
IIHIIIHIII|I||
O USOO52O875A

United States Patent (19) 11) Patent Number: 5,210,875
Bealkowski et al. (45) Date of Patent: May 11, 1993

54 INITIAL BIOS LOAD FOR A PERSONAL 4,785,361 11/1988 Brotby 360/60
COMPUTER SYSTEM 4,796,220 1/1989 Wolfe 364'900

4,817,140 3/1989 Chandra et al. 3804
75) Inventors: Richard Beakowski, Delray Beach; 5,022,077 6/1991 Bealkowski et al. 380/4

John W. Blackledge, Jr., Boca Raton;
Doyle S. Cronk, Boca Raton; Richard OTHER PUBLICATIONS
A. Dayan, Boca Raton; Scott G. Japanese PUPA 61-199127-and Translation-"Micro
Kinnear, Boca Raton; George D. program Storing System'.
Kovach, Boca Raton, all of Fla.; Japanese PUPA 62-162140-and Translation-"Com
Matthew S.Palka, Jr., Raleigh, N.C.; puter system".
Robert Sachsenmaier, Boca Raton, Japanese PUPA 63-25459-and Translation-"Micropro
Fla.; Kevin M. Zyvoloski, Raleigh, gram Controlling Type Data Processing System".
N.C. Japanese PUPA 63-126056-and Translation-"Terminal

73) Assignee: International Business Machines Unit Control System'.
Corporation, Armonk, N.Y. IBM Technical Disclosure Bulletin, vol. 21, No. 2, Jul.,

ira. 1978 "Preventing Unauthorized Access to Diskette * Notice: The portion of the term of this patent Loaded Microcode'.
subsequent to Jun. 4, 2008 has been IBM Application System/400 System Support Diag
disclaimed. nostic Aids (vol. 1).

(21) Appl. No.: 398,865 IBM Enterprise Systems Architecture/370-Principles
(22 Filed: Aug. 25, 1989 of Operation.

Primary Examiner-David L. Clark
Assistant Examiner-Peter Y. Wang
Attorney, Agent, or Firm-Stephen A. Terrile; Winfield
J. Brown, Jr.

51) Int. Cl. .. G06F 9/06
52 U.S. C. 395/700; 364/DIG. 1;

364/254.6; 364/280.2; 364/280.9, 364/254.2;
364/251.5; 340/825.31; 340/825.34

58) Field of Search 364/200, 900; 395/700 (57) ABSTRACT
(56) References Cited An apparatus and method for loading BIOS stored on a

U.S. PATENT DOCUMENTS direct access storage device into a personal computer
system. The personal computer system comprises a

3,931,5041/1976 Jacoby................................ 23.5/153 system processor, a system planar, a randon access
3,996,449 12/1976 Attanasio 24 main memory, a read only memory, and at least one
is: 3: E. 28 direct access storage device. The first portion of BIOS

4,525,599 6/1985 E. t "is/ios initializes the system and the direct access storage de
4,562,306 12/1985 Chou 18/220 vice to read in a master boot record into the system
4,577,289 3/1986 Comerford et al. 364/900 from the direct access storage device. The master boot
4,593,353 6/1986 Pickholtz 364/200 record includes a data segment and an executable code
4,654,783 3/1987 Veres et al. . ., 364/200 segment. The first BIOS portion vectors the system
4,663,707 5/1987 Dawson 39/20 processor to execute the executable code segment of the
4,685,055 8A1987 Thomas 364/200 naster boot record. The executable code segment loads
: A3, Edale Jr. et al. -- 2: in the remaining BIOS portion from the direct access

4,747,139 5/1988 Taaffe .. .07 storage device into random access memory.
4,748,561 5/1988 Brown 36/300
4,757,534 7/1988 Matyas 380/25 27 Claims, 10 Drawing Sheets

e OVRMEW

STAGE POS (now BASID)
TAZES AND ISS 2

U.S. Patent May 11, 1993

POST STAGE

INTIAL BIOS LOAD
ROUTINE

DISKETTE

HARD FLE

WIDEO

DAGNOSTIC
PANEL

HARDWARE
COMPATIBILITY

DATA

ROM-BIOS
FIG 3

Sheet 3 of 10 5,210,875

U.S. Patent May 11, 1993 Sheet 4 of 10 5,210,875

BL OVERWEW

POST COLD START ENTRY POINT 100

STAGE 1 POST (ROM BASED)
INTIALIZES AND TESS 102

SYSTEM FUNCTIONS NEEDED
FOR BL FROM MEDIA

B ROM ROUTINE
READS BOOT RECORD FROM 104
SELECTED MEDIA TO RAM
AND TRANSFERS CONTROL

RESET 107

IB BOOT RECORD
READ STAGE POSTABIOS
125R.E.Eio - 0 | Poit RT --108 RAM AND TRANSFERS CONTROL

110 STAGE || POST (RAM BASED)
INTIALZES AND TESTS

REST OF SYSTEM NEEDED
FOR PL SEQUENCE

INTIAL PROGRAM LOAD
112 LOADS OPERATING SYSTEM

BOOT RECORD FROM MEDIA
AND TRANSFERS CONTROL

BLOVERVIEW
FIG. 4 114

U.S. Patent

FIG. 5

May 11, 1993 Sheet 5 of 10

122u MBR giFER

120-1 Rico 55Suent

124-1 MBR PATTERN
126 MBR WERSION DATA

128-1 SYSTEM PARTITION PTR

136 COMPATIBLE PROCESSOR
MODEL & SUBMODEL BYTES

SECOND BLOCK LENGTH

LAST BLOCK POINTER

LAST BLOCK LENGTH

5,210,875

138

U.S. Patent May 11, 1993 Sheet 6 of 10 5,210,875

150 INITIALIZE HARD DRIVE

DRIVE

C IBLMED

ERROR
NVALID DISK MASTER

BOOT RECORD

156

COMPATIBLE
IBL RECORD

ERROR
INCOMPATIBLE MASTER

BOOT RECORD

162
INVOKE MASTER
BOOT RECORD

VALID NO 166
2ASSWORD IN CMOS

DRIVE INTIALIZE
DISKETTE A Blity

ERROR
NVALID DISKETTE

MASTER BOOT RECORD

ERROR
DISKETTE RECOVERY

PREVENTED

FIG. 6A

U.S. Patent May 11, 1993 Sheet 7 of 10 5,210,875

GET DRIVE PARAMETERS1

FBL LOAD LOCATION 202
LAST 3 SECTORS ON MEDIA

LOAD COUNT E 1 204 226
206

READ THREE SECTORS AT |BL LOAD LOCATION -
B LOAD LOCATION BL LOAD LOCATION - 1

208

MEDIA YES ERROR (AH=2 OAD FRO ove SEurt
216 NO 210

BL ID INCREMENT LOAD
COUNT BY

YES
LOAD

222 COUNT, < 99

NO

ERROR E. BAD DRIVE C BL MEDIA

& CHECKSUM WALD

218 212

RETURN 214 FIG 6B REur

U.S. Patent May 11, 1993 Sheet 8 of 10 5,210,875

GET DRIVE PARAMETERSh'

BL LOAD LOCATION E 232
LAST 3 SECTORS ON MEDIA

READ THREE SECTORS AT 234
BL LOAD LOCATION

238
236

MEDIA YES ERROR (AL=2
LOAD FR DRIVE A BL LOAD fue

ERROR (AL=1)
BAD DRIVE A BL RECORD & CHECKSM WALD

CLEAR CARRY FLAG SET CARRY FLAG 240

RETURN 242

FIG 60

U.S. Patent May 11, 1993 Sheet 9 of 10 5,210,875

260
SYSTEM

PSE" MODEL/SUBMODEL YES
COMPATIBLE WITH PLANAR ID BYTES IN BL RECORD

COMPATIBLE PROCESSOR
STRING STRING

ERROR (AX=1)
IBL BOOT RECORD

PLANARD NCOMPATIBLE
ERROR %cil IBL BOOT RECORD

MODEL AND SUBMODEL
INCOMPATIBLE

SYSTEM
MODEL/SUBMODEL

BYTES MATCH NVRAM
VALUES

BAD PLANAR/PROCESSOR
CARD CONFIGURATION

ERROR E.

SET CARRY CLEAR CARRY

FIG. 6D

U.S. Patent May 11, 1993 Sheet 10 of 10 5,210,875

300 302

UNIQUE NO ERROR
PATER, N ROM NO PATTERN IN ROM

ERROR
INCOMPATIBE BL
BOOT RECORD

304
COMPATIBLE
IBL RECORD

308

LOAD POST/BIOS
MEDIA IMAGE
INO RAM

310
MEDIA

LOAD ERROR
314

ERROR
POST/BIOS LOAD ERROR

COMPUTE
CHECKSUM

316

ERROR
BAD POST/BIOS CHECKSUM

3.18
YES HALT 305

SAVE SYSTEM
PARTITION TYPE 520 TRANSFER TO STAGE Ilu-322
AND POINTER POST

FIG 7

5,210,875
1.

NITAL BIOS LOAD FOR A PERSONAL
COMPUTER SYSTEM

CROSS REFERENCE TO RELATED PATENT
APPLICATIONS

The present patent application is one of a group of
copending applications which concern the same overall
computer system but which individually claim different
inventive concepts embodied in such computer system.
These related patent applications were filed on the same
date, namely Aug. 25, 1989, are specifically incorpo
rated by reference herein, and are more particularly
described as follows:

(1) Application Ser. No. 07/399,631, entitled "An
Apparatus and Method for Loading BIOS from a Dis
kette in a Personal Computer System", now abandoned
the inventors being Bealkowski et al;

(2) Application Ser, No. 07/398,860, entitled "An
Apparatus and Method for Decreasing the Memory
Requirements for BIOS in a Personal Computer Sys
tem", now U.S. Pat. No. 5,136713 the inventors being
Bealkowski et al.; and

(3) Application Ser. No. 07/398,820, entitled "An
Apparatus and Method for Preventing Unauthorized
Access to BIOS in a Personal Computer System", now
U.S. Pat. No. 5,022,077 the inventors being Bealkowski
et al.

FIELD OF THE INVENTION

This invention relates to personal computer systems
and in particular to a method and device for installing
BIOS into a personal computer system.

BACKGROUND DISCUSSION

Personal computer systems in general and IBM per
sonal computers in particular have attained widespread
use for providing computer power to many segments of
today's modern society. Personal computer systems can
usually be defined as a desktop, floor standing, or por
table microcomputer that consists of a system unit hav
ing a single system processor, a display monitor, a key
board, one or more diskette drives, a fixed disk storage,
and an optional printer. One of the distinguishing char
acteristics of these systems is the use of a motherboard
or system planar to electrically connect these compo
nents together. These systems are designed primarily to
give independent computing power to a single user and
are inexpensively priced for purchase by individuals or
small businesses. Examples of such personal computer
systems are IBM's PERSONAL COMPUTER AT and
IBM's PERSONAL SYSTEM/2 Models 25, 30, 50, 60,
70 and 80,
These systems can be classified into two general fami

lies. The first family, usually referred to as Family I
Models, use a bus architecture exemplified by the IBM
PERSONAL COMPUTER AT and other "IBM con
patible" machines. The second family, referred to as
Family II Models, use IBM's MICROCHANNEL bus
architecture exemplified by IBM's PERSONAL SYS
TEM/2 Models 50 through 80.

Beginning with the earliest personal computer system
of the family I models, such as the IBM Personal Com
puter, it was recognized that software compatibility
would be of utmost importance. In order to achieve this
goal, an insulation layer of system resident code, also
referred to as "microcode', was established between
the hardware and software. This code provided an

5

10

15

25

30

35

40

45

50

55

60

65

2
operational interface between a user's application pro
gram?operating system and the device to relieve the
user of the concern about the characteristics of hard
ware devices. Eventually, the code developed into a
BASIC input/output system (BIOS), for allowing new
devices to be added to the system, while insulating the
application program from the peculiarities of the hard
ware. The importance of BIOS was immediately evi
dent because it freed a device driver from depending on
specific device hardware characteristics while provid
ing the device driver with an intermediate interface to
the device. Since BIOS was an integral part of the sys
ten and controlled the movement of data in and out of
the system processor, it was resident on the system
planar and was shipped to the user in a read only mem
ory (ROM). For example, BIOS in the original IBM
Personal Computer occupied 8K of ROM resident on
the planar board.
As new models of the personal computer family were

introduced, BIOS had to be updated and expanded to
include new hardware and I/O devices. As could be
expected, BIOS started to increase in memory size. For
example, with the introduction of the IBM PER
SONAL COMPUTER AT, BIOS grew to require 32K
bytes of ROM.
Today, with the development of new technology,

personal computer systems of the Family II models are
growing even more sophisticated and are being made
available to consumers more frequently. Since the tech
nology is rapidly changing and new I/O devices are
being added to the personal computer systems, modifi
cation to the BIOS has become a significant problem in
the development cycle of the personal computer sys
ter,

For instance, with the introduction of the IBM Per
sonal System/2 with MICROCHANNEL architecture,
a significantly new BIOS, known as advanced BIOS, or
ABIOS, was developed. However, to maintain software
compatibility, BIOS from the Family I models had to be
included in the Family II models. The Family I BIOS
became known as Compatibility BIOS or CBIOS.
However, as previously explained with respect to the
IBM PERSONAL COMPUTER AT, only 32K bytes
of ROM were resident on the planar board. Fortu
nately, the system could be expanded to 96K bytes of
ROM. Unfortunately, because of system constraints,
this turned out to be the maximum capacity available
for BIOS. Luckily, even with the addition of ABIOS,
ABIOS and CBIOS could still squeeze into 96K of
ROM. However, only a small percentage of the 96K
ROM area remained available for expansion. With the
addition of future I/O devices, CBIOS and ABIOS will
eventually run out of ROM space. Thus, new I/O tech
nology will not be able to be easily integrated within
CBIOS and ABIOS.
Due to these problems, plus the desire to make modi

fication in Family II BIOS as late as possible in the
development cycle, it has become necessary to offload
portions of BIOS from the ROM. Since marketability
and consumer acceptance of personal computer systems
appear to require the ability to add new I/O devices and
to minimize cost, it should be appreciated that easy
modification of Family II models' BIOS is a substantial
factor in achieving success in accordance with this
invention. Thus, there exists a need for developing a
method and apparatus which permits portions of BIOS
to be stored on a direct access storage device such as a

5,210,875
3

fixed disk or on the diskette drive. These portions can
then be easily modified and loaded into the personal
computer system when required.

SUMMARY OF THE INVENTION 5

The present invention has been developed for the
purpose of alleviating the above mentioned problems.
Accordingly, the invention has as one of its objects an
apparatus and method for increasing the number of
devices BIOS supports by storing a portion of BIOS on 10
a direct access storage device.

Another objective of the present invention is to pro
vide an apparatus and method for loading BIOS from a
direct access storage device into main memory.
Yet another objective of the present invention is to 15

provide an apparatus and method which confirms the
compatibility between BIOS and the personal computer
system.
Another objective of the present invention is the

ability to verify the system configuration before loading 20
BIOS from the direct access storage device.
Broadly considered, a personal computer system

according to the present invention comprises a system
processor, a random access main memory, a read only
memory, and at least one direct access storage device. 25
The read only memory includes a first portion of BIOS.
The first portion of BIOS initializes the system proces
sor and the direct access storage device to read a master
boot record from the direct access storage device into
the randon access memory. 30
The master boot record includes a data segment and

an executable code segment. The data segment includes
data representing system hardware and a system config
uration which is supported by the master boot record.
The first BIOS portion confirms the master boot record 35
is compatible with the system hardware by verifying
the data from the data segment of the master boot re
cord agrees with data included within the first BIOS
portion representing the system processor, system pla
nar, and planar I/O configuration. 40

If the master boot record is compatible with the sys
tem hardware, the first BIOS portion vectors the sys
tem processor to execute the executable code segment
of the master boot record. The executable code segment
confirms that the system configuration has not changed 45
and loads in the remaining BIOS portion from the direct
access storage device into random access memory. The
executable code segment then verifies the authenticity
of the remaining BIOS portion and vectors the system
processor to begin executing the BIOS now in random 50
access memory. BIOS, executing in random access
memory, then boots up the operating system to begin
operation of the personal computer system. The first
BIOS portion, being no longer addressable and super
seded by the remaining BIOS portion, is abandoned. 55
BRIEF DESCRIPTION OF THE DRAWINGS
The foreground aspects and other features of the

present invention are explained in the following written
description, taken in connection with the accompanying 60
drawings, wherein:

FIG. 1 illustrates a cut away view of a personal con
puter system showing a system planar board connected
to a plurality of direct access storage devices;

FIG. 2 shows a system block diagram for the personal 65
computer system of FIG. 1;
FIG. 3 is a memory map for the ROM BIOS included

on the planar board;

4.
FIG. 4 is a flowchart describing the overall process

for loading a BIOS image from a direct access storage
device;

FIG. 5 illustrates the record format for the master
boot record;
FIG. 6A is a flowchart describing the operation of

the IBL routine;
FIG. 6B is a flowchart showing the steps for loading

a BIOS image from a fixed disk;
FIG, 6C is a flowchart showing the steps for loading

the BIOS image from a diskette;
FIG, 6D is a flowchart showing greater detail in

checking the compatibility between the master boot
record and the planar/processor; and

FIG. 7 is a detailed flowchart showing the operation
of the executable code segment of the master boot re
cord.

DESCRIPTION OF A PREFERRED
EMBOOMENT

The following detailed description is of the best pres
ently contemplated mode for carrying out the inven
tion. This description is not to be taken in a limiting
sense but is made merely for the purpose of illustrating
the general principles of the invention since the scope of
the invention is best defined by the appending claims.

Referring now to the drawings, and in particular to
FIG. 1, there is shown a cutaway version of a personal
computer system 10, having a plurality of DASD (Di
rect Access Storage Devices) 12-16 connected to a
system or planar board 24 through a plurality of I/O
slots 18. A power supply 22 provides electrical power
to the system 10 in a manner well known. The planar
board 24 includes a system processor which operates
under the control of computer instructions to input,
process, and output information.

In use, the personal computer system 10 is designed
primarily to give independent computing power to a
small group of users or a single user and is inexpensively
priced for purchase by individuals or small businesses.
In operation, the system processor operates under an
operating system, such as IBM's OS/2 Operating Sys
tem or PC-DOS. This type of operating system includes
a BIOS interface between the DASD 12-16 and the
Operating System. A portion of BIOS divided into
modules by function is stored in ROM on the planar 24
and hereinafter will be referred to as ROM-BIOS. BIOS
provides an interface between the hardware and the
operating system software to enable a programmer or
user to program their machines without an indepth
operating knowledge of a particular device. For exam
ple, a BIOS diskette module permits a programmer to
program the diskette drive without an indepth knowl
edge of the diskette drive hardware. Thus, a number of
diskette drives designed and manufactured by different
companies can be used in the system. This not only
lowers the cost of the system 10, but permits a user to
choose from a number of diskette drives.

Prior to relating the above structure to the present
invention, a summary of the operation in general of the
personal computer system 10 may merit review. Refer
ring to FIG. 2, there is shown a block diagram of the
personal computer system 10. FIG. 2 illustrates compo
nents of the planar 24 and the connection of the planar
24 to the I/O slots 18 and other hardware of the per
sonal computer system. Located on the planar 24 is the
system processor 26 comprised of a microprocessor
which is connected by a local bus 28 to a memory con

5,210,875
5

troller 30 which is further connected to a random access
memory (RAM) 32. While any appropriate micro
processor can be used, one suitable microprocessor is
the 80386 which is sold by Intel,
While the present invention is described hereinafter

with particular reference to the system block diagram
of FIG. 2, it is to be understood at the outset of the
description which follows, it is contemplated that the
apparatus and methods in accordance with the present
invention may be used with other hardware configura
tions of the planar board. For example, the system pro
cessor could be an Intel 80286 or 80486 microprocessor.

Accessible by the processor is a planar identification
number (planar ID). The planar ID is unique to the
planar and identifies the type of planar being used. For
example, the planar ID can be hardwired to be read
through an I/O port of the system/processor 26 by
using switches.
The local bus 28 is further connected through a bus

controller 34 to a read only memory (ROM) 36 on the
planar 24.
An additional nonvolatile memory (NVRAM) 58 is

connected to the microprocessor 26 through a serial/-
parallel port interface 40 which is further connected to
bus controller 34. The nonvolatile memory can be
CMOS with battery backup to retain information when
ever power is removed from the system. Since the
ROM is normally resident on the planar, model and
submodel values stored in ROM are used to identify the
system processor and the system planar I/O configura
tion respectively. Thus these values will physically
identify the processor and planar I/O configuration.
The NVRAM is used to store system configuration
data. That is, the NVRAM will contain values which
describe the present configuration of the system. For
example, NVRAM contains information describing the
capacity of a fixed disk or diskette, the type of display,
the amount of memory, time, date, etc. Additionally,
the model and submodel values stored in ROM are
copied to NVRAM whenever a special configuration
program, such as SET Configuration, is executed. The
purpose of the SET Configuration program is to store
values characterizing the configuration of the system in
NVRAM. Thus for a system that is configured prop
erly, the model and submodel values in NVRAM will
be equal respectively to the model and submodel values
stored in ROM. If these values are not equal, this indi
cates that the configuration of the system has been mod
ified. Reference is made to FIG. 6D, where this feature
in combination with loading BIOS is explained in
greater detail.

Continuing, our discussion with reference to FIG. 2,
the bus controller 34 is further coupled to I/O slots 18,
the serial/parallel interface 40 and peripheral controller
42 by an I/O planar bus 43. The peripheral controller 42
is further connected to a keyboard 44, mouse 46, diag
nostic panel 47, and diskette controller 64. Beside the
NVRAM 58, the serial/parallel interface 40 is further
connected to a serial port 48 and parallel port 50 to
input/output information to a printer, hard copy device,
etc. As is well known in the art, the local bus 28 can also
be connected to a cache controller 52, a cache memory
68, a co-processor 54, and a DMA controller 56.
The system processor 26 controls its internal opera

tion as well as interfacing with other elements of the
personal computer system 10. For example, system
processor 26 is shown connected to a small computer
system interface (SCSI) I/O card 60 which is further

5

O

15

25

30

35

45

55

65

6
connected to a DASD, such as a fixed disk drive 62. It
is to be understood that other than a SCSI disk drive
can be used as a fixed disk in accordance with the pres
ent invention. In addition to the fixed disk 62, the sys
tem processor 26 can be interfaced to the diskette con
troller 64 which controls a diskette drive 66. With re
spect to terminology, it is also to be understood that the
term "hardfile' describes fixed disk drive 62 while the
term "floppy" also describes diskette drive 66.

Previous to the present invention, ROM 36 could
include all of the BIOS code which interfaced the oper
ating system to the hardware peripherals. According to
one aspect of the present invention, however, ROM 36
is adapted to store only a portion of BIOS. This portion,
when executed by the system processor 26, inputs from
either the fixed disk 62 or diskette 66 a second or re
maining portion of BIOS, hereinafter also referred to as
a BIOS image. This BIOS image supersedes the first
BIOS portion and being an integral part of the system is
resident in main memory such as RAM. 32. The first
portion of BIOS (ROM-BIOS) as stored in ROM 36
will be explained generally with respect to FIGS. 3-4
and in detail with respect to FIGS. 6A-D. The second
portion of BIOS (BIOS image) will be explained with
respect to FIG. 5, and the loading of the BIOS image
with respect to FIG. 7. Another benefit from loading a
BIOS image from a DASD is the ability to load BIOS
directly into the system processor's RAM. 32. Since
accessing RAM is much faster than accessing ROM, a
significant improvement in the processing speed of the
computer system is achieved.
The explanation will now proceed to the operation of

the BIOS in ROM 36 and to the operation of loading the
BIOS image from either the fixed disk or diskette. In
general, ROM-BIOS prechecks the system and loads a
BIOS master boot record into RAM. The master boot
record includes a data segment having validation infor
mation and a code segment having executable code.
The executable code uses the data information to vali
date hardware compatibility and system configuration.
After testing for hardware compatibility and proper
system configuration, the executable code loads the
BIOS image into RAM. The BIOS image succeeds
ROMBIOS and loads the operating system to begin
operation of the machine. For purposes of clarity, the
executable code segment of the master boot record will
be referred to as MBR code while the data segment will
be referred to as MBR data.

Referring to FIG. 3 there is a memory map showing
the different code modules which comprise ROM
BIOS. ROM-BIOS includes a power on self test
(POST) stage I module 70, an Initial BIOS Load (IBL)
Routine module 72, a Diskette module 74, a hardfile
module 76, a video module 78, a diagnostic-panel mod
ule 80, and hardware compatibility data 82. Briefly,
POST Stage 70 performs system pre-initialization and
tests. The IBL routine 72 determines whether the BIOS
image is to be loaded from disk or diskette, checks com
patibility and loads the master boot record. Diskette
module 74 provides input/output functions for a dis
kette drive. Hardfile module 76 controls I/O to a fixed
disk or the like. Video module 78 controls output func
tions to a video IMO controller which is further con
nected to a video display. Diagnostic panel module 80
provides control to a diagnostic display device for the
system. The hardware compatibility data 82 includes
such values as a system model and submodel values
which are described later with respect to FIG. 5.

5,210,875
7

Referring now to FIG. 4, there is shown a process
overview for loading a BIOS image into the system
from either the fixed disk or the diskette. When the
system is powered up, the system processor is vectored
to the entry point of POST Stage I, step 100. POST
Stage I initializes the system and tests only those system
functions needed to load BIOS image from the selected
DASD, step 102. In particular, POST Stage I initializes
the processor/planar functions, diagnostic panel, mem
ory subsystem, interrupt controllers, timers, DMA sub
system, fixed disk BIOS routine (Hardfile module 76),
and diskette BIOS routine (Diskette module 74), if nec
essary.

After POST Stage I pre-initializes the system, POST
Stage I vectors the system processor to the Initial BIOS
Load (IBL) routine included in the Initial BIOS Load
module 72. The IBL routine first, determines whether
the BIOS image is stored on fixed disk or can be loaded
from diskette; and second, loads the master boot record
from the selected media (either disk or diskette) into
RAM, step 104. The master boot record includes the
MBR data and the MBR code. The MBR data is used
for verification purposes and the MBR code is executed
to load in the BIOS image. A detailed description of the
operation of the IBL routine is presented with respect
to FIGS. 6A-D,
With continuing reference to FIG, 4, after the IBL

routine loads the master boot record into RAM, the
system processor is vectored to the starting address of
the MBR code to begin execution, step 106. The MBR
code performs a series of validity tests to determine the
authenticity of the BIOS image and to verify the config
uration of the system. For a better understanding of the
operation of the MBR code, attention is directed to
FIG. 7 of the drawings wherein the MBR code is de
scribed in greater detail.
On the basis of these validity tests, the MBR code

loads the BIOS image into RAM and transfers control
to the newly loaded BIOS image in main memory, step
108. In particular, the BIOS image is loaded into the
address space previously occupied by ROM-BIOS.
That is if ROM-BIOS is addressed from EOOOOH thru
FFFFFH, then the BIOS image is loaded into this
RAM address space thus superseding ROM-BIOS.
Control is then transferred to POST Stage II which is
included in the newly loaded BIOS image thus aban
doning ROM-BIOS. POST Stage II, now in RAM,
initializes and tests the remaining system in order to
load the operating system boot, step 110. After the
system is initialized and tested, Stage II POST transfers
control to the operating system boot to load the operat
ing system, steps 112-114. It is noted that during a warm
start, the processor is vectored to step 108, bypassing
steps 100-106.

For clarity, it is appropriate at this point to illustrate
a representation for the format of the master boot re
cord. Referring to FIG. 5, there is shown the master
boot record. The boot record includes the executable
code segment 120 and data segments 122-138. The
MBR code 120 includes DASD dependent code respon
sible for verifying the identity of the ROM-BIOS,
checking that the IBL boot record is compatible with
the system, verifying the system configuration, and
loading the BIOS image from the selected DASD (disk
or diskette). The data segments 122-138 include infor
mation used to define the media, identify and verify the
master boot record, locate the BIOS image, and load
the BIOS image.

5

O

5

20

25

30

35

40

45

50

55

60

65

8
The master boot record is identified by a boot record

signature 122. The boot record signature 122 can be a
unique bit pattern, such as a character string "ABC", in
the first three bytes of the record. The integrity of the
master boot record is tested by a checksum value 132
which is compared to a computed checksum value
when the boot record is loaded. The data segments
further include at least one compatible planar ID value
134, compatible model and submodel values 136. The
master boot record's planar ID value defines which
planar that the master boot record is valid for. Simi
larly, the master boot record's model and submodel
values define the processor and planar I/O configura
tion respectively that the master boot record is valid
for. It is noted that the boot record's signature and
checksum identify a valid master boot record, while the
boot record's planar ID, boot record's model and boot
record's submodel comparisons are used to identify a
boot record compatible with the system and to deter
mine if the system configuration is valid. Another value,
boot record pattern 124 is used to determine the validity
of the ROM-BIOS. The boot record pattern 124 is com
pared to a corresponding pattern value stored in ROM.
If the values match this indicates that a valid ROM
BIOS has initiated the load of a BIOS image from the
selected media.
The following description further describes in greater

detail each of the values in the master boot record and
their functions:
MBR. Identifier (122): The first three bytes of the IBL

boot record can consist of characters, such as "ABC".
This signature is used to identify a boot record.
MBR Code Segment (120): This code verifies the

compatibility of the boot record with the planar and
processor by comparing corresponding planar id and
model/submodel values. If these values match, it will
load the BIOS image from the chosen media to system
RAM. If the system image (BIOS image loaded into
memory) checksum is valid and no media load errors
occur, the MBR code will transfer control to the POST
Stage II routine of the system image.
MBR Pattern (124): The first field of the IBL boot

record data segment contains a pattern, such as a char
acter string "ROM-BIOS 1989". This string is used to
validate the ROM-BIOS by comparing the Boot Pat
tern value to the corresponding value stored in ROM
(ROM-Pattern).
MBR Version Date (126): The master boot record

includes a version date for use by an update utility.
System Partition Pointer (128): The data segment

contains a media pointer to the beginning of the media
system partition area for use by Stage II POST. On an
IBL diskette, the pointer is in track-head-sector format;
on disk the pointer is in Relative Block Address (RBA)
format.

System Partition Type (130): The system partition
type indicates the structure of the media system parti
tion. There are three types of system partition structures
-- full, minimal and not present. The full system parti
tion contains the setup utility and diagnostics in addition
to the BIOS image and master boot record. The mini
mal system partition contains just the BIOS image and
master boot record. It may occur where a system does
not have access to a hardfile having an IBL image, in
this circumstance the system partition type indicates not
present. In this instance, IBL will occur from the dis
kette. These three system partition types allow flexibil

5,210,875
ity in how much space the system partition takes up on
the media,
Checksum value (132): The checksum value of the

data segment is initialized to generate a valid checksum
for the record length value (1.5k bytes) of the master
boot record code,
MBR Planar ID Value (134): The data segment in

cludes a value, such as a string of words defining com
patible planar IDs. Each word is made up of a 16 bit

5

planar ID and the string is terminated by word value of 10
zero. If a system's planar ID matches the planar ID
value in the master boot record, such as one of the
words in the string, the IBL media image is compatible
with the system planar. If the system's planar ID does
not match any word in the string, the IBL media image
is not compatible with the system planar.
MBR model and submodel values (136): The data

segment includes values, such as a string of words defin
ing compatible processors. Each word is made up of a
model and submodel value and the string is terminated
by a word value of zero. If a system's model and sub
model value (stored in ROM) match one of the words in
the string, the IBL media image is compatible with the
system processor. If the ROM model and ROM sub
model values do not match any word in the string, the
IBL media image is not compatible with the system
processor.
MBR Map length (138): The IBL map length is ini

tialized to the number of media image blocks. In other
words, if the BIOS image is broken into four blocks, the
map length will be four indicating four block pointer/-
length fields. Usually this length is set to one, since the
media image is one contiguous 128k block.
MBR Media Sector Size (138): This word value is

initialized to the media sector size in bytes per sector.
Media image block pointer (138): The media image

block pointer locates a system image block on the me
dia. Normally, there is only one pointer since the media
image is stored as one contiguous block. On an IBL
diskette, the pointers are in track-head-sector format; on
disk the pointers are relative block address format.
Media image block length (138): The media image

block length indicates the size (in sectors) of the block
located at the corresponding image block pointer. In the
case of a 128k contiguous media image, which includes
space for BASIC, this field is set to 256, indicating that
the BIOS image block takes up 256 sectors (512 bytes/-
sector) starting at the media image block pointer loca
tion,

Referring now to FIGS. 6A-D, there is shown a
detailed flow chart of the operation of the IBL routine.
Under normal circumstances, the IBL routine loads the
master boot record from the system fixed disk into
RAM at a specific address and then vectors the system
processor to begin executing the code segment of the
master boot record. The IBL routine also contains pro
visions for a diskette default mode in which the master
boot record can be loaded from diskette. However, the
IBL routine does not allow the diskette default mode to
be performed if the system contains the IBL media on
the system fixed disk and a valid password is present in
NVRAM. The user has the option of setting the pass
word in NVRAM. The purpose of preventing the dis
kette default mode from being effected is to prevent
loading an unauthorized BIOS image from diskette. In
other words, the diskette default mode is used only
when a system fixed disk is not operational and the user
has indicated (by not setting the password) the desire to

5

20

25

30

35

45

55

65

10
be able to load from the diskette. If the IBL routine is
not able to load the master boot record from either
media, an error message is generated and the system is
halted.

Referring now to FIG. 6A, under normal circum
stances the system will contain a system fixed disk
which the IBL routine initializes, step 150. Assume for
purposes of illustration that the fixed disk is configured
for Drive C of the personal computer system. Similarly,
assume Drive A is designated as the diskette drive. The
IBL routine then examines Drive C to determine
whether it contains IBL media, step 152. Attention is
directed to FIG. 6B which describes in detail this pro
cess. The IBL routine starts reading from the fixed disk
at the last three sectors and continues reading, decre
menting the media pointer, for 99 sectors or until a valid
master boot record is found. If a master boot record is
found, it is checked for system planar and processor
compatibility, step 156. If it is not planar or processor
compatabile, then an error is reported, step 158. Refer
ring back to step 152, if no master boot record is found
on the last 99 sectors of the fixed disk (primary hardfile),
an error is reported, step 154.

Referring back to step 156, if a master boot record is
found, a series of validity checks are performed to de
termine if the master boot record is compatible with the
computer system. Additionally, the configuration of the
system is checked. Attention is directed to FIG. 6D
which discloses this process in greater detail. If the boot
record is compatible with the planar ID, model and
submodel, and if furthermore the system configuration
has not changed the master boot record is loaded and
the code segment of the master boot record is executed,
step 160.

Referring back to steps 154 and 158, if an error occurs
in loading the master boot record from the fixed disk or
if a fixed disk is not available, the IBL routine deter
mines if a valid password is included in NVRAM, step
162. This password determines whether the BIOS
image can be loaded from diskette. Note that the pass
word will exist only upon being installed by the user
running a setup utility. If a password is installed in
NVRAM, the BIOS image is prevented from being
loaded from diskette, step 164. This permits the user to
ensure the integrity of the operation of the system by
causing the system to be loaded only with the BIOS
image on the fixed disk. The password can take the form
of a string of characters stored in NVRAM.

Referring back to step 162, if a valid password in
NVRAM is not present, thus allowing BIOS image to
be loaded from diskette, the IBL routine initializes the
diskette subsystem, step 166. The IBL routine then
determines if Drive A includes the IBL media on a
diskette, step 168. If Drive A does not include IBL
media, an error is generated to notify the user that an
invalid diskette has been inserted in the drive, step 170.
The system then halts, step 172. Attention is directed to
FIG. 6C for a more detailed discussion of step 168.

Referring back to step 168, after Drive A is checked
for IBL media, the master boot record is loaded into
RAM and the code segment included in the master boot
record is executed, step 160. It is important to note that
for diskette the IBL routine does not include the valid
ity checks that are used with the fixed disk system. The
reason for the absence of the validity checks is for load
ing a noncompatible IBL image from diskette. For ex
ample, if a new processor is added to the system, a new
BIOS image will be included on a diskette. Since a new

5,210,875
11

processor will cause validity errors when loading from
fixed disk, the IBL routine provides the ability to bypass
these tests by loading the BIOS image from diskette.
To recapitulate, the master boot record is checked for

compatibility with the system through matching the
system planar ID and processor model/submodel val
ues to the boot record values. For disk, this check is
done first in the IBL routine 72 and then done again in
the IBL boot record. The first check (in the IBL rou
tine) is done to make sure the boot record is compatible
with the system; the second check (in the boot record)
is done to ensure a compatible ROM passed control to
the boot record. Notice that the check done in the disk
boot record will never fail for a compatible ROM since
the IBL routine will have already checked the compati
bility. In contrast, the compatibility check is not done
for diskette. The planar/processor compatibility is
checked only during diskette boot record execution.
This method allows future modifications in loading a
new BIOS image from a reference diskette.

In view of the description of the IBL routine of FIG.
6A, the explanation will now proceed to a comprehen
sive and full understanding of the validity tests dis
cussed above. Referring to FIG. 6B, there is shown a
detailed flowchart of step 152 of FIG. 6A, to determine
if a valid master boot record is on drive C. The process
begins by obtaining the drive parameters to enable the
IBL routine to access drive C, step 200. An IBL load
location is set to the last three sectors from the disk (the
last three sectors normally contain the master boot re
cord), step 202. A load count indicating the number of
attempts to read a master boot record from disk is set to
1, step 204. Three sectors are read from disk at the IBL
load location, step 206. Any disk drive errors are de
tected and if a disk drive read error occurs it is reported,
steps 208-210. The process then returns with an error
indication, steps 212-214.

Referring back to step 208, if no drive error occurs,
the disk record is scanned for the master boot record
signature, step 216. The boot record signature, such as
the characters "ABC", are compared to the first three
bytes of the disk record. If the disk record does have a
valid boot record signature (characters "ABC") and the
checksum computed from the disk record loaded into
memory equals the boot record checksum, the disk
record is indicated as being a valid boot record with no
errors, step 218. The process then returns, step 214.

Referring back to step 216, if the boot record signa
ture or checksum is invalid, the load count is incre
mented by 1, step 220. The load count is then compared
to a predetermined constant such as 99, step 222. If 99
attempts to read a boot record have resulted in failure,
an error is indicated and the process returns, steps 224,
212 and 214. If less than 99 attempts to read a boot
record have occurred, the IBL load location is decre
mented by one and three new sectors are read from the
new load location, steps 226 and 206. Thus if a valid
IBL boot record cannot be loaded from the last 99
sectors (equivalent to 33 copies) then an error condition
is set and control returns to the IBL routine.

Referring now to FIG. 6C, there is shown a detailed
flow diagram for loading the master boot record from
diskette on drive A. First, the diskette drive parameters
to access drive A are retrieved, step 230. The IBL load
location is set to the last 3 sectors on diskette (cylinder,
head and sector format), step 232. The last 3 sectors are
read, step 234. If a diskette drive error is detected an
error is indicated, steps 236-238. An error condition is

10

15

25

30

35

45

SO

55

65

12
set and control is returned to the IBL routine, steps
240-242.

Referring back to step 236, if no drive error is de
tected, the diskette record is checked for boot record
signature and the checksum is calculated, step 244. If
the boot record signature is missing or checksum is
invalid, an error is indicated and control returned to the
IBL routine, steps 244, 246, 240 and 242. If a valid boot
record signature and valid checksum are detected an
indication is set and control is returned to the IBL rou
tine, steps 248 and 242. It is noted that in a diskette load,
the IBL routine does not search through the media as in
the fixed disk load. Therefore, in a diskette load, the
IBL media must be stored in a specific location of the
diskette.

Finally, FIG. 6D shows how the IBL routines tests
for system planar and processor compatibility and for a
proper system configuration. The master boot record is
checked for compatibility with the system planar by
comparing the boot record planar ID value to the sys
templanar ID read by the system processor, step 260. If
the system planar ID does not match the boot record
planar ID value, this indicates this master boot record is
not compatible with this planar. An error is indicated
and control return to the IBL routine, steps 262, 264,
and 266.

If the master boot record is compatible with the pla
nar, the master boot record is checked for compatibility
with the processor, step 268. The boot record model
value and submodel value are compared to the model
value and submodel value stored in ROM respectively.
A mismatch indicates a new processor has probably
been inserted and this boot record is not compatible
with the new processor. An error is indicated and con
trol returned to the IBL routine, steps 270,264 and 266.
If the master boot record is compatible with the planar
and processor, the process checks to determine if
NVRAM is reliable, step 272. If NVRAM is unreliable,
an error is indicated and control returned to the IBL
routine, steps 274 and 266. If NVRAM is reliable, the
system configuration is checked, step 276. A change in
system configuration is indicated if the model and sub
model values stored in NVRAM do not match the
model and submodel values stored in ROM. Note that
this last comparison will only indicate a configuration
error. If a configuration error is indicated, an error is
generated for the user. This error notifies the user that
the configuration of the system has changed since the
last time SET Configuration was run. The user is noti
fied of the changed configuration and control passed
back to the IBL routine steps 278, 264, and 266. This
error is not fatal itself, but notifies the user that SET
Configuration (configuration program) must be exe
cuted. Referring back to step 276, if the system model/-
submodel values match, an indication of compabability
is set and the routine returns, steps 276, 274 and 266.
Thus, the compatibility between the master boot record
and the system are tested along with determining if the
system configuration has been modified.

After the BL routine loads the master boot record
into RAM, it transfers control to the MBR code starting
address. Referring to FIG. 7, the executable code seg
ment of the master boot record first verifies the boot
record pattern to the ROM pattern, step 300. If the
pattern in the master boot record does not match the
pattern in ROM, an error is generated and the system
halts, steps 302 and 305. The check for equality between
ROM and boot record patterns ensures that the master

5,210,875
13

boot record loaded from either the disk or diskette is
compatible with the ROM on the planar board. Refer
ring back to step 300, if the pattern in ROM matches the
pattern in the boot record, the MBR code compares the
system planar ID value, model and submodel value 5
against the corresponding master boot record values,
step 304. This process was discussed in greater detail
with respect to FIG. 6D. If the values don't match, the
master boot record is not compatible with the system
planar and processor, or the system configuration has
changed, and an error is generated, step 306. The sys
tem then halts, step 305.

Referring back to step 304, if the system planar ID

O

value, model and submodel values match the corre
sponding master boot record values, the MBR code 15
loads the BIOS image from the selected media into the
system RAM, step 308. If a media load error occurs in
reading the data, step 310, an error is generated and the
system halts, steps 312 and 305. Referring back to step
310, if no media load error occurs, a checksum is calcu
lated for the BIOS image in memory, step 314. If the

20

checksum is invalid an error is generated and the system
halts, steps 318 and 305. Referring back to step 316, if
the checksum is valid, the system partition pointers are
saved, step 320, and the system processor is vectored to
POST Stage II to begin loading the system, step 322.
Thus, there has been shown a method and apparatus

for loading BIOS from a direct access storage device.
Before BIOS is loaded, the BIOS image on the direct
access storage device is checked for compatibility with
the system. A further test includes checking that the
system configuration is proper. Based upon these tests
the BIOS image is loaded into RAM to be executed.
While the invention has been illustrated in connection

with a preferred embodiment, it should be understood
that many variations will occur to those of ordinary
skill in the art, and that the scope of the invention is
defined only by the claims appended hereto and equiva

25

30

35

lent.
We claim:
1. An apparatus for loading an operational interface

into a personal computer system, the personal computer
system including a system processor and a random ac
cess memory electrically coupled thereto, said appara
tus comprising:

a direct access storage device being electrically cou
pled to the system processor, said direct access
storage device being capable of storing a plurality
of data records;

a master boot record stored on the direct access stor
age device, said master boot recording including an
executable code segment;

a read only memory being electrically coupled to the
system processor;

a first portion of the operational interface stored in
the read only memory starting at a particular ad
dress, said first portion of the operational interface
initializing the system and the direct access storage
device to load in said master boot record into ran
don access memory; and

a remaining portion of the operational interface
stored on the direct access storage device, wherein
the first portion of the operational interface trans
fers control to the executable code segment of the
master boot record in order to effect the loading of 65
the remaining portion of the operational interface
into the randon access memory, said remaining
portion of the operational interface being stored

45

55

60

14
starting at said particular address and superseding
the first portion of the operational interface and
initializing the rest of the personal computer sys
tem in order to load in an operating system to begin
operation of the personal computer system.

2. The apparatus of claim 1, wherein the direct access
storage device comprises a fixed disk.

3. The apparatus of claim 1, wherein the direct access
storage device comprises a diskette.

4. The apparatus of claim 1, wherein the master boot
record further includes a data segment, the data seg
ment representing a hardware configuration of the per
sonal computer system which is compatible with said
master boot record, and further wherein the read only
memory includes data representing a hardware configu
ration of the system processor, wherein before said
remaining portion of the operational interface is loaded
into random access memory, said first portion of the
operational interface compares the hardware configura
tion data from the master boot record with the hard
ware configuration data from the read only memory to
verify the master boot record is compatible with the
system processor.

5. The apparatus of claim 4, wherein the data segment
of the master boot record includes a value representing
a system planar which is compatible with the master
boot record and further wherein the system planar fur
ther includes a means for uniquely identifying the sys
templanar in order to verify that the master boot record
is compatible to the system planar.

6. The apparatus of claim 4, wherein the hardware
configuration data on the master boot record includes a
model value and a submodel value, wherein the model
value identifies a system processor which is compatible
with said master boot record and the submodel value
represent an I/O configuration of a system planar
which is compatible with the master boot record, and
further wherein said read only memory includes a cor
responding model value identifying the system proces
sor and submodel value representing the I/O configura
tion of the system planar, wherein said model value and
submodel value of the master boot record are compared
to the corresponding model and submodel values of the
read only memory respectively, in order to verify that
the master boot record is compatible with the system
processor and the I/O configuration of the system pla

T.

7. The apparatus of claim 6, wherein said first portion
of the operational interface generates a first error to
indicate the master boot record is not compatible with
the system hardware.

8. The apparatus of claim 1, wherein the personal
computer system further includes a nonvolatile random
access memory being electrically coupled to the system
processor, said nonvolatile random access memory in
cluding data representing the system configuration, said
data being updated when the configuration of the sys
tem is changed, wherein said first portion of the opera
tional interface compares said data in the nonvolatile
randon access memory to corresponding data in the
read only memory to determine if the configuration of
the system has changed.

9. The apparatus of claim 8, wherein said first portion
of the operational interface generates a second error to
indicate that the system configuration has changed.

10. The apparatus of claim 1, wherein said master
boot record includes an identifying means to identify
the record in order to distinguish the master boot from

5,210,875
15

other records included on the direct access storage
device.

11. The apparatus of claim 10, wherein said identify
ing means comprises a predetermined character code.

12, The apparatus of claim 11 wherein said predeter
mined code is prefactory to said code segment of the
master boot record.

13. The apparatus of claim 10, wherein said master
boot record includes a checksum value to verify the
validity of the master boot record when loaded into the
random access memory.

14. The apparatus of claim 1, wherein said remaining
portion of the operational interface includes a checksum
value to verify the validity of the remaining portion of
the operational interface when loaded into the random
access memory.

15. The apparatus of claim 1, wherein said master
boot record includes a predetermined pattern, and fur
ther wherein said read only memory includes a corre
sponding predetermined pattern in order to verify that
the first portion of the operational interface is included
within a predefined read only memory,

16. The apparatus of claim 15, wherein said execut
able code segment generates an error to indicate that
the read only memory is not compatible with the master
boot record.

17. A personal computer system comprising:
a system processor;
a random access memory being the main memory and

electrically coupled to the system processor;
a system planar board having a plurality of I/O slots

being electrically coupled to the system processor,
a direct access storage device being electrically cou

pled to the system processor, the direct access
storage device capable of storing a plurality of data
records;
master boot record included in the direct access
storage device, the master boot record having a
data segment and an executable code segment, the
data segment representing a hardware configura
tion of the personal computer system which is
compatible with said master boot record;

a read only memory being electrically coupled to the
system processor, the read only memory having
data representing a hardware configuration of the
system;

a first portion of an operational interface being in
cluded in the read only memory, said first portion
of the operational interface initializing the system
and the direct access storage device to load in said
master boot record, said first portion of the opera
tional interface further comparing the hardware
configuratin data from the master boot record to
the hardware configuration data of the read only
memory to verify the compatibility of the master
boot record with the system processor;

a remaining portion of the operational interface being
included in the direct access storage device,
wherein after verifying the compatibility of the
master boot record with the systern processor, the
first portion of the operational interface transfers
control to the executable code segment of the mas
ter boot record in order to effect the loading of the
remaining portion of the operational interface into
the random access memory, said remaining portion
of the operational interface superseding said first
portion of the operational interface.

16
18. The apparatus of claim 17, wherein the data seg

ment of the master boot record includes a value repre
senting a system planar being compatible with the mas
ter boot record and further wherein the system planar

5 further includes a means for uniquely identifying the
system planar in order to verify the compatibility of the
master boot record to the system planar.

19. The apparatus of claim 17, wherein the direct
access storage device comprises a fixed disk.

20. The apparatus of claim 17, wherein the hardware
configuration data on the master boot record includes a
model value and a submodel value, wherein the model
value identifies the system processor and the submodel
value represent the I/O configuration of the system
planar, said model value and submodel value being
compared to corresponding values in the read only
memory to verify the compatibility of the master boot
record to the hardware configuration.

21. The apparatus of claim 17, wherein the personal
computer system further includes a nonvolatile random
access memory, said nonvolatile randon access mem
ory storing values representing the system configura
tion, said data being updated when the configuration of
the system is changed, wherein said first portion of the
operational interface compares said values in the non
volatile random access memory to corresponding val
ues in the read only memory to determine if the configu
ration of the system has changed,

22. An apparatus for loading an operational interface
into a personal computer system, the personal computer
system having a system processor being electrically
coupled to a random access memory, said apparatus
comprising:

a direct access storage device being electrically cou
pled to the system processor, the direct access
storage device being capable of storing a plurality
of data records;

a read only memory being electrically coupled to the
system processor;

a first portion of the operational interface being in
cluded in the read only memory; and

a remaining portion of the operational interface being
included in the direct access storage device,
wherein the first portion of the operational inter
face initializes the system processor and direct
storage device to effect load the remaining portion
of the operational interface into random access
memory, said remaining portion of the operational
interface effectively superseding the first portion of
the operational interface to assist in the operation
of the system.

23. A method for loading an operational interface
from a direct access storage device of a personal com
puter system, the personal computer system having a
system processor electrically coupled to a system pla
nar, the planar further being electrically coupled to a
random access memory, a read only memory, and the
direct access storage device, said method comprising
the steps of:

(a) initializing the system with a first portion of the
operational interface resident in the read only
memory;

(b) initializing with the first portion of the operational
interface the direct access storage device, the di
rect access storage device further having a master
boot record and the remaining portion of the oper
ational interface;

10

15

20

30

35

40

45

50

55

5,210,875
17

(c) loading with the first portion of the operational
interface the master boot record into random ac
cess memory, the master boot record including a
data segment and an executable code segment, the

18
ory with model and submodel values stored in the
data segment of the master boot record.

25. The method of claim 23, wherein the system fur
ther includes a nonvolatile memory being electrically

data segment having data representing the hard- 5 coupled to the system processor, wherein the nonvola
ware of the system for which the remaining portion
of the operational interface is compatible;

(d) verifying the compatibility of the master boot
record with the system hardware by comparing the
data representing the system hardware to corre
sponding compatibility data stored in the read only
memory; and

(e) executing the code segment of the master boot
record to load the remaining portion of the opera
tional interface into the random access memory;
and

(f) passing control to the remaining portion of the
operational interface once it is loaded into random
access memory.

24. The method of claim 23, wherein step (d) of veri
fying further includes the steps of:

(g) verifying that the master boot record is compati
ble with the planar by comparing a planar ID ac
cessible by the system processor with a planar ID
value stored in the data segment of the master boot
record; and

(h) verifying that the master boot record is compati
ble with the system processor and I/O configura
tion of the planar by comparing respectively model
and submodel values stored in the read only mem

O

15

20

25

30

35

45

50

55

65

tile memory includes data representing the system con
figuration, said method further including the step of:

(i) comparing the data in nonvolatile random access
memory to the data in read only memory to deter
mine whether the system configuration has
changed; and

(j) generating an indication that the system configura
tion has changed before loading the operational
from the direct access storage device.

26. The method of claim 23, wherein step (c) of load
ing further includes the steps of:

(k) searching through a predetermined number of
records on the direct access image device for a
master boot record;

(1) identifying the master boot record with an identi
fying means included within the master boot re
cord.

(m) loading the master boot record into randon ac
cess memory upon locating the master boot record
among the data records on the direct access storage
device.

27. The method of claim 24, further including the step
of validating successful load of the master boot record.

k

