
(19)

Europaisches Patentamt

European Patent Office

Office europeen des brevets

(12)

peen des brevets E P 0 4 6 8 6 2 5 B 1

EUROPEAN PATENT S P E C I F I C A T I O N

(45) Date of publication and mention
of the grant of the patent:
26.08.1998 Bulletin 1998/35

(21) Application number: 91305020.9

(22) Date of filing: 03.06.1991

(51) Intel e G06F 9 / 4 4 5

(54) Personal computer system with protected storage for interface and system utility programs

Personalrechnersystem mitgeschutztem SpeicherfurdieSchnittstelle und System-Utility-Programme

Systeme d'ordinateur personnel avec memoire protegee pour programmes d'interface et utilitaires

(84) Designated Contracting States: • Paul, John David
AT BE CH DE ES FR GB IT LI SE Boynton Beach, FL 33426 (US)

• Sachsenmaier, Robert
(30) Priority: 23.07.1990 US 557334 Boca Raton, FL 33487 (US)

• Smeltzer, Kenneth Donald
(43) Date of publication of application: Delray Beach, FL 33444 (US)

29.01.1992 Bulletin 1992/05 • Woytovech, Peter Andrew
Boynton Beach, FL 33437-2021 (US)

(73) Proprietor: International Business Machines • Zyvoloski, Kevin Marshall
Corporation Raleigh, NC 27614 (US)
Armonk, N.Y. 10504 (US)

(74) Representative: Burt, Roger James, Dr.
(72) Inventors: IBM United Kingdom Limited

• Arnold, Lisa Ruotolo Intellectual Property Department
Boynton Beach, FL 33436 (US) Hursley Park

• Bealkowski, Richard Winchester Hampshire S021 2JN (GB)
Delray Beach, FL 33444-1033 (US)

• Blackledge, John Wiley, Jr. (56) References cited:
Boca Raton, FL 33487 (US) EP-A- 41 7 889 FR-A- 2 629 231

• Cronk, Doyle Stanfill
Delray Beach, FL 33484 (US) • PATENT ABSTRACTS OF JAPAN vol. 13, no. 422

• Dayan, Richard Alan (P-933)20 September 1989 & JP-A-1 154 226
Boca Raton, FL 33487 (US) (NEC CORP.) 16 June 1989

• Geisler, Douglas Richard • IBM TECHNICAL DISCLOSURE BULLETIN vol.
Boca Raton, FL 33434 (US) 32, no. 9A, February 1990, ARMONK, NY, US

• Mittelstedt, Matthew Todd pages 407 - 408; ANONYMOUS: 'Initialization
Delray Beach, FL 33446 (US) code executed after POST and before the

• Palka, Matthew Stephen, Jr. operating system gets control'
Raleigh, NC 27614 (US)

DO
lO
CM
CO
00
CO
^ -
o
a .
LU

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give
notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in
a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art.
99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

1 EP 0 468 625 B1 2

Description

This invention relates to personal computer sys-
tems and in particular to means for protecting and stor-
ing system utilities in a direct access storage device of s
the personal computer system.

Cross Reference to Related Patent Applications

The present patent application is one of a group of 10
copending applications which concern the same overall
personal computer system but which individually claim
different inventive concepts embodied in such personal
computer system. These related patent applications are
to be considered as state of the art according to Article 15
54(3) EPC, and are more particularly identified as fol-
lows:

European Patent Application Number 90307295.7
published as EP-A-0 41 9 904 20
European Patent Application Number 90307297.3
published as EP-A-0 417 888
European Patent Application Number 90307301.3
published as EP-A-0 417 889
European Patent Application Number 90307307.0 25
published as EP-A-0 419 005

Background Discussion

Personal computer systems in general and IBM per- 30
sonal computers in particular have attained widespread
use for providing computer power to many segments of
today's modern society. Personal computer systems
can usually be defined as a desktop, floor standing, or
portable microcomputer that consists of a system unit 35
having a single system processor, a display monitor, a
keyboard, one or more diskette drives, a fixed disk stor-
age, and an optional printer. One of the distinguishing
characteristics of these systems is the use of a mother-
board or system planar to electrically connect these 40
components together. These systems are designed pri-
marily to give independent computing power to a single
user and are inexpensively priced for purchase by indi-
viduals or small businesses. Examples of such personal
computer systems are IBM's PERSONAL COMPUTER 45
AT and IBM's PERSONAL SYSTEM/2 Models 25, 30,
50, 50Z, 55SX, 60, 65SX, 70 and 80.

These systems can be classified into two general
families. The first family, usually referred to as Family I
Models, use a bus architecture exemplified by the IBM so
PERSONAL COMPUTER AT and other "IBM compati-
ble" machines. The second family, referred to as Family
II Models, use IBM's MicroChannel bus architecture ex-
emplified by IBM's PERSONAL SYSTEM/2 Models 50
through 80. 55

Beginning with the earliest personal computer sys-
tem of the family I models, such as the IBM Personal
Computer, it was recognised that software compatibility

would be of utmost importance. In order to achieve this
goal, an insulation layer of system resident code, also
known as "firmware", was established between the
hardware and software. This firmware provided an op-
erational interface between a user's application pro-
gram/operating system and the device to relieve the us-
er of the concern about the characteristics of hardware
devices. Eventually, the code developed into a BASIC
input/output system (BIOS), for allowing new devices to
be added to the system, while insulating the application
program from the peculiarities of the hardware. The im-
portance of BIOS was immediately evident because it
freed a device driver from depending on specific device
hardware characteristics while providing the device driv-
er with an intermediate interface to the device. Since BI-
OS was an integral part of the system and controlled the
movement of data in and out of the system processor,
it was resident on the system planar and was shipped
to the user in a read only memory (ROM). For example,
BIOS in the original IBM Personal Computer occupied
8K of ROM resident on the planar board.

As new models of the personal computer family
were introduced, BIOS had to be updated and expanded
to include new hardware and I/O devices. As could be
expected, BIOS started to increase in memory size. For
example, with the introduction of the IBM PERSONAL
COMPUTER AT, BIOS grew to require 32K bytes of
ROM.

Today, with the development of new technology,
personal computer systems of the Family II models are
growing even more sophisticated and are being made
available to consumers more frequently. Since the tech-
nology is rapidly changing and new I/O devices are be-
ing added to the personal computer systems, modifica-
tion to the BIOS has become a significant problem in the
development cycle of the personal computer system.

For instance, with the introduction of the IBM Per-
sonal System/2 with Micro Channel architecture, a sig-
nificantly new BIOS, known as advanced BIOS, or ABI-
OS, was developed. However, to maintain software
compatibility, BIOS from the Family I models had to be
included in the Family II models. The Family I BIOS be-
came known as Compatibility BIOS or CBIOS. However,
as previously explained with respect to the IBM PER-
SONAL COMPUTER AT, only 32K bytes of ROM were
resident on the planar board. Fortunately, the system
could be expanded to 96K bytes of ROM. Unfortunately,
because of system constraints, this turned out to be the
maximum capacity available for BIOS. Luckily, even
with the addition of ABIOS, ABIOS and CBIOS could
still squeeze into 96K of ROM. However, only a small
percentage of the 96K ROM area remained available for
expansion. With the addition of future I/O devices, CBI-
OS and ABIOS will eventually run out of ROM space.
This, new I/O technology will not be able to be easily
integrated within CBIOS and ABIOS.

Due to these problems, plus the desire to make
modifications in Family II BIOS as late as possible ill the

2

3 EP 0 468 625 B1 4

development cycle, it became necessary to offload por-
tions of BIOS from the ROM. This was accomplished by
storing portions of BIOS on a mass storage device such
as a fixed disk. Since a disk provides writing as well as
reading capabilities, it became feasible to modify the ac-
tual BIOS code on the disk. The disk, while providing a
fast and efficient way to store BIOS code, nevertheless
greatly increased tile probability of the BIOS code being
corrupted. Since BIOS is an integral part of the operating
system, a corrupt BIOS could lead to devastating results
and in many cases to complete failure and non-opera-
tion of the system. Thus, it became quite apparent that
a means for preventing unauthorised modification of the
BIOS code on the fixed disk was highly desirable, this
was the subject matter of European Patent application
90307301.3.

In addition to the storing of BIOS on a mass storage
device, storing of system utilities normally contained on
a system reference diskette became highly desirable.
The elimination of the system diskette not only reduces
the price of the system, but provides a more user friendly
environment.

It is appropriate at this time to briefly explain the pur-
pose of the system utilities previously stored on the ref-
erence diskette. With the introduction of IBM's PS/2 Mi-
cro Channel Systems came the removal of switches and
jumpers from I/O adapter cards and planar. Micro Chan-
nel Architecture provided for programmable registers to
replace them. Utilities to configure these programmable
registers or programmable option select (POS) registers
were required. In addition, other utilities to improve sys-
tem usability characteristics along with system diagnos-
tics were shipped with each system on this system ref-
erence diskette.

Prior to initial use, each Micro Channel System re-
quired its POS registers to be initialised. For example,
if the system is booted with a new I/O card, or a slot
change for an I/O card, a configuration error is generat-
ed and the system boot up procedure halts. The user is
then prompted to load the system reference diskette and
press the F1 key. A "Set Configuration Utility" can then
be booted from the system reference diskette to config-
ure the system. The Set Configuration Utility will prompt
the user for the desired action. If the appropriate I/O
card's descriptor files are loaded on the system refer-
ence diskette, the Set Configuration Utility will generate
the correct POS or configuration data in non-volatile
storage. The descriptor file contains configuration infor-
mation to interface the card to the system.

Although this procedure is fairly easy to perform, the
system reference diskette must be handy or convenient-
ly stored nearby. It has occurred, after some period of
time has elapsed, that the system reference diskette has
become misplaced. Therefore it has become highly de-
sirable to store a copy of the system reference diskette
on the mass storage device, along with BIOS, to im-
prove the usability of the System.

According to the present invention there is provided

a personal computer system having a system processor
for executing an operating system, a read only memory,
a random access memory, and peripheral devices in-
cluding at least one direct access storage device the

5 system having an interface program to control the move-
ment of data into and out of the processor, characterised
in that the direct access storage device has a protection
means for protecting a region of the direct access stor-
age device in which a portion of the interface program

10 is stored, the protection means allowing access to the
protected region in response to a reset signal, the said
portion of the interface program being operable, when
loaded into the random access memory, to boot the op-
erating system and to activate the protection means to

is prevent access to the protected region of the direct ac-
cess storage device during operation of the operating
system, the protected region of the direct access stor-
age device further including system utility programs
which are executed upon detecting an error condition in

20 the loading of the operating system.
According to an embodiment of the present inven-

tion the personal computer system comprises a system
processor, a random access memory, a read only mem-
ory, and at least one direct access storage device. A di-

25 rect access storage device controller may he coupled
between the system processor and direct access stor-
age device and include a means for protecting a region
of the storage device. The protected region of the stor-
age device may include a master boot record, a BIOS

30 image and the system reference diskette image. The BI-
OS image includes a section known as Power on Self
Test (POST). POST is used to test and initialise a sys-
tem. Upon detecting any configuration error, system util-
ities from the system reference diskette image, such as

35 set configuration programs, diagnostic programs and
utility programs can be automatically activated.

In particular, in response to a reset signal to boot
up the system, the protection means permits access to
the protected region to allow the master boot record to

40 be loaded into random access memory. In operation, the
master boot record further loads the BIOS image into
random access memory. BIOS, now in random access
memory, is executed and boots up the operating system
to begin operation of the system and BIOS then gener-

is ates a second signal which activates the protection
means to prevent access to the region on the disk con-
taining the master boot record and the BIOS image. If
BIOS (POST) detects an error, BIOS generates a third
signal to disable the protection means and then tries to

so boot up a system reference diskette found in a bootable
diskette drive. If there is no system reference diskette
then BIOS boots up the system utilities in the system
partition region.

In particular, the read only memory includes a first
55 portion of BIOS. The first portion of BIOS initialises the

system processor, the direct access storage device and
resets the protection means to read the master boot
record from the protected region or partition on the direct

3

5 EP 0 468 625 B1 6

access storage device into the random access memory.
The master boot record includes a data segment and an
executable code segment. The data segment includes
data representing system hardware and a system con-
figuration which is supported by the master boot record, s
The first BIOS portion confirms the master boot record
is compatible with the system hardware by verifying the
data from the data segment of the master boot record
agrees with data included within the first BIOS portion
representing the system processor, system planar, and 10
planar I/O configuration.

If the master boot record is compatible with the sys-
tem hardware, the first BIOS portion vectors the system
processor to execute the executable code segment of
the master boot record. The executable code segment 15
confirms that the system configuration has not changed
and loads in the remaining BIOS portion from the direct
access storage device into random access memory. The
executable code segment then verifies the authenticity
of the remaining BIOS portion, vectors the system proc- 20
essor to begin executing the BIOS now in random ac-
cess memory. BIOS, executing in random access mem-
ory, generates the second signal for protecting the disk
partition having the remaining BIOS and then boots up
the operating system to begin operation of the personal 25
computer system. The partition holding the remaining
BIOS is protected to prevent access to the BIOS code
on disk in order to protect the integrity of the BIOS code.

However, if either an error or a user initiated diag-
nostic boot key sequence is detected by BIOS prior to 30
booting the operating system, the system reference dis-
kette image, if present, will be booted from the system
partition. In addition, if a system reference diskette is
detected in diskette drive A, the system reference dis-
kette will take precedence over the image in the system 35
partition and will be booted instead. In these situations,
BIOS will ensure that the protection means are inactive
prior to the Bootstrap Loader turning control over the
boot record. Thus, the protection means to prevent ac-
cess to the region on the disk contain ing the master boot 40
record, the BIOS image and the system reference dis-
kette image will not be active. BIOS then will boot up the
system reference diskette image or the system refer-
ence diskette with the region on the disk open to access
by software. 45

In the drawings:

Fig. 4 is a flowchart describing the overall process
for loading a BIOS image from a direct access stor-
age device;

Fig. 5 illustrates the record format for the master
boot record;

Fig. 6A is a flowchart describing the operation of the
IBL routine;

Fig. 6B is a flowchart showing the steps for loading
a BIOS image from a fixed disk;

Fig. 6C is a flowchart showing the steps for loading
the BIOS image from a diskette;

Fig. 6D is a flowchart showing greater detail in
checking the compatibility between the master boot
record and the planar/processor;

Fig. 7 is a detailed flowchart showing the operation
of the executable code segment of the master boot
record;

Fig. 8 is a block diagram for the controller of the di-
rect access storage device;

Fig. 9 is a flow diagram showing the operation of a
disk controller to protect the IBL media stored on a
disk drive;

Fig. 1 0 is a flowchart showing a method for protect-
ing the BIOS image;

Fig. 11 is a flowchart describing the process for de-
ciding when to load the system reference diskette
image from a direct access storage device;

Fig. 12 is a flow diagram showing the Bootstrap
Loader booting the correct media including the sys-
tem reference diskette image from a direct access
storage device; and

Fig. 13 is a flow diagram showing the modification
to BIOS to enable the treatment of the system par-
tition as the active partition on a fixed disk.

Referring now to the drawings, and in particular to
Fig. 1 , there is shown a cutaway version of a personal
computer system 1 0, having a plurality of DASD (Direct
Access Storage Devices) 12-16 connected to a system
or planar board 24 through a plurality of I/O slots 18. A
power supply 22 provides electrical power to the system
10 in a manner well known. The planar board 24 in-
cludes a system processor which operates under the
control of computer instructions to input, process, and
output information.

In use, the personal computer system 10 is de-

Fig. 1 illustrates a cut away view of a personal com-
puter system embodying the invention and showing
a system planar board connected to a plurality of so
direct access storage devices;

Fig. 2 shows a system block diagram for the per-
sonal computer system of Fig. 1 ;

55
Fig. 3 is a memory map for the ROM BIOS included
on the planar board;

4

7 EP 0 468 625 B1 8

signed primarily to give independent computing power
to a small group of users or a single user and is inex-
pensively priced for purchase by individuals or small
businesses. In operation, the system processor oper-
ates under an operating system, such as IBM's OS/2
Operating System or DOS. This type of operating sys-
tem includes a BIOS interface between the DASD 12 -
1 6 and the Operating System. A portion of BIOS divided
into modules by function is stored in ROM on the planar
24 and hereinafter will be referred to as ROM-BIOS. BI-
OS provides an interface between the hardware and the
operating system software to enable a programmer or
user to program their machines without an indepth op-
erating knowledge of a particular device. For example,
a BIOS diskette module permits a programmer to pro-
gram the diskette drive without an indepth knowledge of
the diskette drive hardware. Thus, a number of diskette
drives designed and manufactured by different compa-
nies can be used in the system. This not only lowers the
cost of the system 1 0, but permits a user to choose from
a number of diskette drives.

Prior to relating the above structure to the present
invention, a summary of the operation in general of the
personal computer system 10 may merit review. Refer-
ring to Fig. 2, there is shown a block diagram of the per-
sonal computer system 10. Fig. 2 illustrates compo-
nents of the planar 24 and the connection of the planar
24 to the I/O slots 1 8 and other hardware of the personal
computer system. Located on the planar 24 is the sys-
tem processor 26 comprised of a microprocessor which
is connected by a local bus 28 to a memory controller
30 which is further connected to a random access mem-
ory (RAM) 32. While any appropriate microprocessor
can be used, one suitable microprocessor is the 80386
which is sold by Intel.

The system processor could be an Intel 80286 or
80486 microprocessor.

Accessible by the processor is a planar identifica-
tion number (planar ID). The planar ID is unique to the
planar and identifies the type of planar being used. For
example, the planar ID can be hardwired to be read
through an I/O port of the system processor 26 or by
using switches. Additionally, another I/O port of the sys-
tem processor 26 can be used to generate a reset signal
using planar logic circuitry to the disk controller. For in-
stance, the reset signal can be initiated by software ad-
dressing the I/O port and activating planar logic to gen-
erate the reset signal.

The local bus 28 is further connected through a bus
controller 34 to a read only memory (ROM) 36 on the
planar 24. An additional nonvolatile memory (NVRAM)
58 is connected to the microprocessor 26 through a se-
rial/parallel port interface 40 which is further connected
to bus controller 34. The nonvolatile memory can be
CMOS with battery backup to retain information when-
ever power is removed from the system. Since the ROM
is normally resident on the planar, model and submodel
values stored in ROM are used to identify the system

processor and the system planar I/O configuration re-
spectively. This these values will physically identify the
processor and planar I/O configuration.

The NVRAM is used to store system configuration
5 data. That is, the NVRAM will contain values which de-

scribe the present configuration of the system. For ex-
ample, NVRAM contains information describing the ca-
pacity of a fixed disk or diskette, the type of display, the
amount of memory, time, date, etc. Additionally, the

10 model and submodel values stored in ROM are copied
to NVRAM whenever a special configuration program,
such as SET Configuration, is executed. The purpose
of the SET Configuration program is to store values
characterising the configuration of the system in

is NVRAM. Thus for a system that is configured properly,
the model and submodel values in NVRAM will be equal
respectively to the model and submodel values stored
in ROM. If these values are not equal, this indicates that
the configuration of the system has been modified. Ref-

20 erence is made to Fig. 6D, where this feature in combi-
nation with loading BIOS is explained in greater detail.

Continuing, our discussion with reference to Fig. 2,
the bus controller 34 is further coupled to I/O slots 18,
the serial/parallel interface 40 and peripheral controller

25 42 by an I/O planar bus 43. The peripheral controller 42
is further connected to a keyboard 44, mouse 46, diag-
nostic panel 47, and diskette controller 64. Beside the
NVRAM 58, the serial/parallel interface 40 is further con-
nected to a serial port 48 and parallel port 50 to input/

30 output information to a printer, hard copy device, etc. As
is well known in the art, the local bus 28 can also be
connected to a cache controller 52, a cache memory 68,
a co-processor 54, and a DMA controller 56.

The system processor 26 controls its internal oper-
35 ation as well as interfacing with other elements of the

personal computer system 10. For example, system
processor 26 is shown connected to a small computer
system interface (SCSI) I/O card 60 which is further con-
nected to a DASD, such as a fixed disk drive 62. It is to

40 be understood that other than a SCSI disk drive can be
used as a fixed disk in accordance with the present in-
vention. In addition to the fixed disk 62, the system proc-
essor 26 can be interfaced to the diskette controller 64
which controls a diskette drive 66. With respect to ter-

45 minology, it is also to be understood that the term "hard-
file" describes fixed disk drive 62 while the term "floppy"
also describes diskette drive 66.

Previous to the present invention, ROM 36 would
include all of the BIOS code which interfaced the oper-

50 ating system to the hardware peripherals. According to
one aspect of the present invention, however, ROM 36
is adapted to store only a portion of BIOS. This portion,
when executed by the system processor 26, inputs from
either the fixed disk 62 or diskette 66 a second or re-

55 maining portion of BIOS, hereinafter also referred to as
a BIOS image. This BIOS image supersedes the first
BIOS portion and being an integral part of the system is
resident in main memory such as RAM 32. The first por-

5

9 EP 0 468 625 B1 10

tion of BIOS (ROM-BIOS) as stored in ROM 36 will be
explained generally with respect to Figs. 3-4 and in de-
tail with respect to Figs. 6A-D. The second portion of
BIOS (BIOS image) will be explained with respect to Fig.
5, and the loading of the BIOS image with respect to Fig.
7. Another benefit from loading a BIOS image from a
DASD is the ability to load BIOS directly into the system
processor's RAM 32. Since accessing RAM is much
faster than accessing ROM, a significant improvement
in the processing speed of the computer system is
achieved. An additional advantage is also gained by
storing system utilities on the DASD. When a condition
for the usage of the system utilities is required, the sys-
tem utility can automatically be referenced on the
DASD.

The explanation will now proceed to the operation
of the BIOS in ROM 36 and to the operation of loading
the BIOS image and system reference diskette image
from either the fixed disk or diskette. In general, a first
program such as ROM-BIOS prechecks the system and
loads a BIOS master boot record into RAM. The master
boot record includes a data segment having validation
information and, being a loading means, a code seg-
ment having executable code. The executable code us-
es the data information to validate hardware compatibil-
ity and system configuration. After testing for hardware
compatibility and proper system configuration, the exe-
cutable code loads the BIOS image into RAM producing
a main memory resident program. The BIOS image suc-
ceeds ROM-BIOS and loads the operating system to be-
gin operation of the machine. For purposes of clarity, the
executable code segment of the master boot record will
be referred to as MBR code while the data segment will
be referred to as MBR data.

Referring to Fig. 3 there is a memory map showing
the different code modules which comprise ROM-BIOS.
ROM-BIOS includes a power on self test (POST) stage
I module 70, an Initial BIOS Load (IBL) Routine module
72, a Diskette module 74, a hardfile module 76, a video
module 78, a diagnostic-panel module 80, and hard-
ware compatibility data 82. Briefly, POST Stage 1 70 per-
forms system pre-initialisation and tests. The IBL routine
72 determines whether the BIOS image is to be loaded
from disk or diskette, checks compatibility and loads the
master boot record. Diskette module 74 provides input/
output functions for a diskette drive. Hardfile module 76
controls I/O to a fixed disk or the like. Video module 78
controls output functions to a video I/O controller which
is further connected to a video display. Diagnostic panel
module 80 provides control to a diagnostic display de-
vice for the system. The hardware compatibility data 82
includes such values as a system model and submodel
values which are described later with respect to Fig. 5.

Referring now to Fig. 4, there is shown a process
overview for loading a BIOS image into the system from
either the fixed disk or the diskette. When the system is
powered up, the system processor is vectored to the en-
try point of POST Stage I, step 100. POST Stage I ini-

tialises the system and tests only those system func-
tions needed to load BIOS image from the selected
DASD, step 102. In particular, POST Stage I initialises
the processor/planar functions, diagnostic panel, mem-

5 ory subsystem, interrupt controllers, timers, DMA sub-
system, fixed disk BIOS routine (Hardfile module 76),
and diskette BIOS routine (Diskette module 74), if nec-
essary.

After POST Stage I pre-initialises the system,
10 POST Stage I vectors the system processor to the Initial

BIOS Load (IBL) routine included in the Initial BIOS
Load module 72. The IBL routine first, determines
whether the BIOS image is stored on fixed disk or can
be loaded from diskette; and second, loads the master

is boot record from the selected media (either disk or dis-
kette) into RAM, step 104. The master boot record in-
cludes the MBR data and the MBR code. The MBR data
is used for verification purposes and the MBR code is
executed to load in the BIOS image. A detailed descrip-

20 tion of the operation of the IBL routine is presented with
respect to Figs. 6A-D.

With continuing reference to Fig. 4, after the IBL
routine loads the master boot record into RAM, the sys-
tem processor is vectored to the starting address of the

25 MBR code to begin execution, step 1 06. The MBR code
performs a series of validity tests to determine the au-
thenticity of the BIOS image and to verify the configura-
tion of the system. For a better understanding of the op-
eration of the MBR code, attention is directed to Fig. 7

30 of the drawings wherein the MBR code is described in
greater detail. On the basis of these validity tests, the
MBR code loads the BIOS image into RAM and trans-
fers control to the newly loaded BIOS image in main
memory, step 108. In particular, the BIOS image is load-

35 ed into the address space previously occupied by ROM-
BIOS. That is if ROM-BIOS is addressed from E0000H
through FFFFFH, then the BIOS image is loaded into
this RAM address space this superseding ROM-BIOS.
Control is then transferred to POST Stage II which is

40 included in the newly loaded BIOS image thus abandon-
ing ROM-BIOS. POST Stage II, now in RAM, initialises
and tests the remaining system in order to load the op-
erating system boot, steps 110-114. Before Stage II
POST transfers control to the operating system, Stage

45 || POST sets a protection means for preventing access
to the disk partition holding the BIOS image. However,
if an error is detected, Stage II POST can disable the
protection means and invoke the system utilities in the
system reference diskette image on the disk. Reference

so is made to Figs. 8-10 for a detailed discussion of this
protection process. It is noted that during a warm start,
the processor is vectored to step 108, bypassing steps
100-106.

For clarity, it is appropriate at this point to illustrate
55 a representation for the format of the master boot

record. Referring to Fig. 5, there is shown the master
boot record. The boot record includes the executable
code segment 120 and data segments 122-138. The

6

11 EP0 468

MBR code 1 20 includes DASD dependent code respon-
sible for verifying the identity of the ROM-BIOS, check-
ing that the IBL boot record is compatible with the sys-
tem, verifying the system configuration, and loading the
BIOS image from the selected DASD (disk or diskette), s
The data segments 122-138 include information used
to define the media, identify and verify the master boot
record, locate the BIOS image, and load the BIOS im-
age.

The master boot record is identified by a boot record 10
signature 122. The boot record signature 122 can be a
unique bit pattern, such as a character string "ABC", in
the first three bytes of the record. The integrity of the
master boot record is tested by a checksum value 132
which is compared to a computed checksum value when 15
the boot record is loaded. The data segments further
include at least one compatible planar ID value 134,
compatible model and submodel values 136. The mas-
ter boot record's planar ID value defines which planar
that the master boot record is valid for. Similarly, the 20
master boot record's model and submodel values define
the processor and planar I/O configuration respectively
that the master boot record is valid for. It is noted that
the boot record's signature and checksum identify a val-
id master boot record, while the boot record's planar ID, 25
boot record's model and boot record's submodel com-
parisons are used to identify a boot record compatible
with the system and to determine if the system configu-
ration is valid. Another value, boot record pattern 124 is
used to determine the validity of the ROM-BIOS. The 30
boot record pattern 1 24 is compared to a corresponding
pattern value stored in ROM. If the values match this
indicates that a valid ROM-BIOS has initiated the load
of a BIOS image from the selected media.

The following description further describes in great- 35
er detail each of the values in the master boot record
and their functions: MBR Identifier (1 22): The first three
bytes of the IBL boot record can consist of characters,
such as "ABC". This signature is used to identify a boot
record. 40

MBR Code Segment (120): This code verifies the
compatibility of the boot record with the planar and proc-
essor by comparing corresponding planar id and model/
submodel values. If these values match, it will load the
BIOS image from the chosen media to system RAM. If 45
the system image (BIOS image loaded into memory)
checksum is valid and no media load errors occur, the
MBR code will transfer control to the POST Stage II rou-
tine of the system image.

MBR Pattern (124): The first field of the IBL boot so
record data segment contains a pattern, such as a char-
acter string "ROM-BIOS 1 990". This string is used to val-
idate the ROM-BIOS by comparing the Boot Pattern val-
ue to the corresponding value stored in ROM (ROM-Pat-
tern). 55

MBR Version Date (126): The master boot record
includes a version date for use by an update utility.

System Partition Pointer (128): The data segment

25 B1 12

contains a media pointer to the beginning of the media
system partition area for use by Stage II POST. On an
IBL diskette, the pointer is in track-head-sector format;
on disk the pointer is in Relative Block Address (RBA)
format.

System Partition Type (130): The system partition
type indicates the structure of the media system parti-
tion. There are three types of system partition structures
- full, minimal and not present. The full system partition
contains the setup utility and diagnostics in addition to
the BIOS image and master boot record. The minimal
system partition contains just the BIOS image and mas-
ter boot record. It may occur where a system does not
have access to a hardfile having an IBL image, in this
circumstance the system partition type indicates not
present. In this instance, IBL will occur from the diskette.
These three system partition types allow flexibility in
how much space the system partition takes up on the
media.

Checksum value (1 32): The checksum value of the
data segment is initialised to generate a valid checksum
for the record length value (1.5k bytes) of the master
boot record code.

MBR Planar ID Value (134): The data segment in-
cludes a value, such as a string of words defining com-
patible planar I Ds. Each word is made up of a 1 6 bit pla-
nar ID and the string is terminated by word value of zero.
If a system's planar ID matches the planar ID value in
the master boot record, such as one of the words in the
string, the IBL media image is compatible with the sys-
tem planar. If the system's planar I D does not match any
word in the string, the I BL media image is not compatible
with the system planar.

MBR model and submodel values (136): The data
segment includes values, such as a string of words de-
fining compatible processors. Each word is made up of
a model and submodel value and the string is terminated
by a word value of zero. If a system's model and sub-
model value (stored in ROM) match one of the words in
the string, the IBL media image is compatible with the
system processor. If the ROM model and ROM submod-
el values do not match any word in the string, the IBL
media image is not compatible with the system proces-
sor.

MBR Map length (138): The IBL map length is ini-
tialised to the number of media image blocks. In other
words, if the BIOS image is broken into four blocks, the
map length will be four indicating four block pointer/
length fields. Usually this length is set to one, since the
media image is one contiguous 1 28k block. MBR Media
Sector Size (138): This word value is initialised to the
media sector size in bytes per sector.

Media image block pointer (1 38): The media image
block pointer locates a system image block on the me-
dia. Normally, there is only one pointer since the media
image is stored as one contiguous block. On an IBL dis-
kette, the pointers are in track-head-sector format; on
disk the pointers are relative block address format.

EP 0 468 625 B1

7

13 EP 0 468 625 B1 14

Media image block length (138): The media image
block length indicates the size (in sectors) of the block
located at the corresponding image block pointer. In the
case of a 1 28k contiguous media image, which includes
space for BASIC, this field is set to 256, indicating that
the BIOS image block takes up 256 sectors (512 bytes/
sector) starting at the media image block pointer loca-
tion.

Referring now to Figs. 6A-D, there is shown a de-
tailed flow chart of the operation of the IBL routine. Un-
der normal circumstances, the IBL routine loads the
master boot record from the system fixed disk into RAM
at a specific address and then vectors the system proc-
essor to begin executing the code segment of the mas-
ter boot record. The I BL routine also contains provisions
for a diskette default mode in which the master boot
record can be loaded from diskette. However, the IBL
routine does not allow the diskette default mode to be
performed if the system contains the IBL media on the
system fixed disk and a valid password is present in
NVRAM. The user has the option of setting the pass-
word in NVRAM. The purpose of preventing the diskette
default mode from being effected is to prevent loading
an unauthorised BIOS image from diskette. In other
words, the diskette default mode is used only when a
system fixed disk is not operational and the user has
indicated (by not setting the password) the desire to be
able to load from the diskette. If the IBL routine is not
able to load the master boot record from either media,
an error message is generated and the system is halted.

Referring now to Fig. 6A, under normal circum-
stances the system will contain a system fixed disk
which the IBL routine initialised, step 150. Assume for
purposes of illustration that the fixed disk is configured
for Drive C of the personal computer system. Similarly,
assume Drive A is designated as the diskette drive. The
IBL routine then examines Drive C to determine whether
it contains IBL media, step 152. Attention is directed to
Fig. 6B which describes in detail this process. The IBL
routine starts reading from the fixed disk at the last three
sectors and continues reading, decrementing the media
pointer, for 99 sectors or until a valid master boot record
is found. If a master boot record is found, it is checked
for system planar and processor compatibility, step 1 56.
If it is not planar or processor compatible, then an error
is reported, step 158. Referring back to step 152, if no
master boot record is found on the last 99 sectors of the
fixed disk (primary hardfile), an error is reported, step
154.

Referring back to step 156, if a master boot record
is found, a series of validity checks are performed to de-
termine if the master boot record is compatible with the
computer system. Additionally, the configuration of the
system is checked. Attention is directed to Fig. 6D which
discloses this process in greater detail. If the boot record
is compatible with the planar ID, model and submodel,
and if furthermore the system configuration has not
changed the master boot record is loaded and the code

segment of the master boot record is executed, step
160.

Referring back to steps 1 54 and 1 58, if an error oc-
curs in loading the master boot record from the fixed disk

5 or if a fixed disk is not available, the IBL routine deter-
mines if a valid password is included in NVRAM, step
162. This password determines whether the BIOS im-
age can be loaded from diskette. Note that the password
will exist only upon being installed by the user running

10 a set features utility. If a password is installed in NVRAM,
the BIOS image is prevented from being loaded from
diskette, step 164. This permits the user to ensure the
integrity of the operation of the system by causing the
system to be loaded only with the BIOS image on the

is fixed disk. The password can take the form of a string
of characters stored in NVRAM.

Referring back to step 162, if a valid password in
NVRAM is not present, thus allowing BIOS image to be
loaded from diskette, the IBL routine initialised the dis-

20 kette subsystem, step 166. The IBL routine then deter-
mines if Drive A includes the IBL media on a diskette,
step 168. If Drive A does not include IBL media, an error
is generated to notify the user that an invalid diskette
has been inserted in the drive, step 170. The system

25 then halts, step 172. Attention is directed to Fig. 6C for
a more detailed discussion of step 168.

Referring back to step 168, after Drive A is checked
for IBL media, the master boot record is loaded into RAM
and the code segment included in the master boot

30 record is executed, step 160. It is important to note that
for diskette the IBL routine does not include the validity
checks that are used with the fixed disk system. The rea-
son for the absence of the validity checks is for loading
a non-compatible IBL image from diskette. For example,

35 if a new processor is added to the system, a new BIOS
image will be included on a diskette. Since a new proc-
essor will cause validity errors when loading from fixed
disk, the IBL routine provides the ability to bypass these
tests by loading the BIOS image from diskette.

40 To recapitulate, the master boot record is checked
for compatibility with the system through matching the
system planar ID and processor model/submodel val-
ues to the boot record values. For disk, this check is
done first in the IBL routine 72 and then done again in

45 the IBL boot record. The first check (in the IBL routine)
is done to make sure the boot record is compatible with
the system; the second check (in the boot record) is
done to ensure a compatible ROM passed control to the
boot record. Notice that the check done in the disk boot

so record will never fail for a compatible ROM since the IBL
routine will have already checked the compatibility. In
contrast, the first compatibility check is not done for dis-
kette. The planar/processor compatibility is checked on-
ly during diskette boot record execution. This method

55 allows future modifications in loading a new BIOS image
from a reference diskette.

In view of the description of the IBL routine of Fig.
6A, the explanation will now proceed to a comprehen-

8

15 EP 0 468 625 B1 16

sive and full understanding of the validity tests dis-
cussed above. Referring to Fig. 6B, there is shown a
detailed flowchart of step 152 of Fig. 6A, to determine if
a valid master boot record is on drive C. The process
begins by obtaining the drive parameters to enable the
IBL routine to access drive C, step 200. An IBL load lo-
cation is set to the last three sectors from the disk (the
last three sectors normally contain the master boot
record), step 202. A load count indicating the number of
attempts to read a master boot record from disk is set
to 1 , step 204. Three sectors are read from disk at the
IBL load location, step 206. Any disk drive errors are
detected and if a disk drive read error occurs it is report-
ed, steps 208-210. The process then returns with an er-
ror indication, steps 212-214.

Referring back to step 208, if no drive error occurs,
the disk record is scanned for the master boot record
signature, step 216. The boot record signature, such as
the characters "ABC", are compared to the first three
bytes of the disk record. If the disk record does have a
valid boot record signature (characters "ABC") and the
checksum computed from the disk record loaded into
memory equals the boot record checksum, the disk
record is indicated as being a valid boot record with no
errors, step 218. The process then returns, step 214.

Referring back to step 216, if the boot record signa-
ture or checksum is invalid, the load count is increment-
ed by 1 , step 220. The load count is then compared to
a predetermined constant such as 99, step 222. If 99
attempts to read a boot record have resulted in failure,
an error is indicated and the process returns, steps 224,
212 and 214. If less than 99 attempts to read a boot
record have occurred, the IBL load location is decre-
mented by one and three new sectors are read from the
new load location, steps 226 and 206. Thus if a valid IBL
boot record cannot be loaded from the last 99 sectors
(equivalent to 33 copies) then an error condition is set
and control returns to the IBL routine.

Referring now to Fig. 6C, there is shown a detailed
flow diagram for loading the master boot record from dis-
kette on drive A. First, the diskette drive parameters to
access drive A are retrieved, step 230. The IBL load lo-
cation is set to the last 3 sectors on diskette (cylinder,
head and sector format), step 232. The last 3 sectors
are read, step 234. If a diskette drive error is detected
an error is indicated, steps 236-238. An error condition
is set and control is returned to the IBL routine, steps
240-242.

Referring back to step 236, if no drive error is de-
tected, the diskette record is checked for boot record
signature and the checksum is calculated, step 244. If
the boot record signature is missing or checksum is
invalid, an error is indicated and control returned to the
IBL routine, steps 244, 246, 240 and 242. If a valid boot
record signature and valid checksum are detected an
indication is set and control is returned to the IBL routine,
steps 248 and 242. It is noted that in a diskette load, the
IBL routine does not search through the media as in the

fixed disk load. Therefore, in a diskette load, the IBL me-
dia must be stored in a specific location of the diskette.

Finally, Fig. 6D shows how the IBL routines tests for
system planar and processor compatibility and for a

5 proper system configuration. The master boot record is
checked for compatibility with the system planar by com-
paring the boot record planar I D value to the system pla-
nar ID read by the system processor, step 260. If the
system planar ID does not match the boot record planar

10 ID value, this indicates this master boot record is not
compatible with this planar. An error is indicated and
control returns to the IBL routine, steps 262, 264, and
266.

If the master boot record is compatible with the pla-
15 nar, the master boot record is checked for compatibility

with the processor, step 268. The boot record model val-
ue and submodel value are compared to the model val-
ue and submodel value stored in ROM respectively. A
mismatch indicates a new processor has probably been

20 inserted and this boot record is not compatible with the
new processor. An error is indicated and control re-
turned to the IBL routine, steps 270, 264 and 266. If the
master boot record is compatible with the planar and
processor, the process checks to determine if NVRAM

25 is reliable, step 272. If NVRAM is unreliable, an error is
indicated and control returned to the IBL routine, steps
274 and 266. If NVRAM is reliable, the system configu-
ration is checked, step 276. A change in system config-
uration is indicated if the model and submodel values

30 stored in NVRAM do not match the model and submodel
values stored in ROM. Note that this last comparison
will only indicate a configuration error. If a configuration
error is indicated, an error is generated for the user. This
error notifies the user that the configuration of the sys-

35 tern has changed since the last time SET Configuration
was run. The user is notified of the changed configura-
tion and control passed back to the IBL routine steps
278, 264, and 266. This error is not fatal itself, but noti-
fies the user that SET Configuration (configuration pro-

40 gram) must be executed. Referring back to step 276, if
the system model/submodel values match, an indication
of comparability is set and the routine returns, steps 276,
274 and 266. Thus, the compatibility between the mas-
ter boot record and the system are tested along with de-

45 termining if the system configuration has been modified.
After the IBL routine loads the master boot record

into RAM, it transfers control to the MBR code starting
address. Referring to Fig. 7, the executable code seg-
ment of the master boot record first verifies the boot

50 record pattern to the ROM pattern, step 300. If the pat-
tern in the master boot record does not match the pat-
tern in ROM, an error is generated and the system halts,
steps 302 and 305. The check for equality between
ROM and boot record patterns ensures that the master

55 boot record loaded from either the disk or diskette is
compatible with the ROM on the planar board. Referring
back to step 300, if the pattern in ROM matches the pat-
tern in the boot record, the MBR code compares the sys-

9

17 EP 0 468 625 B1 18

tem planar ID value, model and submodel value against
the corresponding master boot record values, step 304.
This process was discussed in greater detail with re-
spect to Fig. 6D. If the values don't match, the master
boot record is not compatible with the system planar and
processor, or the system configuration has changed,
and an error is generated, step 306. The system will halt
when the IBL record is incompatible with planar, model
or submodel values, step 305.

Referring back to step 304, if the system planar ID
value, model and submodel values match the corre-
sponding master boot record values, the MBR code
loads the BIOS image from the selected media into the
system RAM, step 308. If a media load error occurs in
reading the data, step 310, an error is generated and
the system halts, steps 312 and 305. Referring back to
step 310, if no media load error occurs, a checksum is
calculated for the BIOS image in memory, step 314. If
the checksum is invalid an error is generated and the
system halts, steps 318 and 305. Referring back to step
316, if the checksum is valid, the system partition point-
ers are saved, step 320, and the system processor is
vectored to POST Stage II to begin loading the system,
step 322.

Referring to Fig. 8, there is shown a block diagram
of an intelligent disk controller 350 for controlling move-
ment of data between the disk drive 351 and the system
processor. It is understood that disk controller 350 can
be incorporated into the adapter card 60 while disk drive
351 can be included onto drive 62 of Fig. 2. A suitable
disk controller 350 is a SCSI Adapter having a part
number of 33F8740, which is manufactured by Interna-
tional Business Machines Corporation. It is understood
that the disk controller 350 includes a microprocessor
352 operating under its own internal clock, for controlling
its internal operations as well as its interfacing with the
other elements of the disk subsystem and the system
processor. The microprocessor 352 is coupled by a in-
struction bus 354 to a read only memory (ROM) 356
which stores instructions which the disk controller 350
executes to process and control the movement of data
between the disk drive and the system processor. It is
also understood that disk controller 350 can include ran-
dom access memory coupled to microprocessor 352 for
the storage or retrieval of data. The movement of data
between disk controller 350 and the system processor
is effected by data bus 358 and instruction bus 360. A
reset signal on line 362 resets or initialises the disk con-
troller logic upon power-on sequence or during a system
reset. The reset signal is generated by the planar board
logic, and can take the form of a channel reset signal as
provided by IBM's Micro Channel architecture as de-
scribed in "IBM PERSONAL SYSTEM/2 Seminar Pro-
ceedings", Volume 5, Number 3, May 1 987 as published
by the International Business Machines Corporation En-
try Systems Division. Furthermore, the reset signal can
be effectively initiated by BIOS outputting a particular bit
configuration to an I/O port of the system processor in

which the planar logic is connected.
As is well known, the microprocessor 352 provides

all the interfacing and timing signals to effect the efficient
transfer of data between the disk drive and the system

5 processor. For clarity, only those signals important for
the understanding of the invention are presented. It is
understood that other signals and lines, such as data
bus 364, are used but are not presented here since they
are not important for the understanding of the present

10 invention. It is further understood that only those pro-
grams or routines as stored in ROM 356 important for
the understanding of the present invention are ex-
plained with respect to Fig. 9.

Referring now to Fig. 9, there is shown a flowchart
is diagramming the read, write, and protect functions of the

disk controller which are effected by the operation of
routines stored in ROM 356. In operation, a disk instruc-
tion is initiated by the system processor and transferred
to the disk controller 350. The disk controller receives

20 and interprets the instruction to perform the designated
operation, step 400. The disk controller first determines
if this is a write operation in which data from the system
processor are stored on the disk drive hardware, step
402. If the instruction is a write instruction, data are re-

25 ceived from the system processor in relative block ad-
dress (RBA) format.

Prior to continuing the discussion above, a brief ex-
planation of the relative block address format applied to
a mass storage device, such as a disk, may merit review.

30 RBA is a scheme in which data in mass storage are ad-
dressed in predetermined sized blocks by sequential
numbers, i.e. individual definable contiguous blocks of
data. For example, assuming a block size of 1 024 bytes,
the system processor can approximately address

35 1 0,000 blocks for a 10 megabyte disk. That is, the sys-
tem processor can address the disk media in terms of
N blocks where N ranges from 0 to 9,999. It has been
discovered, that the use of RBA provides a very fast and
efficient method for addressing mass storage in the type

40 of operating systems used for personal computer sys-
tems of the present invention.

For convenience sake, the following assumptions
will be introduced: first, the disk can support a total of N
blocks; second, the system processor transfers a K

45 block, where K is greater than or equal to 0 and is less
than or equal to (N-1); third, the disk controller can set
a maximum addressable block M which permits access
to data blocks where K is less than M and denies access
to data blocks where K is greater than or equal to M.

so Note, by setting M less than N a protectable region on
the disk is generated from M to N-1 blocks. This feature
permits the IBL media to be protected as will be dis-
cussed below.

Continuing our discussion with reference to Fig. 9,
55 the data are received from the disk in RBA format, step

404. The disk controller then determines if the received
block K is less than the maximum block value M, where
M is less than M, step 406. If K is less than M then the

10

19 EP 0 468 625 B1 20

disk controller converts the RBA format into the partic-
ular format for the mass storage device, such as cylin-
der-head-sector (CHS) format for a fixed disk, step 408.
For instance, the disk controller by using a look up table
could convert RBA addresses to unique cylinder-head- s
sector location. Another method is the use of a conver-
sion formula to convert RBA to CHS. For example, for
a disk having one head, 64 cylinders, and 96 sectors:
Head = 0, cylinders = quotient of RBA/(96), and sectors
= remainder of RBA/(96). After converting the RBA for- 10
mat to a CHS format the data are written to disk at the
converted CHS location, step 410. The disk controller
then waits for another instruction from the system proc-
essor, step 412.

Referring back to step 406, if the received RBA is 15
greater than the maximum set RBA value, access is de-
nied, step 41 4. That is if K is greater than or equal to M,
the K block is not written to the disk. Please note, if the
IBL media is stored in the blocks from M to N-1 , then the
IBL media will be protected from writing. 20

Referring back to step 402, if the instruction from
the system processor is not a write instruction, it is test-
ed for being a read instruction, step 41 6. If the instruction
is a read instruction, the system processor sends the
RBA format for the data requested, step 418. The disk 25
controller then determines if the desired RBA (K) is less
than the maximum set RBA (M). If the desired RBA (K)
is less than the maximum set RBA (M), then the disk
controller converts the RBA to the appropriate CHS for-
mat and reads the data from the disk, steps 422 and 30
424. The data are then transferred to the system proc-
essor, step 412.

Referring back to step 420, if the received RBA (K)
is greater than or equal to the maximum set RBA (M),
access is denied, step 426. If the IBL media is stored 35
between M blocks and (N-1) blocks, access is denied to
this area. Please note, that in this circumstance, the IBL
media is also protected from copying.

Referring back to step 416, if the instruction is not
a write or read instruction, it is tested for a set maximum 40
RBA instruction, step 428. This instruction allows the
disk controller to create a protectable area or partition
on the disk drive hardware. This instruction allows the
disk controller to set M between 0 and N blocks, step
430. It is important to note that when the disk controller 45
is reset (through the reset signal) that M is set so that
the maximum number of blocks are available. That is,
when the disk controller is reset, M=N. Essentially, pro-
tection for the protectable area is eliminated upon reset-
ting the disk controller, allowing access to the area, so
However, once the set maximum RBA instruction is ex-
ecuted only a reset or another set maximum RBA in-
struction will allow access to the protectable area. Con-
ceptually, the setting of the maximum RBA can be
thought of as setting a fence which protects access to 55
the area above the fence while allowing access to the
area below the fence. The disk controller then returns
to wait for another instruction, step 412.

Referring back to step 428, if the instruction is not
a read, write, or set maximum RBA instruction, it is test-
ed for another disk controller instruction and executed,
step 432. These instructions will use the set maximum
RBA value but are not important for the understanding
of the present invention and are not presented here for
brevity purposes. The disk controller then returns to wait
for another instruction, step 412.

The explanation will now proceed to the operation
of the loading in and protecting the IBL media in view of
the proceeding discussion. In general, from either a cold
start (power-on) or a warm start (Ctrl-Alt-Del), the disk
controller having the IBL media is reset. This causes the
maximum RBA (M) to be set to N, i.e. the fence is re-
moved allowing access to the IBL media. This is re-
quired to allow the system to load the I BL media to begin
operation. Once the IBL media is loaded and executed
the fence is erected (set maximum RBA below IBL me-
dia) to prevent access to the IBL media stored on disk.

Referring nowto Fig. 1 0, there is shown a blockflow
diagram effecting the protection of the IBL, media. From
a power-on condition the system is initialised and BIOS
initiates activity in planar board logic to send a reset con-
dition to the disk controller, steps 450 and 452. The reset
signal drops the fence and allows the system processor
to access the IBL media previously stored on the disk
in the area from M blocks to N blocks. The system loads
the I BL media as previously described with reference to
Fig. 4-7, step 454. During the IBL loading sequence Post
Stage II is executed, step 456. One of the tasks of POST
Stage II is to execute the set maximum RBA instruction
with the maximum RBA set to the first block of the IBL
media which is designated as M, step 458. M is depend-
ent upon partition type (none, partial or full) as previous-
ly explained. This in effect sets the fence denying ac-
cess to the IBL media while allowing access to other re-
gions of the disk. The operating system is then booted
up in a normal fashion, step 460.

If the system is started from a warm start condition,
such as Ctrl-Alt-Del, the planar logic is commanded to
reset the disk controller by POST Stage II, steps 462
and 464. This causes the fence to be dropped. In this
circumstance, since the IBL media is already present in
RAM, the IBL media is not loaded again. However, since
the protection for the IBL media is eliminated POST
Stage II must be executed to reset the fence, steps 456
and 458. The fence is erected protecting the IBL media
and the system is then rebooted in a normal manner,
step 460.

The IBL media is protected by addressing mass
storage in blocks and setting a maximum block the sys-
tem can access during normal operation. The IBL media
is stored consecutively in those blocks between the
maximum block accessible and the total number of
blocks supported by the disk drive. A reset signal sent
to the disk controller eliminates the maximum block ac-
cessible to permit the system to address the IBL media.
The reset signal is generated during a power-on condi-

11

21 EP 0 468 625 B1 22

tion or a warm-start condition to permit access to the IBL
media to boot up the system.

Referring nowto Fig. 11 , the flowchart describes the
process by which POST Stage II follows to load the sys-
tem reference diskette image from the system partition
on the fixed disk 62. Prior to booting an operating sys-
tem, such as DOS or IBM's OS/2, POST will ascertain
the type of system partition present on the IBL, media,
step 500. POST will then query the fixed disk 62 for the
value of the last block address, step 502. POST will then
adjust the value obtained as the last block address to
account for the size of the system partition, step 504.
This is done by subtracting from the physical last block
address of the fixed disk 62 the amount of blocks in the
system partition. POST saves the adjusted value as the
logical last block address, step 506. By doing so POST
has provided BIOS a mechanism to boot from the sys-
tem partition instead of the beginning of the fixed disk
partition. Reference is made to Fig. 13 for a more de-
tailed discussion of the above.

Proceeding further, with respect to Fig. 11, POST
Stage II examines the current contents of the POST
Path Flag, step 508. The POST Path Flag is one mech-
anism used by POST to keep track of the type of path
through POST. For example, an initial power on path
versus a warm reboot path. A warm reboot is typically
enabled by a Ctrl-Alt-Del keystroke sequence. If the cur-
rent value of the POST Path Flag indicates override sys-
tem partition boot procedures, POST Stage II sets the
System Partition Boot Flag to false, indicating not to boot
the system partition, step 510. POST Stage II then pro-
tects the system partition by instructing BIOS to activate
the protection means on the boot fixed disk based on
the value calculated in step 506, step 511. That is, the
fence is set to address pointer calculated in step 506.
Thus, the system partition is protected to prevent inad-
vertent destruction. Afterwards, POST Stage II invokes
the Bootstrap Loader, INT 1 9H, to initiate operating sys-
tem boot, step 512.

Referring back to step 508, if the POST Path Flag
does not indicate an override of the system partition hoot
sequence, then the POST Path Flag is examined for a
warm boot path, POST indicating a Ctrl-Alt-Del key se-
quence was entered, step 520. If the Path Flag does not
indicate a warm boot, POST Stage II determines if any
errors were detected during a cold startup execution,
step 522. If no errors were detected, POST Stage II sets
a flag indicating not to boot the System Partition, step
510. POST Stage II now protects the system partition
by instructing BIOS to activate the protection means as
shown in step 511, followed by invoking the Bootstrap
Loader, step 512.

Referring back to step 522, if POST Stage 1 1 detects
any errors during its execution, it sets the System Boot
Partition Flag to true, step 526. POST Stage 1 1 then pro-
tects the system partition by instructing BIOS to activate
the protection means as shown in step 511 . Afterwards,
POST Stage II invokes the Bootstrap Loader 512 to in-

itiate the operating system boot.
Referring back to step 520, if Ctrl-Alt-Del key se-

quence was entered, POST Stage 1 1 checks to see if the
user has entered the keystroke sequence Ctrl-Alt-lns.

5 The Ctrl-Alt-lns keystroke instruction invokes the boot-
ing of the system reference diskette image 524. This se-
quence permits a user to force a bootup procedure from
the system partition. If not, POST Stage II sets the Sys-
tem Partition Boot Flag to false and protects the system

10 partition by instructing BIOS to activate the protection
means as shown in step 511 . Afterwards, POST Stage
II invokes the Bootstrap Loader, INT 19H, to initiate op-
erating system boot, step 512.

Referring back to step 524, if POST Stage 1 1 detects
is the user entered keystroke sequence of Ctrl-Alt-lns, it

sets the System Partition Boot Flag to true, indicating
boot the system partition, step 526. POST Stage II then
protects the system partition by instructing BIOS to ac-
tivate the protection means as shown in step 511; fol-

20 lowed by invoking the Bootstrap Loader, step 512.
At this point, POST Stage II has established if either

a normal boot sequence or a boot of the system refer-
ence diskette image in the system partition is to occur.
Also, POST has established the beginning of the system

25 partition as though it is a logical bootable partition and
has activated the protection means to prevent access
to the system partition by a program not considered to
be trusted. A logical bootable partition appears to POST
as the first partition on the disk and is therefore bootable.

30 POST Stage II now invokes the Bootstrap Loader.
The Bootstrap Loader is used to select the appro-

priate boot device and read in the boot record from the
active partition. The priority of the boot drives are the
first diskette drive followed by the first fixed disk, such

35 as the boot fixed disk. However, the priority of the default
boot device sequence can be changed by using a utility
on the system reference diskette or system reference
diskette image in the system partition. The Bootstrap
Loader then turns control over to the executable code

40 in the boot record. This in turn boots the desired oper-
ating system or control program.

Continuing the discussion with respect with Fig. 12,
there is shown a flowchart describing the logic flow in-
side the Bootstrap Loader, INT 19H. To begin, the Boot-

hs strap Loader checks for the actual presence of the sys-
tem reference diskette in the first diskette drive, step
600. The presence of a system reference diskette in the
first diskette drive overrides all other reference dis-
kettes. In other words, invoking the system reference

so diskette overrides the system reference diskette image
in the system partition or a direct request by the user to
boot the operating system if POST errors are detected.
Next, the System Partition Boot Flag is checked, step
620. Since the system reference diskette is present the

55 System Partition Boot Flag is false.
Being that the System Partition Boot Flag is false,

the Bootstrap Loader determines if a Reference Dis-
kette Boot is required, step 630. Since a system refer-

12

23 EP 0 468 625 B1 24

ence diskette is present in the first diskette drive, the
Bootstrap Loader first instructs BIOS to deactivate the
protection means for the system partition, step 640.
Then the Bootstrap Loader establishes the system par-
tition as the origin of the boot fixed disk by using the
value calculated in step 506 as the logical starting block
address, step 650. The system partition is now unpro-
tected. The Bootstrap Loader then fetches the boot
record from the system reference diskette and passes
control to it, step 660. The boot record then boots up the
system reference diskette. For example, a user may be
adding a new feature I/O adapter to the system and
wants to install its adapter description file in the system
partition.

Referring back to step 600, if no system reference
diskette is present in the first diskette drive, the Boot-
strap Loader checks the System Partition Boot Flag,
step 612. If the flag indicates an operating system boot,
the Boot Strap Loader transfers control to the selectable
boot routine, step 614. The selectable boot routine then
decides the physical device to boot from and proceeds
to step 620.

The System Partition Boot Flag is then accessed to
determine if it is set, step 620. If a system partition boot
is not requested, the Bootstrap Loader determines if a
system reference diskette boot is required, step 630. For
instance, a system reference diskette may be in a boota-
ble diskette drive other than the first physical diskette
drive. If no system reference diskette is present, the
Bootstrap Loader fetches the operating system boot
record and passes control to it, step 660. The system
partition remains protected and the BIOS will access an-
other partition, namely the operating system partition on
the boot fixed disk.

Referring back to step 630, if a system reference
diskette boot is required, the Bootstrap Loader instructs
BIOS to deactivate the protection means for the system
partition and to establish the system partition as the or-
igin of the boot fixed disk by using the value calculated
in step 506 as the logical starting block address, step
650. The Bootstrap Loader fetches the boot record from
the reference diskette (in this case, a system reference
diskette is present) and boots up the system reference
diskette, step 660. The system partition is unprotected
and is now the active partition on the fixed disk. This is
done to allow access by the reference diskette. As pre-
viously explained, a user may be adding a new feature
I/O adapter to the system and wants to install its adapter
description file in the system partition.

Referring back to step 620, if the System Partition
Boot Flag is true, the Bootstrap Loader instructs BIOS
to deactivate the protection means for the system par-
tition step 640 and establish the system partition as the
origin of the boot fixed disk by using the value calculated
in step 506 as the logical starting block address, step
650. The Bootstrap Loader then fetches the boot record
from the system reference diskette image in the system
partition and boots up the system reference diskette im-

age, step 660. The system partition is unprotected and
is now the active partition on the boot fixed disk.

Referring back to step 612, if the System Partition
Boot Flag indicates a system partition boot, the Boot-

5 strap Loader checks for a valid boot record on the sys-
tem partition, step 61 6. This step includes validating that
the system partition is a full system partition; the boot
record signature is valid; and a system reference dis-
kette signature is present. If valid, the Bootstrap Loader

10 queries the System Partition Boot Flag, step 620. Since
it is true, the Bootstrap Loader instructs BIOS to deac-
tivate the protection means for the system partition and
establish the system partition as the origin of the boot
fixed disk by using the value calculated in step 506 as

is the logical starting block address, steps 640 and 650.
The Bootstrap Loader fetches the boot record from the
system partition and boots up the system reference dis-
kette image, step 660. The system partition is unprotect-
ed and is now the active partition on the boot fixed disk.

20 Referring back to step 616, if a valid boot record is
not present, the Bootstrap Loader prompts the user to
insert a system reference diskette in a diskette drive and
press the 'Y' key on the keyboard, step 617. The Boot-
strap Loader then waits for the key to be entered, step

25 618. Once entered, the Bootstrap Loader checks that a
valid system reference diskette is present, step 619. If
not, the Bootstrap Loader repeats the process starting
at step 617.

Referring back to step 61 9, if the Bootstrap Loader
30 finds a valid system reference diskette, it instructs BIOS

to deactivate the protection means for the system par-
tition and establish the system partition as the origin of
the boot fixed disk by using the value calculated in step
506 as the logical starting block address steps 640 and

35 650. The system partition is now unprotected, the Boot-
strap Loader fetches the boot record from the system
reference diskette and passes control to it, step 660.
The boot record boots up the system reference diskette.

Figure 1 3 shows the BIOS modification required to
40 support booting of the system reference diskette image

from the system partition of the boot fixed disk or to allow
access to the image when a system reference diskette
is booted. When BIOS receives a request to perform a
data transfer operation it determines if this is the boot

45 fixed disk as shown in step 700. The boot fixed disk is
the first physical fixed disk on the fixed disk adapter. If
the fixed disk is not the boot fixed disk, BIOS performs
the requested operation, step 730.

Referring back to step 700, if the fixed disk is the
so boot fixed disk, BIOS checks to see if the System Par-

tition Boot Flag is true or a system reference diskette is
being booted, step 71 0. If neither is true, BIOS performs
the requested operation, step 730.

Referring back to step 710, if the System Partition
55 Boot Flag is true or a system reference diskette is being

booted, the fixed disk block address calculated in step
506 is added to any block address, after converted from
the user supplied cylinder, head and sector parameters

13

25 EP 0 468 625 B1 26

provided with the request for a fixed disk data transfer
function, step 720. This makes the system partition ap-
pear as the first block on the fixed disk. Thus the system
partition appears to be the active partition on the boot
fixed disk. Afterwards, BIOS performs the requested op-
eration, step 730.

Thus, there has been shown a method and appa-
ratus for booting the system reference diskette image
from the system partition from a mass storage device,
such as a fixed disk drive. The system partition is pro-
vided by protecting an area on the disk drive. The sys-
tem partition is made bootable by storing the starting ad-
dress of system partition on the disk drive and indicating
to BIOS to use this as the fixed disk origin when a boot
of the system reference diskette image is requested or
required. By providing this capability, the system refer-
ence diskette utilities are automatically available any
time the configuration is changed, a system utility is de-
sired or an error is encountered during the execution of
POST. Thus enhancing the usability of the system.

Claims

1 . A personal computer system having a system proc-
essor (26) for executing an operating system, a
read only memory (36), a random access memory
(32), and peripheral devices including at least one
direct access storage device (62), (66), the system
having an interface program to control the move-
ment of data into and out of the processor, charac-
terised in that the direct access storage device has
a protection means for protecting a region of the di-
rect access storage device in which a portion of the
interface program is stored, the protection means
allowing access to the protected region in response
to a reset signal, the said portion of the interface
program being operable, when loaded into the ran-
dom access memory, to boot the operating system
and to activate the protection means to prevent ac-
cess to the protected region of the direct access
storage device during operation of the operating
system, the protected region of the direct access
storage device further including system utility pro-
grams which are executed upon detecting an error
condition in the loading of the operating system.

2. A system as claimed in claim 1 , wherein the direct
access storage device comprises a fixed disk.

3. A system as claimed in claim 1 or 2, wherein said
system utility programs comprise a program for
modifying the configuration of the system.

4. A system according to claim 1 , 2 or 3 wherein an
initialising portion of the interface program is stored
in the read only memory and is operable to initialise
the system processor and initiate generation of a

reset signal to the direct access storage device to
permit access thereto.

5 Patentanspriiche

1. Ein Personalrechnersystem mit einem Systempro-
zessor (26) zum Abarbeiten eines Betriebssystems,
einem Festwertspeicher (36), einem Speicher mit

10 wahlfreiem Zugriff (32) und Peripheriegeraten ein-
schlieBlich wenigstens einer Direktzugriffsspei-
chervorrichtung (62, 66), wobei das System ein
Schnittstellenprogramm zur Steuerung der Daten-
bewegung in den bzw. aus dem Prozessor aufweist,

is dadurch gekennzeichnet, dal3 die Direktzugriffs-
speichervorrichtung ein Schutzmittel aufweist zum
Schutzen eines Bereichs der Direktzugriffsspei-
chervorrichtung, in der ein Teil des Schnittstellen-
programms gespeichert ist, das Schutzmittel den

20 Zugriff auf den geschutzten Bereich als Reaktion
auf ein Ruckstellsignal zulaBt, dieser Teil des
Schnittstellenprogramms betriebsfahig ist, wenn er
in den Speicher mit wahlfreiem Zugriff geladen ist,
urn das Betriebssystem zu urladen und das Schutz-

25 mittel zu aktivieren, urn den Zugriff auf den Schutz-
bereich der Direktzugriffsspeichervorrichtung wah-
rend des Abarbeitens des Betriebssystems zu ver-
hindern, wobei der Schutzbereich der Direktzu-
griffsspeichervorrichtung ferner Systemdienstpro-

30 gramme beinhaltet, die abgearbeitet werden, so-
bald beim Laden des Betriebsystems ein Fehlerzu-
stand erkannt wird.

2. Ein System gemaB Anspruch 1, in dem die Direkt-
35 zugriffsspeichervorrichtung eine Festplatte enthalt.

3. Ein System gemaB Anspruch 1 oder 2, in dem die
Systemdienstprogramme ein Programm zur Modi-
fizierung der Systemkonfigu ration aufweisen.

40
4. Ein System gemaB Anspruch 1, 2 oder 3, in dem

ein Initialisierungsteil des Schnittstellenprogramms
im Festwertspeicher abgespeichert ist und betrie-
ben werden kann, urn den Systemprozessor zu in-

45 itialisieren und die Generierung eines Ruckstellsi-
gnals fur die Direktzugriffsspeichervorrichtung an-
laufen zu lassen, urn den Zugriff darauf zuzulassen.

so Revendications

1. Un systeme d'ordinateur personnel comportant un
processeur systeme (26) concu pour fonctionner
sous un systeme d'exploitation, une memoire a lec-

55 ture seule (36), une memoire a acces aleatoire (32)
et des dispositifs peripheriques comprenant au
moins un dispositif de stockage a acces direct (62),
(66), le systeme comportant un programme d'inter-

25

14

27 EP 0 468 625 B1

face destine a commander le flux de donnees en
entree et en sortie du processeur, caracterise en ce
que le dispositif de stockage a acces direct compor-
te des moyens de protection concus pour proteger
la zone du dispositif de stockage a acces direct s
dans laquelle une partie du programme d'interface
est stockee, les moyens de protection permettant
I'acces a la zone protegee en reponse a un signal
de remise a I'etat initial, ladite partie du programme
d'interface etant susceptible de fonctionner, une 10
fois chargee dans la memoire a acces aleatoire,
pour lancer le systeme d'exploitation et pour activer
les moyens de protection, afin d'empecher un acces
a la zone protegee du dispositif de stockage a acces
direct pendant le fonctionnement du systeme d'ex- 15
ploitation, la zone protegee du dispositif de stocka-
ge a acces direct comprenant en outre des pro-
grammes utilitaires systeme, executes lors de la de-
tection d'un etat d'erreur dans le chargement du
systeme d'exploitation. 20

Un systeme selon la revendication 1 , dans lequel le
dispositif de stockage a acces direct comprend un
disque dur.

25
Un systeme selon la revendication 1 ou 2, dans le-
quel lesdits programmes utilitaires systeme com-
prennent un programme concu pour modifier la con-
figuration du systeme.

30
Un systeme selon la revendication 1 , 2 ou 3, dans
lequel une partie d'initialisation du programme d'in-
terface est memorisee dans la memoire a lecture
seule et est susceptible de fonctionner, pour initia-
liser le processeur systeme et initier la generation 35
d'un signal de remise a I'etat initial au dispositif de
stockage a acces direct, afin de permettre un acces
a celui-ci.

15

EP 0 468 625 B1

1 0

F I G . 1

16

EP 0 468 625 B1

17

P 0 468 625 B1

P O S T S T A G E I

INITIAL B I O S L O A D
R O U T I N E

D I S K E T T E

H A R D F I L E

V I D E O

D I A G N O S T I C
P A N E L

H A R D W A R E
C O M P A T I B I L I T Y

D A T A

R O M - B I O S

F I G . 3

18

EP 0 468 625 B1

I B L O V E R V I E W

P O S T C O L D S T A R T E N T R Y P O I N T \ J ° °

I

S T A G E 1 P O S T (R O M B A S E D)
I N I T I A L I Z E S A N D T E S T S

S Y S T E M F U N C T I O N S N E E D E D
F O R IBL F R O M M E D I A

, 1 0 2

IBL ROM R O U T I N E
R E A D S B O O T R E C O R D F R O M

S E L E C T E D M E D I A TO RAM K
AND T R A N S F E R S C O N T R O L

1 0 4

IBL B O O T R E C O R D
R E A D S S T A G E II P O S T / B I O S 1

1 2 8 K I M A G E F R O M M E D I A TO J
RAM A N D T R A N S F E R S C O N T R O L

1 0 6

P O S T W A R M S T A R T E N T R Y P O I N T K

1 0 8

S T A G E II P O S T (R A M B A S E D)
I N I T I A L I Z E S A N D T E S T S 1

R E S T OF S Y S T E M N E E D E D J
F O R IPL S E Q U E N C E

1 1 0

I N I T I A L P R O G R A M L O A D
L O A D S O P E R A T I N G S Y S T E M
B O O T R E C O R D F R O M M E D I A
AND T R A N S F E R S C O N T R O L

1 1 2
J

O P E R A T I N G S Y S T E M

F I G . 4

1 1 4

19

EP 0 468 625 B1

MBR I D E N T I F I E R
" A B C "

M A S T E R B O O T

R E C O R D C O D E S E G M E N T

MBR P A T T E R N

MBR V E R S I O N D A T A

S Y S T E M P A R T I T I O N P T R

S Y S T E M P A R T I T I O N T Y P E

MBR C H E C K S U M

C O M P A T I B L E P L A N A R I D s

C O M P A T I B L E P R O C E S S O R
M O D E L & S U B M O D E L B Y T E S

MBR MAP L E N G T H

MBR M E D I A S E C T O R S I Z E

F I R S T B L O C K P O I N T E R

F I R S T B L O C K L E N G T H

S E C O N D B L O C K P O I N T E R

S E C O N D B L O C K L E N G T H

•
L A S T B L O C K P O I N T E R

L A S T B L O C K L E N G T H

• •
• •

F I G . 5

EP 0 468 625 B1

INITIALIZE HARD F I L E
1 5 0

E R R O R
INVALID DISK M A S T E R

B O O T R E C O R D

1 e T T

E R R O R
I N C O M P A T I B L E M A S T E R

BOOT R E C O R D

1 5 4 1 5 8

1 6 0 1

1 6 2

I N V O K E M A S T E R

BOOT R E C O R D

I N I T I A L I Z E

D I S K E T T E Y E S

E R R O R
D I S K E T T E

R E C O V E R Y P R E V E N T E D

V
1 6 4

1 7 0

E R R O R
I N V A L I D D I S K E T T E

M A S T E R BOOT R E C O R D

H A L T V
1 7 2

F I G . 6 A

21

EP 0 468 625 B1

GET DRIVE P A R A M E T E R S ^
2 0 0

IBL LOAD LOCATION = U
LAST 3 SECTORS ON MEDIAl

2 0 2

LOAD COUNT = 1 V
2 0 4

READ THREE SECTORS AT
IBL LOAD LOACTION

2 0 6
\J r

2 2 6

IBL LOAD LOCATION =
IBL LOAD LOCATION - 1

2 1 0

ERROR (A H = 2)
DRIVE C IBL LOAD FAILURE

NO INCREMENT LOAD
* * COUNT BY 1

2 2 0
V

Y E S
2 2 2

2 2 4

ERROR (A H = 1)

BAD DRIVE C IBL MEDIA

CLEAR CARRY FLAG V
2 1 8

SET CARRY FLAG \ J

2 1 2

RETURN
2 1 4

V
F I G . 6 B

22

EP 0 468 625 B1

GET DRIVE P A R A M E T E R S ^
2 3 0

IBL LOAD LOCATION =
LAST 3 S E C T O R S ON MEDIA

, 2 3 2

2 3 4

READ THREE S E C T O R S AT
IBL LOAD L O C A T I O N

^ ^ ■ ■ ^ ^ 2 3 6
I ED I A L O A D ^ - ^ Y | 5 .

ERROR ? _ ^ - —

2 3 8

ERROR (A L = 2)
DRIVE A IBL LOAD F A I L U R E

2 4 6

ERROR (A L = 1)

BAD DRIVE A IBL R E C O R D

Y E S

2 4 8

CLEAR CARRY FLAG

2 4 0

SET CARRY FLAG

R E T U R N
2 4 2

V

F I G . 6 C

23

o i

/ < o \ > -

m > > -

\ 2

\ V g
—

u

vVJZS / CN
J U J < /

X

/ O O ^ - O ,

EP 0 468 625 B1

3 0 0
U N I Q U E ^
P A T T E R N
IN R O M ?

NO

3 0 2

E R R O R
NO PATTERN IN ROM

Y E S
3 0 4

C O M P A T I B L E IBL;
\ j 3 E C O R D 2 x ^

T ^ E S

NO

3 0 8

LOAD P O S T / B I O S
MEDIA IMAGE

INTO RAM

Y E S

3 1 4

C O M P U T E
C H E C K S U M

^ ^ \ r 3 1 6
^ V A L I D ^ \ N 0
C H E C K S U M ? —

3 0 6

E R R O R
INCOMPATIBLE IBL

BOOT R E C O R D

3 1 2

E R R O R
P O S T / B I O S LOAD E R R O R

3 1 8

E R R O R
BAD P O S T / B I O S C H E C K S U M

3 0 5

Y E S
HALT

3 2 0

SAVE S Y S T E M
PARTITION T Y P E

& P O I N T E R

3 2 2

TRANSFER TO STAGE II
P O S T

F I G . 7

25

EP 0 468 625 B1

3 5 0

3 5 8

< DATA

<

3 6 0

I N S T R U C T I O N

R E S E T 3 6 2

3 5 1

3 6 4

/ DATA/
S

\ I N S T R U C T I O N
DISK

MEDIA

F I G . 8

26

EP 0 468 625 B1

4 0 0

RECEIVE
NSTRUCTION

4 0 2 1

C^WRITE ?

C^READ ?

|NO

4 2 8

YES

4 0 4

RECEIVE
DATA IN

RBA
FORMAT

4 0 6

DENY
A C C E S S

4 1 8

RECEIVE
READ

R E Q U E S T
IN RBA
FORMAT

4 2 0

S E T

MAX RBA

4 0 8

CONVERT
R B A - - - C H S

WRITE DATA
TO DISK IN

C H S

4 2 2

CONVERT
RBA-«-CHS

4 2 4

READ DATA
FROM DISK

AT C H S

OTHER
I N S T R U C T I O N S

4 1 2

4 RETURN

F I G . 9

27

EP 0 468 625 B1

c

COLD S T A R T

P O W E R - O N

4 5 0

4 5 2

R E S E T

S I G N A L S E N T

4 5 4

E F F E C T

IBL L O A D

4 5 6

P O S T S T A G E

I E

I L
4 5 8

SET MAX R B A

BELOW I B L

M E D I A

4 6 0

B O O T

O P E R A T I N G

S Y S T E M

4 6 2

W A R M

S T A R T

4 6 4

R E S E T S I G N A L

S E N T

F I G . 1 0

28

EP 0 468 625 B1

OBTAIN SYSTEM
PARTITION TYPE

500

btl LAST BLOCK ADDRESS
ON FIXED DISK

502

ADJUST ADDRESS TO MAKE
ROOM FOR THE SYSTEM
PARTITION

504

SAVE THE ADDRESS AS A
POINTER TO THE SYSTEM
PARTITION

506

510

SET THE SYSTEM
PARTITION BOOT FLAG
EQUAL TO FALSE

bET THE SYSTEM PARTITION
3QOT FLAG EQUAL TO TRUE 5 2 6

PROTECT SYSTEM PARTITION

INVOKE BOOTSTRAP LOADER

511

512

F I G . 1 1

>9

EP 0 468 625 B1

600
\ ^ IS THE \

-^SYSTEM REFERENCE^
DISKETTE IN THE FIRST
\ D I S K E T T E D R I V E /

YES

NO

6 1 2 .

y IS THE \
S y s t e m p a r t i t i o n
b o o t f l a g e q u a l

\ j O TRUE ? /

6 1 4 ^

,
N0 CALL THE SELECTABLE

BOOT ROUTINE

I *T*
YES

616

/ IS THERE A \
VALID BOOT RECORD
NsJN THE SYSTEM .

\ p a r t i t i o n / ^

- U n o

PROMPT THE USER TO INSERT
THE SYSTEM REFERENCE
DISKETTE AND ENTER A V
ON THE KEYBOARD

I

I WAIT FOR KEYSTROKE^

619

NO ^ ^ I S THERE A ^ \ .

—INVALID SYSTEM REFERENCE
\ \ D I S K E T T E P R E S E N T ^

YES

DEACTIVATE
PROTECTION MEANS

i

MAKE THE SYSTEM
PARTITION THE ACTIVE

, PARTITION ON THE BOOT
650 y -DEVICE FIXED DISK

F I G . 1 2
6 6 0 -

READ THE BOOT RECORD
AND TRANSFER CONTROL
THE BOOT RECORD

30

EP 0 468 625 B1

7 0 0 .

V " IS THIS \ .
REQUEST FOR T H E ^

BOOT -DEVICE FIXED,
\ . DISK ?

710
A / IS T H E \

/ S Y S T E M P A R T I T I O N \
BOOT FLAG EQUAL TO TRUE

OR IS THIS A SYSTEM

\ REFERENCE DISKETTE /
\ BOOT ? ^

NO

7 2 0 . YES

SET THE BLOCK ADORESS TO
THE REQUESTED BLOCK + THE
STARTING BLOCK OF THE
SYSTEM P A R T I T I O N

PERFORM THE
REQUESTED OPERATION

F I G . 1 3

31

	bibliography
	description
	claims
	drawings

