
Europaisches Patentamt

European Patent Office

Office europeen des brevets © Publication number: 0 5 1 1 7 6 9 A 1

E U R O P E A N PATENT A P P L I C A T I O N

© Application number: 92303535.6

@ Date of filing: 21.04.92

int ci 5 G06F 13 /24

® Priority: 01.05.91 US 694161 © Applicant: International Business Machines
Corporation

@ Date of publication of application: Old Orchard Road
04.11.92 Bulletin 92/45 Armonk, N.Y. 10504(US)

© Designated Contracting States: @ Inventor: Bealkowski, Richard
DE FR GB 1401 Hummingbird Drive

Delray Beach, Florida 33444(US)
Inventor: Reid, James Darrell
600 Mission Hill Road
Boynton Beach, Florida 33435(US)

© Representative: Blakemore, Frederick Norman
IBM United Kingdom Limited Intellectual
Property Department Hursley Park
Winchester Hampshire S021 2JN(GB)

© Method and apparatus for processing interrupts in a computer system.

Oi
CO

© An interrupt subsystem in a computer system
processes shared level interrupts by direct transfer
to the single correct interrupt service routine without
an iterative transfer-of-control sequence. Direct
transfer is accomplished by comparing data in a
predetermined table with data retrieved from the I/O
device 606. When a match is found, indicating the
correct device, then control is transferred to the
interrupt handler whose address is stored in the
table 610. Provision is made for compatibility with
pre-existing iterative transfer-of-control systems 608.

600 — Hardware Interrupt

602-

604-

610-

vector to first- level
interrupt routine

check table entries
on the corresponding level

transfer control to
corresponding handler

608 s
606̂ interrupting no

device in table ? ►
| yes

Revert to old method
for compatibility

FIG. 6

Rank Xerox (UK) Business Services

1 EP 0 511 769 A1 2

Field of the Invention

This invention relates to computer systems and
in particular to a method and apparatus for permit-
ting a computer system to process hardware inter-
rupts in a direct and efficient manner.

Background of the Invention

Personal computer systems in general, and
IBM personal computers in particular, have attained
widespread use for providing computer power to
many segments of today's society. Personal com-
puter systems can usually be defined as a desk
top, floor standing, or portable computer that con-
sists of a system unit having a system processor, a
display monitor, a keyboard, one or more diskette
drives, a fixed disk storage, and an optional printer.
These systems are designed primarily to give in-
dependent computing power to a single user or
small group of users and are inexpensively priced
for purchase by individuals or businesses. Exam-
ples of such personal computer systems are IBM's
PERSONAL COMPUTER, PERSONAL COMPUT-
ER XT, PERSONAL COMPUTER AT and IBM's
PERSONAL SYSTEM/2 (hereinafter referred to as
the IBM PC, XT, AT, and PS/2 respectively)
Models 25, 30, 50, 60, 70, 80, 90, and 95.

These systems can be classified into two gen-
eral families. The first family, usually referred to as
Family 1 Models, use a bus architecture exempli-
fied by the IBM AT and other "IBM compatible"
machines. The second family, referred to as Family
2 Models, use IBM's Micro Channel bus architec-
ture exemplified by IBM's PS/2 Models 50 through
95. The bus architectures used in Family 1 and
Family 2 are well known in the art.

Beginning with the earliest personal computer
system of Family 1 models, the IBM PC, and
through the Family 2 models the central processing
unit was chosen from the Intel "86 Family" of
processors. The Intel 86 Family of processors in-
cludes the 8088, 8086, 80286, 80386, and 80486
processors commercially available from Intel Cor-
poration. The architecture of the Intel 86 Family of
processors provides an upwardly compatible in-
struction set which assists in preserving software
investments from previous processors in the 86
family. This upward compatibility of processors
which preserves the software application base is
one of the major factors which contributed to the
enormous success of the IBM PC and subsequent
models.

The IBM PC and XT were the first models of
the IBM personal computer line and used the Intel
8088 processor. The next significant change to IBM
personal computer systems was the IBM AT which
used the Intel 80286 processor. The PS/2 line

spanned several of the Intel processors. A system
similar to the PC and XT was a version of the PS/2
Model 30 which used an Intel 8086. The PS/2
Models 50 and 60 both used the Intel 80286 pro-

5 cessor. The Intel 80386 processor is used in the
IBM PS/2 Model 80 and certain versions of the IBM
PS/2 Model 70. Other versions of the IBM PS/2
Model 70, as well as the PS/2 Models 90 XP 486
and 95 XP 486, use the Intel 80486 processor. One

io of the common points in all these systems is the
use of an Intel 86 family processor. A variety of
commonly available and well known software op-
erating systems, such as DOS or OS/2, can op-
erate on various members of the Intel family of

75 processors.
The processors in the Intel 86 family support a

variety of "modes". The basic mode in the Intel 86
family is "Real" mode. Real mode is the only
operating mode of the 8088 and 8086. Real mode

20 supports a one megabyte address space. There
are no protection mechanisms available in the 8088
and 8086 processors. The 80286 supports both a
Real and "Protected" mode of operation. As the
name "Protected" implies, Protected mode pro-

25 vides a protected mode of operation. This protec-
tion prevents an application from interfering with
the operation of other applications or the operating
system. The 80286 provides extended addressing
capabilities over the 8088 and 8086 by allowing up

30 to 16 megabytes to be directly addressed. To
maintain downward compatibility the 80286 can be
operated in Real mode to emulate the Real mode
of the 8088 or 8086. The 80386 and 80486 extend
the Intel 86 family architecture even further by

35 providing the ability to address up to four
gigabytes of physical memory. The 80386 and
80486 also support a "Virtual 86" mode of opera-
tion. The Virtual 86 mode supports the operational
characteristics of the Real mode within the overall

40 confines of the protected mode environment. This
Virtual 86 mode is useful for providing a very high
level of compatibility with applications which run
under the DOS operating system.

Personal computer systems such as IBM's
45 PS/2 Models 50 through 95 utilize an interrupt

controller to manage asynchronous hardware
events called interrupt requests. An interrupt re-
quest is a signal from a device which tells an
interrupt controller that the device requires atten-

50 tion from the system. Reasons for the interrupt
request include notifying the system of available
data or posting status. There are a plurality of
interrupt signals in the system each corresponding
to an interrupt level. A plurality of devices can be

55 operating on a single level. When a plurality of
devices are operating on a single level that level is
said to be shared. The interrupt controller is elec-
trically connected to the central processor of the

2

3 EP 0 511 769 A1 4

system. This electrical connection allows the inter-
rupt controller to notify the processor of an inter-
rupt request. The interrupt controller manages
prioritization of interrupts.

The processor selects an interrupt service rou-
tine based on the level of the interrupt. More than
one hardware device can indicate an interrupt on a
shared interrupt level. These levels are shared out
of necessity because hardware interrupt levels are
a finite resource and can be quickly used up.
Therefore, even though it would be possible to
assign a unique interrupt level, the limitations
placed on the system in terms of its ability to
expand make this an undesirable alternative.
Each interrupting device must have a software in-
terrupt service routine to handle the interrupt. Cur-
rent methods for handling interrupts on shared lev-
els require an iterative process to identify the cor-
rect software interrupt service routine. This non-
direct method of identifying the correct service
routine can introduce inefficiencies as the number
of devices on a shared level increase. Each hard-
ware interrupt causes a transfer of control to one
specific memory address. The software beginning
at this address is the beginning of the first-level"
interrupt handler. The first-level interrupt handler
then transfers to a second-level interrupt handler
which will service the interrupt.

Current methods of handling interrupts vary,
but can be described as two basic types, chaining
and polling. The chaining method consists of soft-
ware routines which are chained together by point-
ers. Each routine is designed for a particular I/O
device. This places a burden on system perfor-
mance because the routine required to service the
particular I/O request may be at the end of the
chain, requiring numerous transfers of control be-
tween routines to be executed merely to locate the
desired routine. In addition, this method introduces
a system integrity problem since it allows a loada-
ble interrupt handler to alter interrupt vectors, and it
relies on the loadable interrupt handler to maintain
the interrupt chain.

A second method of handling interrupts on a
shared level system is the polling method. In this
method, the first-level interrupt handler polls each
of the second-level interrupt handlers until it finds
the interrupt handler for the device in question.
This requires a number of transfer and return of
control actions to be performed. This method intro-
duces an excessive level of overhead causing time
delays in the time-critical area of interrupt re-
sponse.

Both the chaining and polling methods require
a number of transfer-of-control sequences to ser-
vice interrupts. These transfers of control can ad-
versely affect the time it takes to respond to an
interrupt and degrade system performance. Current

methods of interrupt handling in shared interrupt
level systems have reduced system integrity due
to the ability of the second-level interrupt handler
to alter the interrupt chain and reduced system

5 performance caused by an excessive sequence of
control-transfers to identify the correct interrupt
service routine. Both methods are unable to di-
rectly access the interrupt handler in shared level
systems.

10
Disclosure of the Invention

Thus the present invention provides a com-
puter system including:

is an interrupt controller for electrical connection
to a plurality of I/O devices, said interrupt controller
comprising means for accepting interrupt signals
from each of said I/O devices, means for prioritiz-
ing the interrupt signals according to levels, and

20 means for outputting said prioritized interrupt sig-
nals;

a processor, said processor including means
for receiving said prioritized interrupt signals from
said interrupt controller;

25 storage means for holding a table, each entry
in the table being associated with an I/O device
and including data identifying the I/O device and
address data for an interrupt handler associated
with the I/O device;

30 means for determining the interrupt status of
each I/O device; and

comparison and selection means for comparing
the device identifying data for each table entry with
the I/O device interrupt status for that device and

35 directly selecting the interrupt handler address as-
sociated with that I/O device when said comparison
means indicates that the I/O device interrupt status
and the device identifying data match.

Typically the device identifying data comprises
40 an I/O address for that device and a test value. The

interrupt status is obtained from this I/O address
and compared against the test value. If a match is
obtained this indicates that the device for that table
entry is the origin of the interrupt signal, and the

45 appropriate interrupt handler routine can then be
invoked directly using the interrupt handler address
that is also stored in that table entry. Thus in the
interrupt subsystem of such a computer system the
time consuming iterative transfer-of-control se-

50 quence is replaced with a mechanism which is
capable of independently determining the single
correct interrupt service routine by comparing data
in a predetermined table with data retrieved from
the I/O device. When a match is found, indicating

55 the correct device, then control is transferred to the
interrupt handler whose address is stored in the
table.

Preferably the computer system further com-

3

5 EP 0 511 769 A1 6

prises a final entry in the table having the address
of a chaining or polling interrupt handler, said final
entry being located at the end of the table and
including device identifying data which does not
match any I/O device interrupt status; and means
for selecting said chaining or polling interrupt han-
dler when an I/O device which does not match any
other table entry presents an interrupt. This allows
compatibility to be maintained with previous ver-
sions of interrupt handlers.

The invention also provides a method for pro-
cessing interrupts in a computer system, said
method comprising the steps of:

receiving an interrupt signal and interrupt sta-
tus from at least one I/O device;

prioritizing the interrupt signal according to in-
terrupt level;

storing a table, each entry in the table being
associated with an I/O device and including data
identifying the I/O device and address data for an
interrupt handler associated with the I/O device;

comparing the device identifying data for each
table entry with the I/O device interrupt status for
that device; and

directly selecting the interrupt handler address
associated with that I/O device when said compar-
ing step indicates that the I/O device interrupt
status and the device identifying data match.

Brief Description of the Drawings

FIG. 1 illustrates interrupt handling for non-
shared interrupt vectors.
FIG. 2A illustrates the interrupt vector table in
real mode.
FIG. 2B illustrates the interrupt vector table in
protected mode.
FIG. 3A illustrates interrupt handler chaining.
FIG. 3B illustrates interrupt handler polling.
FIG. 4 illustrates a typical computer system.
FIG. 5 is a block diagram of the planar in the
computer system shown in Fig. 4.
FIG. 6 is a flow chart showing a method in
accordance with the invention.
FIG. 7 is a block diagram showing the relation-
ship between the hardware and the software
used in the method of Figure 6.
FIG. 8 shows the format of the data in the
device routing table.
FIG. 9 shows sample data in the device routing
table.

Detailed Description

To better understand the invention, a more
detailed description of the operation of prior art
systems as shown in Figs. 1-4 will first be made.
Referring now to these drawings, and in particular

to FIG. 1, hardware devices generate interrupt re-
quests 110 which are detected by an interrupt
controller device 112. The interrupt controller 112
manages these input signals according to a pre-

5 determined scheme. The interrupt controller 112
signals the central processing unit (CPU) processor
114 when it determines that an interrupt is to be
serviced. The interrupt controller 112 informs the
processor 114 which interrupt type is to be ser-

io viced. This interrupt type directly corresponds to
one of the 256 possible interrupt address pointers
118-122 that the processor can retrieve. The pro-
cessor 114 then uses this address pointer as a
means for locating the beginning address of an

is interrupt service routine 124-128. The address
pointers 118-122 and the interrupt service routines
124-128 are located in the system memory space,
usually in RAM 116. It should be noted that mem-
ory other than RAM, such as ROM or reprogram-

20 mable ROM can also be used. The processor 114
then begins executing the interrupt service routine
found at the address corresponding to the address
pointer retrieved.

The storage of address pointers for interrupt
25 service routines varies depending on the current

operating mode of the processor. Referring now to
FIG. 2A, the Real mode interrupt vector space 230-
234 is shown within the overall system address
space of RAM 116. In the Real mode each interrupt

30 vector is stored as a four byte Real mode pointer
with a total of 256 vectors available. The Real
mode vectors are located at a set of fixed ad-
dresses within the system address space 116.
Specifically, addresses 0 through 3FF hex. The

35 interrupt controller 112 contains a value which in-
dexes an interrupt request into this 256 entry vec-
tor table 230-234.

Referring now to FIG. 2B, when operating in
the Protected mode the processor 114 contains an

40 Interrupt Descriptor Table (IDT) Base value 242
and an IDT Limit value 244. These values allow the
interrupt vectors 248-254, or "gates" as they are
called in the Protected mode, to be located any-
where in the system address space of RAM 116

45 rather than the fixed locations of Real mode. The
Protected mode interrupt handler address pointers
248-254 are usually stored in RAM 116.

More than one hardware device can indicate an
interrupt on a shared interrupt level. These levels

50 are shared out of necessity because hardware in-
terrupt levels are a finite resource and can be
quickly used up. Each interrupting device must
have a software interrupt service routine to handle
the interrupt. Current methods for handling inter-

55 rupts on shared levels require an iterative process
to identify the correct software interrupt service
routine. This non-direct method of identifying the
correct service routine can introduce inefficiencies

4

7 EP 0 511 769 A1 8

as the number of devices on a shared level in-
creases. Each hardware interrupt causes a transfer
of control to one specific memory address. The
software beginning at this address is the beginning
of the "first-level" interrupt handler.

Current methods of handling shared interrupts
vary, but can be described as one of two basic
types: chaining and polling. Referring now to FIG.
3A, interrupt chaining is where the interrupt handler
pointer 300 in RAM 116 points to the beginning of
a chain of interrupt handlers 304, 308, 312. When
an interrupt is detected, control is passed to the
interrupt handler C 304 at the start of the chain. If
the interrupt service routine determines that it was
not its device that caused the interrupt, then control
is passed to the interrupt handler B 308 pointed to
by the next vector (stored address pointer 306).
Likewise, interrupt handler B 308 would address
interrupt handler A 312 through vector 310. If the
appropriate handler was interrupt handler 312 at
the end of the chain then every handler in the
chain would be executed to service the interrupt.
While shown with only three interrupt handlers for
illustrative purposes, this process can be nested
arbitrarily deep, and introduces a system integrity
problem since it allows loadable interrupt handlers
to alter interrupt vectors, and it relies on loadable
interrupt handlers to maintain the interrupt chain.

Referring now to FIG. 3B, the first-level inter-
rupt handler 324 pointed to by interrupt handler
pointer 332 in RAM 116 can poll a number of
second-level interrupt handlers 336-340 which may
also be located in RAM 116 until a corresponding
service routine is identified. This requires a number
of transfer and return of control actions to be
performed. This method introduces an excessive
level of overhead causing time delays in the time-
critical area of interrupt response.

As can be seen from the foregoing, both the
chaining and polling methods require a number of
transfer-of-control sequences to process an inter-
rupt. These transfers of control can adversely affect
the time it takes to respond to an interrupt.

Referring now to the drawings, and in particular
to FIG. 4, there is shown a Personal Computer
System 410 comprising a number of components
which are interconnected together. More particu-
larly, a system unit 412 is coupled to and can drive
an optional monitor 414 (such as a conventional
video display). A system unit 412 can also be
optionally coupled to input devices such as a key-
board 416 or a mouse 418. An optional output
device such as a printer 420 can also be con-
nected to the system unit 412. Finally the system
unit 412 may include one or more mass storage
devices such as the diskette drive 422. It should be
noted that the present invention is applicable to a
variety of computer systems utilizing interrupts, not

just those based on the Intel 86 family of proces-
sors.

As will be described below, the system unit
412 responds to input devices such as the key-

5 board 416, the mouse 418, or local area networking
interfaces. Additionally, input/output devices, such
as the diskette drive 422, display 414, printer 420,
and local area network communication system are
connected to the system unit 412 in a manner well

io known. Of course, those skilled in the art are aware
that other conventional components can also be
connected to the system unit 412 for interaction
therewith. The Personal Computer System 410 in-
cludes a processor 114 that is interconnected to a

is random access memory (RAM) 116, 560-564, a
read only memory (ROM) 586, and a plurality of
I/O devices 414, 416, 418, 420, 422.

In normal use, the Personal Computer System
410 can be designed to give independent comput-

20 ing power to a small group of users as a server or
a single user and is inexpensively priced for pur-
chase by individuals or small businesses. In opera-
tion, the processor 114 functions under an operat-
ing system such as IBM's OS/2 operating system

25 or DOS. This type of operating system includes a
BIOS interface between the I/O devices and the
operating system. BIOS is more clearly defined in
the IBM Personal System/2 and Personal Computer
BIOS Interface Technical Reference, 1988, which is

30 incorporated by reference herein. BIOS, which can
be initially stored in a ROM on a motherboard or
planar, includes diagnostic routines which are con-
tained in a power on self test section referred to as
POST.

35 Referring to FIG. 5, there is shown a block
diagram of the planar 508 in system unit 412
illustrating the various components of the planar
508. FIG. 5 further illustrates the connection of the
planar 508 to the I/O slots 546 and other hardware

40 of the Personal Computer System 410. Connected
to the planar 508 is the processor 114 which is
connected by a high speed CPU local bus 524
under control of a bus controlled timing unit 538 to
a memory control unit 550 which is further con-

45 nected to a volatile random access memory (RAM)
116. While any appropriate processor 114 can be
used, one suitable processor is the Intel 80386.

The CPU local bus 524 (comprising data, ad-
dress and control components) provides for the

50 connection of a processor 114, an optional math
coprocessor 527, a cache controller 528, and a
cache memory 530. Also coupled on the CPU local
bus 524 is a system buffer 532. The system buffer
532 is itself connected to a slower speed

55 (compared to the CPU local bus) system bus 534,
also comprising address, data and control compo-
nents. The system bus 534 extends between the
system buffer 532 and an I/O buffer 536. The

5

9 EP 0 511 769 A1 10

system bus 534 is further connected to a bus
control and timing unit 538 and a DMA unit 540.
The DMA unit 540 is comprised of a central arbitra-
tion unit 548 and a DMA controller 541. The I/O
buffer 536 provides an interface between the sys-
tem bus 534 and an optional feature bus such as
the Micro Channel bus 544. Connected to the
Micro Channel bus 544 are a plurality of I/O slots
546 for receiving Micro Channel adapter cards (not
shown) which may be further connected to an I/O
device or memory. An arbitration control bus 542
couples the DMA controller 541 and central arbitra-
tion unit 548 to the I/O slots 546 and diskette
adapter 582. Also connected to system bus 534 is
a memory control unit 550 which is comprised of a
memory controller 552, an address multiplexer 554,
and a data buffer 556. The memory control unit
550 is further connected to a random access mem-
ory as represented by the RAM module 116. The
memory controller 552 includes the logic for map-
ping addresses to and from the processor 114 to
particular areas of RAM 116. While the Personal
Computer System 410 is shown with a basic 1
megabyte RAM module 116, it is understood that
additional memory can be interconnected as repre-
sented in FIG. 5 by the optional memory modules
560 through 564.

A latch buffer 566 is coupled between the
system bus 534 and a planar I/O bus 568. The
planar I/O bus 568 includes address, data, and
control components respectively. Coupled along
the planar I/O bus 568 are a variety of I/O adapters
and other peripheral components such as the dis-
play adapter 570 (which is used to drive an op-
tional display 414), a clock 572, nonvolatile RAM
574 (hereinafter referred to as NVRAM), an inter-
rupt controller 112 (sometimes referred to as a
Programmable Interrupt Controller or PIC), a
RS232 adapter 576, a parallel adapter 578, a plu-
rality of timers 580, a diskette adapter 582, a PC
keyboard/mouse controller 584, and a read only
memory (ROM) 586. The ROM 586 includes the
BIOS which further includes POST which is used to
test the major components of the personal com-
puter system 410.

The clock 572 is used for time of day calcula-
tions. NVRAM 574 is used to store system configu-
ration data. That is, the NVRAM 574 will contain
values which describe the present configuration of
the system. For example, NVRAM 574 contains
information which describe the capacity of a fixed
disk or diskette, the type of display, the amount of
memory, etc. Furthermore, these data are stored in
NVRAM 574 whenever a special configuration pro-
gram is executed. The purpose of the configuration
program is to store values characterizing the con-
figuration of this system to NVRAM 574 which are
saved when power is removed from the system.

Connected to keyboard/mouse controller 584
are ports A and B. These ports are used to connect
a PC keyboard and mouse to the PC system.
Coupled to RS232 adapter unit 576 is an RS232

5 connector. An optional device such as a modem
can be coupled to the system through this connec-
tor.

The method described below, with reference to
FIG. 6, FIG. 7, FIG. 8, and FOG. 9, places the

io responsibility of selecting the device-level interrupt
handler in a first-level interrupt handler which acts
as a router. An interrupt handler is said to be a
first-level interrupt handler if it is directly invoked
after an interrupt without any indirection (i.e., hav-

15 ing to execute one or more other handlers in order
to locate the correct handler) before it was invoked.
This router applies a set of simple tests determined
by information stored in a table, and decides where
control is to be transferred. The router determines

20 the interrupting source and routes control directly
to the correct (second-level) device interrupt han-
dler. An interrupt handler is said to be a second-
level interrupt handler if it is invoked directly after a
first-level interrupt handler. That is, it is an interrupt

25 handler with one level of indirection preceding it.
Referring now to FIG. 6, a device signals an

interrupt 600. The interrupt is processed by the
interrupt controller 112 which relays this informa-
tion to the processor 114. The processor 114 then

30 retrieves the address pointer 602 to the interrupt
handler arid transfers execution to the instructions
604 located by the address pointer 602. The first-
level interrupt handler then consults the
"Interrupting Device Routing Table" 606 (IDRT),

35 discussed in detail with regard to FIG. 8 and FIG.
9, and determines if the interrupting device is reg-
istered in said table. If the device is not registered
in the table then control reverts back to an existing
method 608. Therefore, supported devices can di-

40 rectly select the appropriate interrupt handler while
unsupported devices can use chaining or polling to
maintain compatibility. If the device is registered
then control is then transferred to the correspond-
ing device handler routine 610.

45 Referring now to FIG. 7, a detailed diagram of
the interrupt process is shown. Hardware devices
720-724 operating on a particular interrupt level
can present interrupt requests to the system. The
interrupt controller 112 coordinates the interrupt

50 requests and presents the event to the processor
114 according to a priority scheme. The processor
114 then obtains the corresponding interrupt vector
728 for this interrupt request from a vector table
stored in system memory 116. Control is trans-

55 ferred to the first-level interrupt handler 734 pointed
to by the interrupt vector 728. This first-level inter-
rupt handler 734 determines the source of the
interrupt through information contained in the IDRT

6

11 EP 0 511 769 A1 12

735 and routes control to the correct device rou-
tine, one of 736-740. The device routine then ser-
vices the hardware device. The transfer of control
from the first-level interrupt handler (the router) 734
to the corresponding device routine is done di-
rectly. There is no chaining or polling of potential
handlers performed.

Referring now to FIG. 8, the format of an IDRT
735 is shown. Each supported device will have an
entry in the table. This table can be initialized at
system startup or entries can be created dynam-
ically during system operation. One such way to
initialize the IDRT 735 is during the stage where an
operating system is loading device drivers. During
device driver initialization the interrupt handler will
be loaded into memory. The initialization portion of
the device driver makes operating system service
calls to register the interrupt handler's presence.
This interrupt handler registration will include the
creation of a table entry based on parameters
passed to the operating system service routine by
the device driver initialization routine. As a result,
the IDRT 735 will contain predetermined table data
at the end of initialization which is related to the I/O
devices attached to the system. When an interrupt
occurs the corresponding first-level interrupt han-
dler consults the table of FIG. 8 to obtain the
DEVICE I/O ADDRESS. By querying this address,
the interrupt status of the I/O device can be ob-
tained. The value at this I/O address will be logi-
cally combined with the I/O MASK information. The
resulting value will be compared to the TEST VAL-
UE, and if found to match, control will be passed to
the HANDLER ADDRESS. Note that the device
addresses can be I/O or memory mapped and that
the handler address can be a physical address, an
offset, or a pointer. The addressing mechanism
depends on the implementation. The CONTROL
field can be used to specify a variety of options
such as but not limited to the type of logical
operation to be performed on the data value and
the I/O Mask, and the type of address present in
the handler address field.

An implementation would most likely have a
first-level interrupt handler for each hardware inter-
rupt level. A single first-level handler would intro-
duce additional overhead, but could be accom-
plished. With a separate first-level handler for each
hardware interrupt level a separate table for each
level could be maintained. If a single table is used
in an implementation each first-level handler could
search the table for its entries or maintain a pointer
into the table for direct access to its corresponding
entries.

As an example, FIG. 9 shows two devices on
hardware interrupt level 4. The first-level interrupt
handler will obtain the I/O data at I/O address
1000H and mask the value with the I/O mask of

000000001b (H denotes Hex, b denotes binary).
This value will then be compared to the test value
of 1 . If there is a match then control will be trans-
ferred to the handler address, in this case "pointer

5 a." If there was no match from the data obtained
from I/O device address 1000H the process will be
repeated with data from I/O device address 2000H.

Note that the ordering of the entries in the
table determines relative priority within the level.

io The hardware interrupt controller still maintains its
own priority mechanism for individual levels.

If the first-level interrupt handler exhausts the
table entries and the interrupt has not yet been
serviced then an existing scheme can be exercised

is in an attempt to service the interrupt, see the last
entry of FIG. 9. This scheme could be an interrupt
chain with the last entry the default interrupt han-
dler. The default interrupt handler will mask off the
interrupting level if it cannot be serviced. Masking

20 the level off prevents any further interrupts from
causing the system to fail.

Claims

25 1. A computer system including:
an interrupt controller (112) for electrical

connection to a plurality of I/O devices (414,
416), said interrupt controller comprising
means for accepting interrupt signals from

30 each of said I/O devices, means for prioritizing
the interrupt signals according to levels, and
means for outputting said prioritized interrupt
signals;

35 a processor (114), said processor including
means for receiving said prioritized interrupt
signals from said interrupt controller;

storage means (116) for holding a table
40 (735), each entry in the table being associated

with an I/O device and including data identify-
ing the I/O device and address data for an
interrupt handler associated with the I/O de-
vice;

45
means for determining the interrupt status

of each I/O device; and

comparison and selection means for com-
50 paring the device identifying data for each

table entry with the I/O device interrupt status
for that device and directly selecting the inter-
rupt handler address associated with that I/O
device when said comparison means indicates

55 that the I/O device interrupt status and the
device identifying data match.

2. A computer system as claimed in claim 1,

7

13 EP 0 511 769 A1 14

further comprising:

a final entry in the table having the ad-
dress of a chaining interrupt handler, said final
entry being located at the end of the table and 5
including device identifying data which does
not match any I/O device interrupt status; and

means for selecting said chaining interrupt
handler when an I/O device which does not 10
match any other table entry presents an inter-
rupt.

3. A computer system as claimed in claim 1,
further comprising: is

a final entry in the table having the ad-
dress of a polling interrupt handler, said final
entry being located at the end of the table and
including device identifying data which does 20
not match any I/O device interrupt status; and

means for selecting said polling interrupt
handler when an I/O device which does not
match any other table entry presents an inter- 25
rupt.

4. A method for processing interrupts in a com-
puter system, said method comprising the
steps of: 30

receiving (600) an interrupt signal and in-
terrupt status from at least one I/O device (414,
416);

35
prioritizing the interrupt signal according to

interrupt level;

storing a table (735), each entry in the
table being associated with an I/O device and 40
including data identifying the I/O device and
address data for an interrupt handler asso-
ciated with the I/O device;

comparing the device identifying data for 45
each table entry with the I/O device interrupt
status for that device; and

directly selecting the interrupt handler ad-
dress associated with that I/O device when so
said comparing step indicates that the I/O de-
vice interrupt status and the device identifying
data match.

5. A method as claimed in claim 4, further com- 55
prising the steps of:

including a final entry in the table having

the address of a chaining interrupt handler,
said final entry being located at the end of the
table and including device identifying data
which does not match any I/O device interrupt
status; and

selecting (608) said chaining interrupt han-
dler when an I/O device which does not match
any other table entry presents an interrupt.

6. A method as claimed in claim 4, further com-
prising the steps of:

including a final entry in the table having
the address of a polling interrupt handler, said
final entry being located at the end of the table
and including device identifying data which
does not match any I/O device interrupt status;
and

selecting (608) said polling interrupt han-
dler when an I/O device which does not match
any other table entry presents an interrupt.

8

p u on /'ba a i

.19,
z _

Hardware-Based
Interrupt Requests

l _

nterrupt
;ontrol1er

'AH /

.ci —

VCXi '

LCO —

nterrupt nciiiuici o

.nterrupt nanuier x

interrupt nanuiei n

ice ~

120-

118-

mterrupt veiim n

interrupt vetiur i

interrupt vettui o

y

=P 0 511 769 A1

116

234— H Interrupt Pointer For
Vector 255

400 Hex

3FC Hex

232 -

230-

Interrupt Pointer For
Vector 1

Interrupt Pointer For
Vector 0

8 Hex

4 Hex

0 Hex

FIG. 2a

116 , RAM /

114
J Processor

244 1
IDT LIMIT

242

IDT BASE
7

Gate For
Interrupt #n

h- 254

Gate For
Interrupt #n-l

252

Gate For
Interrupt #1

Gate For
Interrupt #0

250

248

FIG. 2b

10

P 0 511 769 A1

300 -

L16 i
Jit) -

Interrupt Handler ►
Pointer

304—

lib o Z- !
! /

Handler A

Handler B J

Address Pointer
of Handler A

Handler C

Address Pointer -
of Handler B

)LC

$08

FIG. 3a

332̂

116 -

Interrupt Handler ►
Pointer

324 -

Interrupt Handler
Polling Routine

110 g

► Handler A

► Handler B j

► Handler C r

/338

FIG. 3b

EP 0 511 769 A1

12

□ c

So r—i

ES :

la r r

Q-_i ZD -

r r ■4

♦ rr

)

O
I-

10 I o~

1

-4

- n r r

3 °

L
IS

in <n

EP 0 511 769 A1

600- Hardware Interrupt

602-n, vector to f i r s t - l eve l
interrupt routine

604- check table entr ies
on the corresponding
level

606^ interrupting
device in table ?

yes

610- transfer control to
corresponding handler

no

608

Revert to old method
for compatibility

FIG. 6

720 2_
Hardware Device 1

IRQ n

722 2 .
Hardware Device 2

IRQ n

724 2_
Hardware Device 3

IRQ n

734 ■

Interrupt Source
Determination and
Routing

Interrupting
Device Routing
Table

735

J L a t

Hardware Device 1
Interrupt Handler

JL /it.

Hardware Device I
Interrupt Handler

J L /48

Hardware Device i
Interrupt Handler

FIG. 7

14

EP 0 511 769 A1

735

Interrupt Device I/O I/O Mask Test Value Handler Control
Level Address Address

Note: The table is filled in dynamically as handlers are initialized.

FIG. 8

735

Interrupt Device I/O I/O Mask Test Value Handler Control
Level Address Address

4 1000H 00000001b 1 (pointer a)

4 2000H 00000110b 6 (pointer b)
4 n/a n/a n/a (pointer c) Compatibility

Chain

Flu. 9

15

J European Patent
Office

EUROPEAN SEARCH REPORT Application Number

EP 92 30 3535

DOCUMENTS CONSIDERED TO BE RELEVANT

Category Citation of document with indication, where appropriate,
of relevant passages

Relevant
to daim

CLASSIFICATION Or THE
APPLICATION qnt. CI.S)

PATENT ABSTRACTS OF JAPAN
vol. 13, no. 127 (P-848)29 March 1989
& JP-A-63 296 140 (CANON INC) 2 December
* abstract *

1988

EP-A-0 212 393 (INTERNATIONAL BUSINESS MACHINES
CORPORATION)
* page 12, line 1 - page 13, line 2; figures
3A.3B *

PATENT ABSTRACTS OF JAPAN
vol. 12, no. 271 (P-736)28 July 1988
& JP-A-63 053 649 (CANON INC) 7 March 1988
* abstract *

IBM TECHNICAL DISCLOSURE BULLETIN,
vol. 28, no. 6, November 1985, NEW YORK US
page 2636; 1 INSTRUCTION SPACE HANDLING FOR
SEVERAL INTERRUPT LEVELS'

1.4

1-6

1.4

1-6

G06F13/24

TECHNICAL FIELDS
SEARCHED (Int. CI.S)

G06F

The present search report has been drawn up for all claims
Place of March

THE HAGUE
Date of oaatiletkM of the learch
27 AUGUST 1992 NYGREN P.P.

CATEGORY OF CITED DOCUMENTS
X : particularly relevant if taken alone Y : particularly relevant if combined with another

document of the same category A : technological background O : non-written disclosure
P : intermediate document

T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date
D : document cited in the application L : document cited for other reasons
& : member of the same patent family, corresponding document

	bibliography
	description
	claims
	drawings
	search report

