with any MIDI device that has a standard Windows device driver.

The MIDI interface comes with a multi-client Windows device
driver that provides low level control over the received MIDI data
stream and decodes and exports incoming MIDI messages to the
Windows operating system. The application software is
responsible for system initialization, such as:

� Loading parameter files

� Receiving MIDI events (for example, musical instrument type,
note on/off, key pressure, etc.)

� Invoking appropriate responses by modifying synthesis
parameters

� Delivering synthesis parameters to the DSP at the request of
the DSP

Figure 2 shows the software organization.

SPRA355

14 Implementing Real-Time MIDI Music Synthesis Algorithms, ABS/OLA, and SMS

Figure 2. Interface between the MIDI Device, Host, and DSP

Open and Read
Parameter files

MIDI
Data

Modify
Parameters

Request
Data

Perform
Music

Synthesis

Audio
Playback

Send Data
to DSP

DSPH OST PC

MIDI
Message

DSP
Message

MIDI
event

MIDI
INTERF ACE

Parameter Update Problem (Handshake between PC and DSP)

There are two problems concerning the data communications or
parameter update.

� The fixed rate parameter update required at a certain sample
period (since we cannot load the entire parameter file into on-
board RAM due to limited memory available on the current
Tiger32EVM board)

� The burst of information generated by the MIDI events. The
rate of data flow between the PC and DSP is greatly limited by
the I/O bandwidth available on the hardware. There is only one
16-bit data transfer register (TXREG) on the Tiger32EVM
board [2] for this purpose.

We chose the most basic update mechanism by updating all
parameters at the beginning of the sample computation cycle. We
incorporated synthesis commands and changes to existing
parameter values in the new information.

SPRA355

Implementing Real-Time MIDI Music Synthesis Algorithms, ABS/OLA, and SMS 15

One problem with this approach is that the duration of the update
period is fixed. Therefore, only a certain number of updates can
take effect on any one cycle. If the rate of the updating process is
higher than the rate of the incoming MIDI events, there is no
audible erratic or delayed musical response. Based on our
experiments, we found that this update delay might be acceptable
within the range of 2-5 ms for some applications.

The sequence of operations involved in the handshaking between
the host PC and the DSP is illustrated in Figure 3. In the
initialization phase, the user selected input parameter files are
loaded into PC memory. A signal is sent to the DSP to indicate
that the PC is ready for operation. Two types of parameter, global
data and frame data have to be transmitted. Global data is
transmitted once during initialization, whereas frame data is
updated in every frame when the DSP requests for data by
interrupting the host PC. In the interrupt service routine, a “DSP
DATA REQUEST” message is posted to the window operating
system.

Interrupt to the PC occurs when the DSP writes to TXREG and
conversely, the host PC can interrupt the DSP (external hardware
interrupt 0) when it writes data to TXREG. Data transfer is
triggered by interrupting the host (since the host cannot dedicate
its processing power to poll for only one event) and using DMA on
the remote DSP (reserve CPU power for synthesis). In our data
transfer scheme, the DSP requests data by writing to TXREG,
which interrupts the PC. When the application receives a “DSP
DATA REQUEST” message, it will update the new frame data by
writing data to TXREG. This generates an interrupt to the DMA
controller on the DSP, which in turn causes a 16-bit DMA data
transfer from TXREG to another specified memory location [3].

SPRA355

16 Implementing Real-Time MIDI Music Synthesis Algorithms, ABS/OLA, and SMS

Figure 3. Handshake between PC and DSP

Load parameter files to PC memory

Download DSP COFF file

Set “READY FLAG” = 1

Send global data

Send Frame data

Receive global data

Enable INT to DMA controller

Request for global data

Request for frame data

Receive frame data via DMA

Idle until PC
is ready

Interrupt PC

Interrupt DMA controller

PC DSP

TXREG

TXREG

TXREG

TXREG

PC Interrupt

Three steps are involved in using interrupts:

� Generating interrupts

� Enabling interrupts

� Servicing interrupts

Interrupts are generated when the DSP writes to TXREG. We can
select the IRQ line (IRQ10-12,14,15) on the host PC by setting a
jumper on the Tiger32EVM board [2]. There are two
programmable interrupt controllers (PIC) on most PCs. IRQ0-IRQ7
are enabled by masking the corresponding bit of PIC1 and IRQ8-
IRQ15 uses PIC2. Disabling IRQ2 disables IRQ8-IRQ15 [4][5].

A “DSP DATA REQUEST” message is posted to the window
operating system during the interrupt service routine indicating
that DSP is ready for new parameter update. When the application
receives a “DSP DATA REQUEST” message, it sends frame data
to the DSP.

SPRA355

Implementing Real-Time MIDI Music Synthesis Algorithms, ABS/OLA, and SMS 17

Floating-Point Format Conversion (UNIX to PC IEEE, IEEE to
DSP)

The parameter files required by the music synthesis algorithms
are obtained by analyzing the music signal under the UNIX
environment. Two conversions are required when reading a
floating-point value from a binary file produced from UNIX to the
DSP. Byte swapping and then word swapping are required for a
32-bit floating-point value in converting from big-endian format to
little-endian format. Then, another conversion from IEEE floating-
point format to TI TMS320C3x floating-point format has to be
performed as well [3].

Key Mapper

It is not practical to store analysis parameters for each note across
the entire keyboard due to large memory requirements. Typically,
one set of parameters generated from the analysis of one note is
stored and used for a range of notes by applying pitch shifting. An
example of this strategy using parameters from two notes is given
in Figure 4. The original note is mapped to the base key covering
a range from the low key to the high key.

Figure 4. Key Mapping for Music Synthesis

“Parfile 1” “Parfile 2”

low1 low2base1 base2high1
high2

MIDI Message Processor

The process begins with initializing and opening the specified
device for MIDI input. The incoming MIDI input received from the
Windows drivers is handled by internal buffers embedded in the
API (application programming interface). The window handle for
the application will only receive two different types of messages.
One is the MIDI event related message and the other is the MIDI
device closing message.

SPRA355

18 Implementing Real-Time MIDI Music Synthesis Algorithms, ABS/OLA, and SMS

When the application software receives a MIDI message, it
translates the 3-bytes of data into a meaningful MIDI event
according to the MIDI protocol. The list of MIDI event data bytes
can be found in reference [1]. The MIDI event is then decoded into
synthesis commands and transmitted to the DSP along with the
appropriate modified synthesis parameters.

SPRA355

Implementing Real-Time MIDI Music Synthesis Algorithms, ABS/OLA, and SMS 19

Music Synthesis Engine

Frame-based music synthesis is performed on the DSP. At the
beginning of each frame, the DSP requests a set of synthesis
parameters from the host PC by sending an interrupt message to
the operating system. It transfers the synthesis parameters to the
DSP memory using the DMA mode so that the DSP processing
power can be reserved for music synthesis. The synthesized
music samples are sent to the digital-to-analog converter (DAC)
via the serial port using the DMA mode as well.

Music synthesis is carried out by the music synthesis engine
processing on the TI TMS320C32 digital signal processor.
Synthesis is driven by the synthesis commands and the
parameters received from the host computer. At the end of each
computation cycle, audio samples are generated and playback
through the audio codec. Audio interface uses DMA to shift
samples to the audio buffer.

SPRA355

20 Implementing Real-Time MIDI Music Synthesis Algorithms, ABS/OLA, and SMS

Music Synthesis Algorithms

At present, two music synthesis algorithms are implemented on
this system

� SMS (Spectral Modeling System) algorithm

� ABS/OLA (Analysis-By-Synthesis/OverLap-Add) algorithm

The SMS algorithm employs a sinusoidal plus stochastic model.
Synthesis of the sinusoidal components is accomplished using an
oscillator bank. Synthesis of the stochastic part is achieved by
using inverse FFT or driving a “formant filter” with white Gaussian
noise [6].

The ABS/OLA algorithm uses an analysis-by-synthesis approach
based on a pure sinusoidal model. Synthesis is performed by
inverse FFT [7].

The real-time implementation of the two sinusoidal model-based
music synthesis approaches, ABS/OLA and SMS, has been
demonstrated for the REALMS project. The heart of the music
synthesis engine is the TMS320C32 DSP. Currently, we chose
this low cost floating-point DSP, the TMS320C32, as our platform
since the music synthesis algorithms are sensitive to numerical
precision.

Both algorithms were initially simulated on an SGI workstation in C
and later ported to the TMS320C32 DSP (Tiger32EVM board
incorporates a TMS320C32 yielding a throughput of 25 MIPS and
two memory banks of 128 kbytes of zero wait state static RAM). It
is essential to use the most effective algorithm in terms of speed
and memory in order to meet the constraints imposed by the real
time system. We have achieved single-note music synthesis
driven by MIDI-device at 44.1 kHz sampling rate on this system.
The implementation of system level issues can be referred to
reference [8].

In this section, we discuss the issues involved in real-time
implementation of the two music synthesis algorithms, ABS/OLA
and SMS, which include code and memory optimization.

Descriptions of Music Synthesis Algorithms

Music signals can be analyzed using either ABS/OLA or SMS
algorithm. Both approaches are based on sinusoidal models.
Information regarding the number of sinusoids, amplitude,
frequency and phase of each sinusoid is extracted from the music
signal during analysis phase and used in the synthesis stage.

SPRA355

Implementing Real-Time MIDI Music Synthesis Algorithms, ABS/OLA, and SMS 21

Analysis-By-Synthesis OverLap-Add (ABS/OLA)

The ABS/OLA algorithm uses an analysis-by-synthesis approach
based on a pure sinusoidal model. Synthesis is performed by
inverse FFT. In the synthesis stage, a frequency spectrum is
constructed by summing the sinusoidal components extracted in
the analysis stage along with the necessary time scale or
frequency modifications. Since the frequency obtained from
analysis does not necessarily lie exactly on the DFT bin, we use
two frequency components at the DFT bins closest to the
extracted frequency to form an approximation by solving a set of
normal equations [7]. The time-domain signal can simply be
synthesized by performing an inverse FFT on the reconstructed
spectrum on a frame-by-frame basis with 50% overlap-add. The
frame length is 220 samples at 44.1 kHz sampling rate which
corresponds to approximately 5 ms. The computational loading for
the ABS/OLA algorithm is dominated by the inverse FFT if we can
minimize the overhead required by the approximation of sinusoidal
components. We have attempted to reduce the complexity of
constructing the spectrum by exploiting the psychoacoustic model.
It is known that we do not perceive a shift in higher frequencies as
well as lower frequencies. Therefore, it is possible to form the
spectrum by approximating sinusoids as described above for
lower frequency components and quantizing the sinusoidal
component to the closest DFT bin in high frequency region. In our
experiments, there is no audible distortion when a cut-off
frequency of 4 kHz was used. One advantage of ABS/OLA is that
only one inverse FFT has to be computed during synthesis for any
number of sinusoids and any number of notes.

Spectral Modeling System (SMS)

The SMS algorithm employs a sinusoidal plus stochastic model to
synthesize music on a frame-by-frame basis. The synthesis frame
length in our current system is approximately 2.5 ms at 44.1 kHz
sampling rate. Each sinusoidal component is constructed by an
oscillator with given amplitude, frequency and phase extracted
from the analysis and then summed together. The phase
continuity at frame boundaries is conserved by using a cubic
polynomial interpolation algorithm. The stochastic component can
be synthesized by using inverse FFT or driving a “formant filter”
with white Gaussian noise. However, we have omitted the
stochastic component in our implementation. The oscillator bank
is simple. However, if the number of sinusoids and the number of
notes grow, the computational loading will increase linearly.

SPRA355

22 Implementing Real-Time MIDI Music Synthesis Algorithms, ABS/OLA, and SMS

TMS320C32 Implementation and Optimization

The process required for implementing the music synthesis
algorithms in real time involves porting the simulated C code from
a UNIX environment to a DSP by compiling the code using the
target DSP’s C cross-compiler, TI TMS320C3x compiler in this
case. We will discuss some of the effective ways that we applied
to speed up our music synthesis process in the following sections.

Compiler Optimization

The compiler provides optimizations if we enable optimization in
the compiling command line such as -o3 where the compiler will
assign registers to variables whenever possible to minimize
memory fetches according to some cost functions, utilize pipeline
delay, repeat blocks with zero overhead, autoincrement
addressing and conditional loading. We have also found some of
the compiling options which are effective, such as

� -mc option

Provides a one instruction float to integer conversion and vice
versa

� -x2 option

For function inlining to reduce function call overheads and
allow the compiler to optimize in the context of the function
body

Further details and options on the compiler are given in references
[9][10].

Code Optimization

Code optimization includes reducing function calls inside critical
loops and assigning reference pointer to loop invariant long
pointer expression outside critical loop [10]. We also tried to
minimize some of the more expensive DSP operations such as
division, power and to calculate sine, cosine and sinc values using
table look-up.

SPRA355

Implementing Real-Time MIDI Music Synthesis Algorithms, ABS/OLA, and SMS 23

Table Look-Up for Sine, Cosine and Sinc Functions

The sine, cosine and sinc functions are pre-calculated and stored
from 0 to 2π. For example, let M be the size of the table COSTAB
and M/2π be the scale where M is a power of 2. Then, cos(θ) can
be obtained from COSTAB[(int)(θ×(2π/M))&(M-1)] where the
&(M-1) term gives modulo of 2π. We have found that a sine-table
of size 4096 provides enough resolution for both synthesis
algorithms. The necessary accuracy can be traded off with
memory consumption. The pre-storage of sinc table provides us
even greater savings on computational time since normally a
computation of sine followed by a division is required. The sinc
function is used in the reconstruction of sinusoidal components in
the frequency domain for the ABS/OLA algorithm. Due to the
special property of the sinc function where more significant values
lie in the main lobe, we have used a high resolution table for
arguments within ±4 and a low resolution table for values outside
this range.

In general, look-up tables can be used to reduce computational
loading whenever incremental values have to be computed over
and over again. However, there is a trade off between speed and
memory.

Approximation of Polynomial

The phase of a sinusoid in the SMS algorithm is represented by a
cubic polynomial as:

()θ t a bt ct dt= + + +2 3 (1)

It is possible to approximate θ (t) by accumulating its previous
value θ (t-1) with a time varying term in order to reduce
computations. However, the accumulated error also propagates
along the time scale. Hence, we only use this approximation up to
the quadratic term and an exact value is used for the cubic term.
Equation(1) can be re-written as follows:

() ()θ t p t dt= + 3 (2)

where p(t) is approximated as:

() () ()
() ()

p t p t Q t

Q t Q t Q

= − +
= − +

1

1

,

∆
(3)

where the initial condition for equation (3) is:

() ()p a Q b c

Q c

0 0

2

= = −
=

, ,

∆
(4)

SPRA355

24 Implementing Real-Time MIDI Music Synthesis Algorithms, ABS/OLA, and SMS

Equation (1) requires 3-additions and 3-multiplications assuming
table-look up is used for the quadratic and cubic term with two
memory fetches. Now, by substituting equation (3) into equation
(2), the number of instructions is reduced to 3-additions and 1-
multiplications with one memory fetch. Memory fetches can be
significant if external memory has to be accessed due to conflicts
and contentions on the external bus. The look-up table most likely
has to be stored in external memory due to the limited internal
RAM available on TMS320C32.

In general, any polynomials can be approximated as described
above where accuracy is compromised with speed.

Reduction on External Memory Fetches

There is usually a penalty on speed whenever an external
memory fetch is involved. Hence, it is natural to store all the codes
and data for a time critical loop in internal memory. However, the
TMS320C32 DSP only provides two 256-words internal RAM
which is impossible to fit all the critical codes and data. We try to
maximize the performance first by enabling instruction caching to
reduce repeat-loop instruction fetches and second by moving data
into the internal RAM whenever operations are being performed
on the data. However, we will introduce an overhead when
copying data to and from the internal RAM. Therefore, we have to
choose the best balance between the amount of time saved by
operating data in internal RAM and the amount of overhead
required for copying data.

In the ABS/OLA algorithm, the most expensive computation is the
1024-point IFFT. Since the largest continuous block of data that
can be stored in internal RAM is 256 words, we split the IFFT
algorithm into four 256-point IFFT. A 1024-point IFFT can be
divided into 10-stages. Since our frequency spectrum is
symmetric, an IFFT can be nicely computed using frequency
decimation. There will be four 256-point IFFT remained after the
second stage. In order to reduce the number of external memory
fetches, we perform the first two stages of IFFT with data in the
external memory. Then, the first 256-points is moved to the
internal memory and an 256-point IFFT is performed. The results
are copied back to the original external memory. This is followed
by the same operations on the second, third and fourth set of 256
data points. Finally, bit-reversed addressing is performed on the
1024 data points. The overhead for moving data between internal
and external memory is insignificant compared to the time spent
on accessing external memory during the operation of an IFFT.
We have further reduce the computational loading by storing the
sine and cosine factors used by the IFFT in internal memory as
well. These operations led us to a reduction of 30% in
computational time for the inverse FFT.

SPRA355

Implementing Real-Time MIDI Music Synthesis Algorithms, ABS/OLA, and SMS 25

In general, instructions and data involved in an interrupt service
routine is also critical in most real time system. Hence, we have
assigned the codes and data involved in the interrupt service
routine to internal memory.

Hand Assembly Coding

Hand assembly coding can be used to take advantage of the
special architecture of DSP hardware such as bit-reversed
addressing, circular addressing and other parallel instructions
which are not supported by C language. In the ABS/OLA
algorithm, the inverse FFT routine is written in assembly language
in order to fully exploit bit-reversing, zero-overhead loops, parallel
multiply-add, parallel store and parallel load instructions.

SPRA355

26 Implementing Real-Time MIDI Music Synthesis Algorithms, ABS/OLA, and SMS

Discussion and Summary

Real time systems are always constrained by the limited
resources available to perform certain operations. Two major
issues we addressed in this report are data transfer from the host
computer to DSP and the complexity of synthesis algorithms.

The rate at which data can be transferred between the PC and the
DSP is mainly limited by the I/O bandwidth of the hardware (or the
communications between the development board and PC). The
Tiger32 EVM has only one data transfer register (16 bits) for this
purpose. It is time consuming to transmit a block of more than 300
floating-point (32 bits) values in each frame. Initially, we used
polling on both the host and the remote processor, which
exhausted more than 80% of the total CPU power. We alleviated
this problem by using interrupt on the host machine and DMA on
the remote processor. However, an ideal solution is to have a
large block of PC mapped memory for high bandwidth data
transfer, such as synthesis parameters, and a mapped register for
rapid small bandwidth transfer, such as the burst of MIDI
information or other control signal.

We attempted to reduce the computational time of the music
synthesis algorithms by optimizing our code and hand assembly
coding some of the critical functions, such as inverse FFT, by
taking advantage of the special architecture of the DSP. We are
also working on optimizing the complexity of the algorithms, such
as exploring the use of split-radix FFT for lower computational
loading; as well as developing more efficient high quality music
synthesis.

Currently, we are using a floating-point DSP because music
synthesis algorithms require parameters with very accurate
precision. We have achieved single-note music synthesis in real-
time at 44.1 kHz sampling rate for both ABS/OLA and SMS on our
system [11].

At the present time, this system only supports single note
synthesis. to demonstrate and test our synthesizer designs fully,
we need to be able to implement polyphonic synthesis in the
REALMS system. To accomplish this, we will investigate new
algorithm implementations that perform similar functions more
efficiently. The current system was intended to provide reference
designs for future development of music system (cards or even a
single music synthesis IC; we will eventually wish to study low-
cost fixed-point DSP implementations as well). Our exercise has
achieved this goal where most of the major system-level issues
have been resolved.

SPRA355

Implementing Real-Time MIDI Music Synthesis Algorithms, ABS/OLA, and SMS 27

We ported the two music synthesis algorithms to the TMS320C32
DSP. We achieved single note music synthesis using either the
ABS/OLA or SMS approaches in real time on the TMS320C32 at
44.1 kHz sampling rate by applying the optimization discussed in
the previous sections. Currently, we are using 20 sinusoids for
ABS/OLA and 7 sinusoids for SMS. We plan to implement
polyphonic music synthesis and with more sinusoids in the future,
but on a more flexible platform. A summary of the usage on
memory and computational loading to date for both ABS/OLA and
SMS are provided in the following sections.

ABS/OLA Resources Usage

The computational loading for the ABS/OLA algorithm can be
broadly divided into the approximation of frequency spectrum
using the sinusoidal components obtained in the analysis stage
and the computation of inverse FFT. The spectrum approximation
requires a few sine, cosine and sinc table look-ups, divisions and
solving a set of 2×2 normal equations. The processing power
consumption and memory usage for 5 ms frame rate at 44.1 kHz
sampling rate are tabulated in Table 1 and Table 2.

Table 1. Computational Loading for ABS/OLA (5 ms Frame Rate)

Routines Timing in Instruction Cycles

Spectrum Approximation (20 sinusoids) 12078

Inverse FFT: initial 2 stages + 4 256-pt

 bit-reversed addressing

 memory update

46264

9195

4512

Others (system interface, audio & midi) 17951

Total 90000

Table 2. Memory Usage for ABS/OLA (5 ms Frame Rate)

Codes and Data Number of Words in Decimal

Program: Spectrum Approximation

 Inverse FFT

 Others (system, audio & midi)

217

283

2701

Data: Sine Table

 Cosine Table

 Sinc Table

 Buffer for Spectrum and IFFT

 Buffer for Output Samples

 Input Parameters

4096

4096

2048

1920

660

18224

Others 2441

Total 36686

SPRA355

28 Implementing Real-Time MIDI Music Synthesis Algorithms, ABS/OLA, and SMS

SMS Resources Usage

The core of SMS includes phase interpolation using a cubic
polynomial to maintain continuity at frame boundaries and the
construction of oscillator bank by generating an oscillator from the
information obtained in the analysis stage and summing the
contributions from each sinusoidal components. The
computational loading and memory usage for 2.5 ms frame rate at
44.1 kHz sampling rate is tabulated in Table 3 and Table 4. The
core consumes approximately 35% of the processing power.

Table 3. Computational Loading for SMS (2.5 ms Frame Rate)

Routines Timing in Instruction Cycles

Oscillator bank (7 sinusoids) 21876

Others (system interface, audio & midi) 8128

Total 30004

Table 4. Memory Usage for SMS (2.5 ms Frame Rate)

Codes and Data Number of Words in Decimal

Program: Oscillator Bank

 Others (system, audio & midi)

456

2310

Data: Cosine Table

 Index Table (cubic term)

 Buffer for Output Samples

 Input Parameters

4096

110

330

1428

Others 1567

Total 10297

Conclusion

We achieved real-time single note music synthesis driven by a
MIDI-device at 44.1 kHz sampling rate on a TMS320C32 DSP by
using the optimizations we discussed in this report. The
computational loading and memory usage shown are the
performance to date only. There is still room for improvement in
speed and memory usage for both ABS/OLA and SMS algorithms.

SPRA355

Implementing Real-Time MIDI Music Synthesis Algorithms, ABS/OLA, and SMS 29

References

[1] Joseph Rothstein, “MIDI - A Comprehensive Introduction”, A-R
Editions, 1992.

[2] “Tiger32EVM User’s Manual”

[3] “TI TMS320C3x User’s Guide”

[4] Al. Williams, “DOS 5: A Developer’s Guide-Advanced Programming
Guide to DOS”,1991

[5] Thom Hogan, “The programmer’s PC Source Book”, 1991

[6] X. Serra and J. O. Smith, “Spectral modeling synthesis: A sound
analysis/synthesis system based on a deterministic
plush stochastic decomposition,” Computer Music J., vol.
14, no. 4, pp. 12-24, Winter 1990.

[7] E.B.George and M.J.T.Smith, “Analysis-by-Synthesis/OverLap-Add
sinusoidal modeling applied to the analysis and
synthesis of musical tones”, J.Audio Eng. Soc., vol. 40,
no. 6, pp. 497-516, June 1992.

[8] Susan Yim, “A MIDI-driven Real Time Music Synthesis System Using
the TMS320C3x Digital Signal Processor Family”, TI
TAR, October 11, 1996.

[9] Mark E.Paley and David H.Bartley, “C-Language style optimizations
for the TMS320C30”, TI TAR, May 6, 1994.

[10] TMS320 Floating-Point DSP Optimising C Compiler

[11] S.Yim, Y.Ding & E.B.George, “Real-time implementation of Music
synthesis algorithms, ABS/OLA and SMS on a TI
TMS320C32”, TI TAR, October, 1996.

