
United States Patent (19)
Sato et al.

54) COMPUTER SYSTEM HAVING SYSTEM
FEATURE EXTENSION SOFTWARE
CONTAINING A SELF-DESCRIBING

(75)

(73)

21)

(22)

(51)

(52)

58)

FEATURE TABLE FOR ACCESSING I/O
DEVICES ACCORDING TO .
MACHINE-INDEPENDENT FORMAT

Inventors: Albert Sato; David C. Baker, both of
Austin; Christie J. Waldron, Plano,
all of Tex.

Assignee: Dell USA, L.P., Austin, Tex.

Appl. No.: 737,086

Filed: Jul. 29, 1991

Int. Cl. G06F 9/445; G06F 9/44;
G06F 9/OO

U.S. Cl. 395/500; 395/800;
395/700; 364/280, 364/280.2; 364/280.9;

364/DIG. 1; 364/975.2; 364/976
Field of Search 395/800, 700, 500

III
USOO5291585A

11 Patent Number: 5,291,585
45) Date of Patent: Mar. 1, 1994

(56) References Cited
U.S. PATENT DOCUMENTS

4,589,063 5/1986 Shah et al. 395/275
4,649,479 3/1987 Advani et al. 395/700
4,858,114 8/1989 Heath et al. 395/775
4,928,237 5/1990 Bealkowski et al. ... 395/500
5,014, 193 5/1991 Garner et al. 395/275
5,063,496 ll/1991 Dayan et al. 395/700
5,136,709 8/1992 Shirakabe et al. 395/700

Primary Examiner-Thomas C. Lee
Assistant Examiner-Paul Harrity
Attorney, Agent, or Firm-Thomas G. Devine; James W.
Huffman

57) ABSTRACT
A computer system with self-describing feature table,
accessible by device drivers. Thus a simple process can
access these feature tables to fully customize the device
drivers at installation, or at boot; or the device driver
can branch on the data in the feature table. Thus, a new
degree of flexibility is achieved without degrading per
formance.

46 Claims, 6 Drawing Sheets

CPU INITATES
OPERATION 800

CPU RETRIEVES STARTUP
SOFTWARE FROM MEMORY

CPU AUTOMATICALLY RUNS
STARTUP SOFTWARE

CPU AUTOMATICALY
EXECUTES OPERATING
SYSTEM SOFTWARE

CPU EXECUTES
APPUCATION SOFTWARE

CPU PROOGRAMMABLY
CAS ON DEMCE
DRIVER SOFTWARE

CPU PROGRAMMABLY
CAS ON BASIC
SYSTEM SOFTWARE

805

801

802

803

804

CPU PROGRAMMABLY
CAS ON SYSTEM FEATURE

EXTENSION SOFTWARE

806 807

U.S. Patent Mar. 1, 1994 Sheet 1 of 6 5,291,585

HEADER
signature version number

Mochine-Specific Feature Descriptors.
feature id 0 attr O ptr Function 0
feature id 1 attr ptr Function

ptr to next frogment

feature id 2 attr 2 pir function 2
feature id 3 attr 3 pt Function 3

feature id n attr n ptr Function n

Figure 1

generic DEL hardware system

Hardware system closs hierarchy.
The generic class object will contain a table of hardware features which each system
subclass can inherit or modify.

Figure 2

U.S. Patent Mar. 1, 1994 Sheet 2 of 6 5,291,585

-- - - - - - - - - - - - - - - ---
MEMBER LENGTH | DESCRIPTION

as a - - - ens --- a um nuh tuh ammu a sm eme we

feature id 2 bytes Selector used to identify system features
- - - - - - - - - - - - - - - - -
attributes 2 bytes Feoture chorocteristic indicotors where:

Bit 0 = XBIOS ptr is a red mode entry
Bit 1 = XBIOS ptr is a protect mode entry

Bimodal = red & protect bits set
Doto = red & protect bits zero

Bit 2 = Reserved
Bit 3 = XBIOS ptr format

O = linear
1 = seg; offset

Blt 4 = optional keystroke trigger
Bit 5 = optional appendix
Bits 6-15 = Reserved

aus amous - - - as ---

XBIOS ptr 4 bytes References o feature routine or doto
Y Hill - - - - -

keystroke 2 bytes Optional feature keystroke trigger where:
High byte = keystroke trigger shift state

Bit 0 = Ctrl shift stote
Bit 1 = At shift stote
Bits 2-7 = Reserved

Low byte = scon code
- - - - - - - - - - - - - - - - - -
oppendix worioble Optional doto oppend to entry where:

Length = 2-byte field containing the size
of the subsequent woriable block

Block = variable length oppended data
-- - - - - - - - - - - - - - - ---

Figure 5

U.S. Patent Mar. 1, 1994 Sheet 3 of 6 5,291,585

Operating Environment
H - - - - --

Utilities

+-----
-H - - - - -

XBIOS API
-- - - - - -

Figure 4

Extended Feature Table (XFT)
XFT Header
Feature id XBIOS ptr 1

Feature id 2 XBIOS ptr 2

Feature entry 1
XBIOS code/data

Feature entry 2
XBIOS code/data

t F000:ED00 (XBIOS Fixed address - start of OEM reserved area)
Figure 5

Feature entry n
XBIOS code/dato

U.S. Patent Mar. 1, 1994 Sheet 4 of 6 5,291,585

-- - - - - - - - - - - - - - - - - --
;: XBIOS FEATURE ROUTINE TEMPLATE ;

xbinput struc ; input mop
xiO dw
xi did
xi.2 b. ?

xbinput ends

xboutput struc Output mop
x00 dw

xboutput ends

xbstkfrone struc ; stock frome mop
xin db (type xbinput) dup () input Oreo
xOut db (type xboutput) dup (?) ; output area
XSub dw ; subfunction id

xbstkfrone ends

Xbiosproc proc for
push ds ;Sove dis register . . .
push cs set ds register . . .
pop ds ; addressability

mov cx, es: bx.xinxiO ;get 1st input pom
mov es: bxxOutxo0, cx ; move Cx to output

mov sl, es: bx.xsub get subfunction id . . .
sh si, 1 ; determine Oddress . . .
col subfunctbi si) ; Coll the subfunction.

OV ox, XBS STAT move status to AX.
pop ds restore ds register
ret return to Coller

Xbiosproc endp
- - - - - - - - - - - - - - - - - --

Figure 6

U.S. Patent

-- - - - - - - - - - --

+- - - - - - - - -+

Mar. 1, 1994

Operating Environment
- - - - - --

Utilities
--- - - - -

- - - - - -
XBIOS AP

-H - - - - -

-- - - - - -
Device Driver

XBIOS
- - - - - --

Figure 7

Sheet 5 of 6 5,291,585

U.S. Patent Mar. 1, 1994 Sheet 6 of 6 5,291,585

CPUNITATES
OPERATION 800

CPU RETREVES STARTUP
SOFTWARE FROM MEMORY Yo
CPU AUTOMATICALLY RUNS

STARTUP SOFTWARE 802

CPU AUTOMACAY
EXECUTES OPERATING 803
SYSTEM SOFTWARE

CPU EXECUTES
APPLICATION SOFTWARE Yo

CPU PROGRAMMABLY CPU PROOGRAMMABLY CPU PROGRAMMABLY
CAS ON BASIC CAS ON DEMCE CAS ON SYSTEM FEATURE
SYSTEM SOFTWARE DRIVER SOFTWARE EXTENSON SOFTWARE

805 806 807

Figure 8

90

PROGRAM
STORAGE UNIT

VOLATLE
MEMORY (RAM)
904

NONVOLALE

MEMORY (ROM)Y

Figure 9

5,291,585
1

COMPUTER SYSTEM HAVING SYSTEM
FEATURE EXTENSION SOFTWARE

CONTAINING A SELF-DESCRIBING FEATURE
TABLE FOR ACCESSING I/O DEVICES

ACCORDING TO MACHINE-NDEPENDENT
FORMAT

PARTIAL WAIVER OF COPYRIGHT
All of the material in this patent application is subject

to copyright protection under the copyright laws of the
United States and of other countries. As of the first
effective filing date of the present application, this mate
rial is protected as unpublished material.

Portions of the material in the specification and draw
ings of this patent application are also subject to protec
tion under the maskwork registration laws of the United
States and of other countries.

However, permission to copy this material is hereby
granted to the extent that the owner of the copyright
and maskwork rights has no objection to the facsimile
reproduction by anyone of the patent document or
patent disclosure, as it appears in the United States
Patent and Trademark Office patent file or records, but
otherwise reserves all copyright and maskwork rights
whatsoever.

BACKGROUND AND SUMMARY OF THE
INVENTION

The present invention relates to computer systems,
and particularly to single-user or few-user small sys
tenS.

How Application Programs Interact with Hardware
One of the most basic needs in computer architecture

is making it easier for a variety of software programs to
interact correctly and efficiently with a variety of hard
ware configurations. Much of the development in com
puter architecture can be seen as a steady progression of
techniques for addressing this need.
Note the emphasis on efficiency in the foregoing

statement. Even where existing standards can assure
compatibility, the search for greater speed or expanded
functionality will frequently draw programmers to cir
cumvent the software standards. A good example of
this countercurrent appeared in the early days of graph
ics development on the IBM PC: the BIOS provided a
standard interface to video driver operations, but soft
ware developers discovered that they could vastly im
prove performance by making calls directly to the
video driver hardware. Thus adherence to the standard
architecture was not enough to assure computer design
ers that their customers would be able to run popular
IBM compatible software, such as Flight Simulator TM,
on their supposedly IBM-compatible machines. Thus,
there is a continuing tension between compatibility and
efficiency.
When any particular piece of hardware is examined in

isolation, it can usually be best described in terms of
electrical relationships. For example, a memory specifi
cation may state that, within a certain range of delay
after certain voltages appear on certain lines, certain
other lines will be driven to a corresponding state
(which is dependent on the data previously stored in the
memory). The specification for an input device, such as
a keyboard, may state that, when certain voltages ap
pear on certain lines, a particular input operation may
be considered to have occurred. The specification for

5

10

15

20

25

30

35

40

45

50

55

60

65

2
an output device, such as a video card, may state that,
when certain voltages appear on certain lines within a
certain timing relationship and protocol, each pixel
within a certain defined display device will be driven to
an optical state which corresponds to a certain portion
of the protocol. However, a commercial application
program will be written in a programming language
(e.g. in assembly language or in C) which is somewhat
machine-independent. There is a great difference be
tween these two levels of description; but this gap must
be bridged in order to economically develop applica
tion software which can run on a wide range of ma
chines.

Several layers of software and firmware structure are
used to mediate between application programs and the
underlying hardware. To better show the context of the
invention, these layers will be described below in
greater detail.

Hardware Variability
Computer hardware configurations are inherently

diverse. The complexity of any modern computer sys
tem is high enough that even a very detailed standard
architecture (such as the "AT' architecture which was
introduced with IBM's 80286-based machines) will not
prevent variations from occurring. Whenever designers
independently work within a standard, they are likely to
find ways to make improvements. As such variations
occur, some of them will be seen to be significant. Thus
the future will often find that any standard contained
significant "gray' areas.

This is true not only in motherboard design, but also
in I/O devices. For example, two display drivers which
both conform to the VGA standard may nevertheless
differ in timing, to an extent which may be significant to
some software applications. Moreover, there will al
ways be users with needs for specialized input or output
devices.
Even within the very restricted world of "PC" archi

tectures (where all machines must conform to numerous
constraints of the "standard' architectures), hardware
variability continues to be a problem. The range of
hardware variability in (for example) computers which
can run UNIX is far larger.

This hardware variability is not merely accidental,
but will continue: users are eager to take advantage of
new developments, and the pace of innovation is gener
ally far too rapid to permit stabilization of standardized
hardware configurations.

Layers of Software and Firmware Structure
In order to mediate between application programs

and the underlying hardware, several layers of software
and firmware structure are used. To better show the
context of the invention, these layers will be described
below in greater detail. -

Startup Software (POST, Bootstrap, etc.)
When power is first applied to a computer, the vari

ous hardware elements (chips and subsystems) will each
have their own internal procedures (reset procedures)
to regain a stable and known state. However, at some
point (if the hardware is intact), these reset procedures
will have ended, and at this point the CPU performs
various important overhead tasks. These include, for
example, surveying the system configuration, perform
ing sanity checks on system hardware, issuing diagnos

5,291,585
3

tic signals (such as sounding beeps through a speaker or
turning on LEDs), and permitting the user to branch
into an NVRAM configuration program under soft
ware control. This phase of operation is generally re
ferred to as "POST" (Power-On-Self-Test). After
POST, a "bootstrap" program is run, to permit the CPU
to begin execution of other software. For robustness,
the POST and bootstrap software is normally stored in
a read-only memory. The bootstrap program launches
the CPU on execution of the primary operating system
software; Depending on how the system has been set
up, the boot software may direct program execution
into DOS, Unix, PS/2, a DOS variant, or another oper
ating system. This is normally automatic and predeter
mined, but is manually user-selectable in some systems.
However, the choice of operating system is not particu
larly relevant to the inventions described in the present
application, the primary operating system can then be
used by the user to launch an application program,
either manually or automatically.

Basic Input/Output System Software (BIOS)
In many types of modern personal computers (and in

all "IBM-compatible' personal computers), a key part
of the system software is a "basic input/output system'
(BIOS) program. See generally, e.g., the P. Norton,
THE PETER NORTON PROGRAMMER'S GUIDE
TO THE IBM PC (1985), which is hereby incorporated
by reference. The BIOS program contains frequently
used routines for interfacing to key peripherals, The
term "peripheral" or "peripheral component' normally
refers to those components of a computer system which
are not on the motherboard, i.e. which must be ad
dressed through a system bus or over a defined port.
However, the usage of this term is somewhat variable;
sometimes it is used to refer to any I/O device, or only
to refer to components which are optional add-ons. For
interrupt handling, and so forth. Thus, the BIOS soft
ware provides some degree of machine-independence.
However, in PC-class computers, this independence is
not fully exploited by the available commercial soft
ware. Many programs bypass the BIOS software, and
directly access the underlying hardware addresses or
devices. See generally Glass, "The IBM PC BIOS,'
BYTE, April 1989, pp. 303ff.
For system robustness, the BIOS software is nor

mally packaged in a read-only-memory. However, in
1991 IBM introduced a PS/2 system in which the BIOS
is at least partially stored on disk. In fact, it is normally
packaged together with the startup software mentioned
above. Packaging the BIOS, POST and boot routines in
ROM makes a very robust firmware system. Short of
hardware damage, it is very difficult for a user to distort
the system to the point where it will not start up and run
(if the operating system software is present). However,
this system also provides a considerable degree of flexi
bility. As the operating system up (after the POST and
boot routines), the user can remap address pointers to
revector BIOS calls away from the standard BIOS
routines, if desired. (It is also common for users to map
out the entire BIOS contents into fast RAM, for greater
speed). Thus, nowadays the term "BIOS' is often used,
somewhat more broadly, to refer to this whole collec
tion of basic system routines. However, in the present
application references to "BIOS' will normally refer to
the BIOS in its narrower sense, i.e. to the collection of
I/O handling routines (and associated routines) which

O

15

20

25

30

35

45

50

55

65

4.
can be called on by the operating system or by the
application software.

Customized BIOS and BIOS Extensions

The BIOS in IBM-compatible computers is accessed
by interrupts, but the vectors for those interrupts can be
diverted to other addresses (by overwriting an address
pointer in system RAM). This capability significantly
expands the flexibility of the BIOS, and programmers
use it very frequently.
However, while the capability to divert BIOS vec

tors is useful, it is not sufficient to address many needs.
Changes to the interrupt-handling vectors will not af.
fect other portions of the BIOS. Computer designers
have found it highly desirable to prepare (or obtain)
customized BIOS routines to fully exploit the advan
tage of their systems. For example, such customized
BIOS routines are commonly necessary in very-low
power portable systems, to implement power-saving
features which maximize battery lifetime. BIOS cus
tomization has increasingly been recognized as an in
portant element in rapidly developing a reliable ad
vanced system. See generally Scheier, "Phoenix count
ers competitors with diversified BIOS offerings," PC
Week, vol. 4 no. 38 (Sep. 22, 1987) at 135f; Guterman,
"CompuAdd adopts new ROM BIOS for clones," PC
Week Vol. 5 no. 28 (Jul. 11, 1988) at 6; both of which
are hereby incorporated by reference.
One function often provided by BIOS customization

is "hot-key' access to a setup menu, or to low-level
system hardware features (e.g. monitor brightness ad
justment). Such capability is very useful to system de
signers, but normally it has had to be realized in a ma
chine-dependent way (so that large chunks of BIOS
have had to be rewritten every time a change was
made).
Another problem with prior hot-key add-ons is that,

if the BIOS interrupt vector for key-handling was di
verted, the hot-key capability could be lost. Since many
applications do divert the keyboard interrupt (INT9),
no critical functionality could be made dependent on
such a hot-key operation.

Operating System Software
The application software will normally interface to

an operating system (such as DOS, DOS-Windows,
OS/2, UNIX of various flavors, or UNIX plus X-win
dows). The operating system is a background software
program Some operating systems run continuously, or
at least start up at regular intervals, even while an appli
cation program is running; other operating systems
merely provide capabilities which can be called on by
the application software. which provides an application
programming interface (API) for use by the application
software. Thus, the programmers writing application
software can write their software to fit the API, rather
than having to find out and fit the peculiarities of each
particular machine. See e.g., Quedens, "Windows vir
tual machine," PC Tech Journal vol. 5, no. 10 p. 90,
92-3, 95, 97, 99-100, 102 (Oct. 1987), which is hereby
incorporated by reference.
Graphical User Interface (GUI) Operating System

Add-Ons

Some operating systems have been enhanced by the
addition of overlaid supplemental operating systems.
For example, Windows is a supplement to DOS, and X
is a supplement for UNIX. The use of such hybrids does

5,291,585 5
not greatly affect the foregoing considerations, except
that it makes the compatibility issues even more diffi
cult: the designer of a DOS machine must expect that
customers will be running some DOS programs, and
some Windows programs, on the same machine.

Device Driver Software

A device driver is a lower level of operating system
software. Typically a device driver interfaces to the
actual peripheral hardware components, and provides
routines which application software can use to access
the hardware components. Thus, the application soft
ware can simply make a call to an installed software
subroutine, instead of having to find the specifications
of each peripheral device and branch accordingly,
whenever a peripheral I/O operation is needed. This
permits application software to ignore the detailed spec
ifications of peripheral hardware.
Normally device driver software must contain a de

scription of each target hardware platform. Thus, the
software must be revised repeatedly, for reasons which
are beyond the control of the companies making periph
erals.

In personal computers, installable device drivers
were first introduced in DOS 2.0. The role of device
drivers has since been expanded, in subsequently intro
duced operating systems.

In particular, OS/2 provided expanded support for
device drivers, including a library of "DevHlp' rou
tines which can be called by device drivers. See gener
ally Duncan, "An examination of the DevHlp API
(writing OS-2 bimodal device drivers),' 3 Microsoft
Systems Journal no.2 (March 1988) at 39ff: Schmitt,
"Designing drivers for OS/2: I," PC Tech Journal
vol.5, no. 12, p. 164 (1987); and Schmitt, "Designing
drivers for OS/2: II," PC Tech Journal vol.6, no.2 p.
136-155 (Feb. 1988), all of which are hereby incorpo
rated by reference.

System Configuration Tables
Some computer systems have previously used a fea

ture table, stored in nonvolatile memory, to describe
various characteristics of the machine. The IBM AT
BIOS uses such a feature table (stored in battery-backed
CMOS memory). This feature table, in expanded form,
has also been used in the IBM PS/2 systems and has
been utilized in the system BIOS of all IBM AT- and
PS/1-compatible personal computers. This table is in
the form of a bit map where each bit refers to specific
hardware implementations employed by the designers
of the machine. A pointer to this table may be obtained
through executing a software interrupt. More specifi
cally, executing interrupt 15h with AH = COH will
return a pointer to the table in ES:BX. However, this
feature table is restricted to merely listing certain hard
ware features in the machine, such as the number of
DMA controllers, and does not provide an interface to
these features. Furthermore, the elements of the list are
fixed.

In the Phoenix Technologies BIOS, there are speci
fied entry points at bard-coded addresses which will
perform certain machine-specific functions. These are
few in number, must be at fixed addresses, do not sup
port protected mode applications and it is not possible
to easily see which features are supported by which
machines except by restricting to the common subset.
Under the EISA standard, an EISA Configuration

memory is used to store a limited feature table of EISA

10

15

20

25

30

35

45

50

55

65

6
peripherals on the EISA bus. See generally Glass, "In
side EISA," BYTE magazine, November 1989, at 417ff,
which is hereby incorporated by reference.

Application Software
From a system designer's point of view, the applica

tion software is (subject only to the minimal constraints
of the architectural standards) wholly unpredictable.
Many clever people are constantly looking for new
ways to exploit the standard architecture, and many
innovations continually result. Thus, hardware archi
tects must expect that the application software will not
only be unpredictable, but will be as unpredictable as
possible. Common applications include spreadsheets,
word processors and publishing programs, databases,
games, project managers and a wide variety of others;
but inevitably users will also run customized applica
tions, and new types of applications.

Utility Programs and Hardware
In recent years, many personal computer manufactur

ers have expanded their product lines. This has dramati
cally increased the difficulty of supporting an entire
product line in terms of the standard software products
that a manufacturer may choose to include or sell with
its computers.

Examples are diagnostic programs, operating system
software and utility software. It is increasingly neces
sary to provide a means for such software to identify the
individual machines and their unique features, without
having to be rewritten each time a new product is intro
duced.

Furthermore, it may be difficult or undesirable to
implement even similar features in exactly the same
way, since each design has different constraints in terms
of cost and each will incorporate the knowledge gained
by building the previous product. The problem gets
worse as a product line ages. It is desirable to continue
to support older products with newer versions of soft
ware, and it is also desirable for older versions of soft
ware to run unmodified on newer platforms. One solu
tion to this problem is to write the software to the com
mon subset of functions supported by all platforms.
However, this does not allow the manufacturer to dif
ferentiate his product from the competition. Conse
quently, it is desirable for each individual machine to
have the capability to identify its own unique feature set
to such software, while at the same time providing the
individualized means for carrying out those functions.
Innovative Computer System with Self-Describing

Extensions to BIOS

The present invention provides a personal computer
architecture with an additional layer of overhead soft
ware (or firmware) structure. This additional layer of
software structure is used to provide access to addi
tional low-level hardware-specific features in a manner
which is independent of the operating system. In the
present application, these additional low-level hard
ware-specific features are referred to as "extended fea
tures.'

Extended Features

An "extended feature', in the presently preferred
embodiment, is normally a system level routine used to
service hardware components or to obtain system infor
mation unique to Dell hardware systems. The detailed
disclosure below lists some of the numerous extended

5,291,585
7

features which have been implemented to date. How
ever, of course, other functions can be provided as well.
The disclosed self-describing system software exten

sion provides a lower level of software-hardware inter
face "cushioning,' which device drivers can call on.
Thus, the self-describing system software extension can
also be exploited to permit device drivers to be more
hardware-independent.
The self-describing system software extension is par

ticularly advantageous in its application to an evolving
product line within the same overall standard.

Self-Describing Feature Table
The disclosed innovations provide methods by which

a computer with some quantity of non-volatile storage
can present a self-describing interface which also pro
vides a means for carrying out machine-specific func
tions in a non-specific way.

In the presently preferred embodiment, the feature
table and the machine-specific routines are programmed
into EPROM devices, at the start of the "OEM re
served' block of addresses in the BIOS memory space.
In IBM-compatible computers, the BIOS commonly
occupies the 64K or 128K of address space just below
the top of the lowest megabyte of the total memory
address space.
An important element of the method is a table which

contains a signature to identify it with the system soft
ware architecture described herein, and a series of
entries with the following information:

Feature ID-a unique identifier for each specific
machine-specific function.

Attributes-describe the operating environment for
proper access to the function. May limit access to
real or protected mode or possibly even to specific
operating environments.

Service Routine-a pointer to the program code that
performs the requested function.

Data Block-Features may also include an optional
data block.

The self-describing system software extension of the
presently preferred embodiment includes a self-describ
ing feature table, which can track the peculiarities of the
actual hardware configuration of each system as config
ured. The self-describing system software extension,
with this feature table, provides low-level translation
for hardware peculiarities.
By use of this feature table, the disclosed innovations

provide a computer system which can be updated with
self-defining extensions to the basic BIOS (which re
mains in read-only memory). The basic BIOS must be
modified to make use of these self-defining extensions;
but, once such a modified BIOS has been installed, it
does not have to be updated frequently. Instead, the
routines in the modified BIOS can make use of the
self-defining feature table without further changes to
other portions of BIOS. Thus, for example, in one class
of alternative embodiments, the feature table is located
in NVSRAM, and a ROM holds the basic BIOS and a
pointer to the feature table.
Application Programming Interface to Self-Describing

Feature Table

One contemplated and advantageous class of embodi
ments uses a standard API to the feature table to pro
vide increased portability (across applications) of access
to the extended features. (Thus, for example, an OS/2
device driver can be written to wrap this API around

10

15

20

25

30

35

45

50

55

65

8
calls to the feature table in such a way that any OS/2
software can make feature-table calls through this API.)
This provides optimal access to the machine-specific
routines across the whole family of computers.) In the
sample embodiment described in detail below, this func
tion is not yet included. However, as will be apparent to
those skilled in the art, this can readily be implemented
in various ways, within the architecture described be
low, if desired.

Device Drivers in the Innovative System
The disclosed architecture provides access to ma

chine-specific features, with enough information to
permit device drivers to be written in a machines
independent way (within the Dell family of computers).
Some specific examples of such drivers are given
herein, but of course other drivers can also make use of
the extended BIOS features as well.

Keyboard Driver
One very advantageous piece which is included in the

presently preferred embodiment is the keyboard driver,
which permits the user to access extended system func
tions, without exiting his application, by hitting "hot
key' combinations. This is highly advantageous in por
table systems, since the user can fine-tune his system's
hardware parameters to match changing conditions.
Thus, the disclosed system allows the user to send
BIOS-level function calls right through an application,
without saving the context of the application.

This keyboard driver runs under DOS, so it is still
possible for a user to disrupt this driver by remapping
the keyboard interrupt (INT9); but at least this driver
does permit language customization to be combined
with hot-key access to extended-BIOS functions.
An important point is that, even when a user remaps

the keyboard interrupt under BIOS, he can still pre
serve the hot-key calls to the extended BIOS features
without knowing what the features are or even which
key combinations call them. (This is accomplished, in
the presently preferred embodiment, by building a
quick-reference table in system RAM during an initial
ization phase.)

OS/2 Initialization Driver
Another advantageous part of the presently preferred

embodiment is an OS/2 initialization driver, which
permits easy initialization of hardware-specific func
tions for OS/2 initialization. This driver, in its presently
preferred embodiment, is listed in the appendix.
Common Device Drivers across a Family of Computers
The disclosed innovations have been implemented on

a number of different computer systems within the Dell
system product line. As of the effective filing date of the
present application, these include all Dell computer
models shipped after September 1990, plus a few models
which were retrofitted.
As discussed below, the disclosed innovations are

believed to be advantageous not only as applied to a
single computer, but also as applied to a whole family of
computers. In the case of the preferred embodiment,
suppliers of computer peripherals can be increasingly
confident that a device driver which takes advantage of
the self-describing system software extension of the
presently preferred embodiment will apply to every
current Dell computer, and also to future models which
the supplier has not yet seen or heard of.

5,291,585 9

Backward Software Compatibility
A substantial advantage of the disclosed architecture

is that additional BIOS-level functions can be readily
added into computer system designs, as soon as the
innovations occur, without any necessity for radical
BIOS changes. The self-describing system software
extension of the presently preferred embodiment itself
does not degrade BIOS compatibility with prior ISA or
EISA machines; and once the self-describing system
software extension of the presently preferred embodi
ment is installed, further extensions to BIOS functional
ity can readily be achieved.

Additional Background
Two previous proposals for achieving machine

independence will now be discussed, with reference to
the present inventions, in order to provide a clearer
discussion of how the teachings of the present applica
tion differ from these prior teachings.

The "Advanced BIOS" (ABIOS) in PS/2
Architectures

The PS/2 architecture, which IBM introduced in
1987, included a so-called "advanced BIOS' or
"ABIOS' There are actually two versions of ABIOS
available, since IBM has offered a simplified ABIOS for
use on machines other than IBM PS/2s. However, the
full functionality of ABIOS is available only on an IBM
PS/2. The features of this version of ABIOS are most
germane to the background of the present invention. (In
additional to a more conventional BIOS, known as the
"compatibility BIOS' or "CBIOS"). The user can elect
to use the CBIOS instead of the ABIOS if he wishes, for
downward compatibility; the CBIOS and ABIOS are
not designed to run simultaneously.
The ABIOS is a more high-level software structure

than ordinary BIOS, and has many features added to
enhance performance in OS/2 (which, unlike DOS, is a
multi-threaded operating system). However, ABIOS is
so complex and ambitious that very few operating sys
tem designs have used it.
The ABIOS must normally be initialized: the initial

ization process surveys the system configuration, and
builds a data structure (the CDA) in System RAM.
Process threads (or system software called by process
threads) can call on this data structure to get informa
tion about the hardware they are running on.
The ABIOS is somewhat analogous to a large-scale

machine-specific device driver: a process thread can
make calls to the ABIOS by submitting a "request
block' into the ABIOS's request-handling queue.
When running on an IBM PS/2 under OS/2, the

OS/2 + ABIOS combination does make additional
DevHlp functions available to device drivers, including
provision of a standardized interface which provides
some hardware-independence to the device driver soft
ware. Thus, the device driver software programs in
such a system can include substantially increased func
tionality. See generally Mizell, "Understanding device
drivers in Operating System/2,' IBM Systems Journal
vol.27, no.2 p. 170-84 (1988), which is hereby incorpo
rated by reference.
Within the IBM PS/2 family, the interface to ABIOS

is identical, regardless of which IBM PS/2 machine it is
running on. Within the IBM PS/2 family, the ABIOS
provides a significant degree of machine-independence.

5

10

15

20

25

30

35

45

50

55

65

10
Thus the ABIOS has some, but not all, of the same goals
as the presently preferred embodiment disclosed herein.
Note that the self-describing system software exten

sion of the presently preferred embodiment provides a
lower-level component of system software than the
ABIOS referenced above. The ABIOS is itself a full
standalone BIOS, and may be thought of as a fancy
device driver. By contrast, the conventional BIOS is
interrupt-driven. By contrast, the self-describing system
software extension will not work as a standalone BIOS,
and does not even work as a device driver: instead, the
self-describing system software extension merely pro
vides services to device drivers and to standalone appli
cation programs.
The self-describing system software extension pro

vides functions which are not addressed by the ABIOS,
and conversely the ABIOS addresses a great deal of
functionality which is not addressed by self-describing
system software extension. Thus, these two software
systems are complementary. In fact, it would readily be
possible to prepare a modification of self-describing
system software extension for use as an ABIOS exten
sion. The ABIOS also includes "hooks' for extending
ABIOS; insofar as known to the present inventors, no
body has ever taken the trouble to implement this in a
practical system, but there is no apparent reason why
this could not be done if desired.
The disclosed self-describing system software exten

sion also provides particular advantages in system diag
nostics, which are not provided by ABIOS.

The "XBIOS' of the Atari ST

In internal documentation, the self-describing system
software extension of the presently preferred embodi
ment has frequently been referred to as the "XBIOS,"
and reflections of that terminology can be seen in the
source code appended to the present application. How
ever, to prevent confusion, it must be noted that the
term "XBIOS' has also been used for a component of
the operating system software in the Atari ST com
puter. While this software is believed not to have in
cluded any of the innovative concepts claimed herein,
the similarity in terminology should be noted. Seegen
erally, e.g. Rothman, "Atari ST software development,
BYTE magazine, vol. 11 no. 9 (Sep. 1986) at 223ff,
which is hereby incorporated by reference. The Atari
ST is a 68000-based machine. The ST's operating sys
tem (called “TOS") has two main parts: The "GEM'
(Graphics Environment Manager) is a complete operat
ing system developed by Digital Research, and is meant
to support applications that are portable to other ma
chines. Atari's "XBIOS' (extended BIOS) is meant to
support ST-specific capabilities not accessible through
GEM.

Additional Background Literature
U.S. Pat. No. 4,589,063, which is hereby incorporated

by reference, purports to disclose a “method and appa
ratus for automatic configuration of a computer system

... wherein one or more system peripheral or I/O
devices can be interfaced to the computer system
through I/O boards that plug into a system mother
board. Each of the I/O devices includes a controlling
device driver module that operates under a program
code stored in a read only memory resident on the I/O
board and by which the device driver module allows
the computer system to communicate with its associ
ated peripheral and I/O devices. Accordingly, a system

5,291,585
11

user is not required to change the computer operating
system kernel to support each new I/O device or sys
tem configuration change."

BRIEF DESCRIPTION OF THE DRAWING 5

The present invention will be described with refer
ence to the accompanying drawings, which show in
portant sample embodiments of the invention and
which are incorporated in the specification hereof by
reference, wherein:
FIG. 1 diagrams the layout of the extended feature

table (XFT) used in the presently preferred embodi
et.

FIG. 2 schematically shows an object-oriented para
digm wherein, by viewing every DELL hardware sys
tem as a subclass of a generic DELL hardware system
class, supporting all extended features across every
systems, BIOS programmers can choose to inherit or
modify any or all of these features for their particular
system.

FIG. 3 shows additional details of the structure of
each individual feature entry.
FIG. 4 shows how a pointer is used to allow BIOS

programmers to relocate the feature table, and enables
uniform access to the table regardless of the Dell system
type.

FIG. 5 shows how the feature table interface in the
application interface (API) library, in the presently
preferred embodiment, locates and executes self
describing system software extension feature routines.

FIG. 6 shows how the system-software-extension
API library, in the presently preferred embodiment,
communicates with the device driver via the I/O con
trol API supplied by the operating environment.
FIG. 7 shows a typical system-software-extension

feature routine organization.
FIG. 8 diagrams a flow chart of an implementation of

the preferred embodiment of the invention.
FIG. 9 illustrates a preferred embodiment of the pres- 40

ent invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The numerous innovative teachings of the present 45
application will be described with particular reference
to the presently preferred embodiment. However, it
should be understood that this class of embodiments
provides only a few examples of the many advanta
geous uses of the innovative teachings herein. In gen- 50
eral, statements made in the specification of the present
application do not necessarily delimit any of the various
claimed inventions. Moreover, some statements may
apply to some inventive features but not to others.

In particular, the following text frequently references 55
the "XBIOS" system software, which is the presently
preferred embodiment of the claimed system extension
software. The following text also makes frequent refer.
ences to DeIITM computers, since the preferred em
bodiment of the system extension software has been 60
implemented in this line of computers. However, of
course, the claimed inventions can readily be adapted to
a tremendous range of computers and of software in
plementations.
Even the specific disclosed embodiment is not inher- 65

ently limited to Dell computers, but provision for other
makers' computers, of comparable architecture, can
readily be added.

O

15

25

30

35

12

Preferred Embodiment: Family of Computers with
Shared General Architecture

The disclosed innovations have been implemented on
a number of different computer systems within the Dell
system product line. As of the effective filing date of the
present application, these include all Dell computer
models shipped after September 1990, plus a few models
which were retrofitted. The specific models include at
least Dell models 325D, 333D, 433P, 333P, 325P, 425E,
4.33E, 425TE, 433TE, 433DE, 450SE, 433SE, 42ODE,
420SE, 320LT, 320N, and 22N. These models include
tower, desktop, laptop, and notebook models; EISA
and ISA-bus systems; systems based on 80486, 80386,
and 386SX microprocessors; systems running at 50
MHz, 33 MHz, 25 MHz, 20 MHz, and 12 MHz clock
rates; systems with one or two hard disks, or up to 10
disks in a drive array; systems with monochrome,
VGA, or high-resolution graphics adapters; and a wide
variety of other configuration options. Moreover, the
disclosed innovations are currently being made avail
able in all new Dell computer designs. As of the filing
date of the present application, every computer which
is currently being shipped in the Dell product family
includes a version of the XBIOS described below. (Of
course, this is not necessarily true of the many older
models which are already in service in the field.)
As discussed below, the disclosed innovations are

believed to be advantageous not only as applied to a
single computer, but also as applied to a whole family of
computers. In the case of the preferred embodiment,
suppliers of computer peripherals can be increasingly
confident that a device driver which takes advantage of
the self-describing system software extension of the
presently preferred embodiment will apply to every
current Dell computer, and also to future models which
the supplier has not yet seen or heard of.
A sample source code implementation is set forth in

the Appendix to insure the fullest possible compliance
with the best mode requirements of U.S. patent law.
Although the sample source code does represent the
state of this code as of the effective filling data of the
present application, it must be noted that this specific
example is still under development. It is expected that
this source code will later be modified to add function
ality, improve performance, and possibly also to re
move bugs.
To give a more clear example of the workings and

advantages of the disclosed innovative system and
method ideas, the following is an excerpt from an OS/2
loader that uses several XBIOS features. This code
includes the following functions (in several modules):
check for existence of XBIOS table in system BIOS
(EPROM);

Looks for SYSTEM-IDENTIFY routine (find xbios
routine);

Call SYSTEM-IDENTIFY routine in EPROM;
Save the data returned by SYSTEM IDENTIFY

for later use;
Look for OS/213 INIT routine (in EPROM), and call

it if it exists;
Look for the SMARTVU routine, and, if it exists,

display "OS/2" on the diagnostic display;
Looks for GATEA20 routine, and, if it exists, save
the GATEA20 address (from table) for later use.

Part of the source code shown on Appendix Page A-ii
checks for the existence of an XBIOS table.

5,291,585
13

The source code shown on Appendix Pages A-ii and
A-ii checks for the existence of a System Identify Rou
te.

The source code shown on Appendix Pages A-iii and
A-iv checks for the existence of a SmartVu routine, and
uses it, if it exists, to display "OS/2'.
The source code shown on Appendix Pages A-iv and

A-V calls the OS/2 initialization routine, if it exists.
The source code shown on Appendix Pages A-v and

A-vi checks for the existence of a Gate-A20 routine,
and stores its address, if it exists, for use in switching
between real and protected modes.
The source code shown on Appendix Pages A-vi and

A-vii scans the XBIOS table in EPROM looking for a
requested function id.
To give a more clear example of the workings and

advantages of the disclosed innovative system and
method ideas, the source code shown on Pages A-vii to
A-xii is an excerpt from a DOS keyboard driver.
The source code shown on Appendix Page A-xii

swaps the INT 9 vectors.
The source code shown on Appendix Pages A-xiii to

A-xiv checks for a key chord which would require a
call to XBIOS.
The source code shown on Appendix Pages A-xiv to

A-xvi actually handles keystrokes as desired.
To give a more clear example of the workings and

advantages of the disclosed innovative system and
method ideas, the source code shown on Appendix
Pages A-xvi to A-xviii is an excerpt from a DOS mem
ory manager (HIMEM.SYS) that uses XBIOS func
tions. It looks for the GATE A20 routine in XBIOS and
saves the address for later use by the operating system.
To give a more clear example of the workings and

advantages of the disclosed innovative system and
method ideas, the source code shown on Appendix
Pages A-xviii to A-xxvi is a sample XBIOS table defini
tions in Assembler.
To give a more clear example of the workings and

advantages of the disclosed innovative system and
method, ideas, the source code shown on Appendix
Pages A-xxvi to A-xxviii is a sample of XBIOS table
definitions in C.
To give a more clear example of the workings and

advantages of the disclosed innovative system and
method ideas, the source code shown on Appendix
Pages A-xxviii to A-xxxvii is a sample of XBIOS test
code (written in C). This is an 80386-based 33 MHz
desktop ISA machine, with a typical configuration of a
200M IDE disk drive, 4M of DRAM, 64K cache
SRAM, and an 8 MHz ISA bus. However, as detailed
above, the disclosed innovations have been imple
mented on many other computers too.
System Software Extension-Technical Specification
The presently preferred embodiment provides a fam

ily of "IBM-compatible" computers. In this family, the
disclosed innovations are applied to augment the ROM
BIOS by self-defining ROM BIOS feature extensions in
a manner independent of the operating environment and
extends the system software support for disparate hard
ware features in a standardized fashion. This strategy is
the culmination of ideas arising from the necessity to
make the access procedure to the BIOS uniform, and
thereby reduce the number of releases of Dell sup
ported operating environment, to provide support for
extended system features across all system software
platforms, to accommodate enhanced diagnostic sup

O

15

20

25

30

35

45

50

55

65

14
port, and to obtained standardized access to system
services.

Dell computer systems support various ROM BIOS
(hereafter referred as "BIOS") extensions that enhance
the standard AT architecture providing added value to
Dell's customers. Hitherto, a keyboard interface and
various DOS utilities have been provided for Dell's
customers to access these extended features. However,
this access procedure is inadequate for computer sys
tems sold overseas and various operating environments.
The keyboard interface is sufficient for DOS only sys
tems sold in the US since these systems, by default, use
BIOS to process keystrokes that access extended fea
tures. Systems sold outside the US, however, use a
memory resident DOS utility that traps the BIOS INT
9 (keyboard handler) routine in order to process re
quested services. This utility requires frequent modifi
cations and testing whenever new features are added to
hardware systems since the supporting code is imbed
ded within the utility.
Moreover, operating systems and graphical environ

ments such as OS/2, WINDOWS, and UNIX intercept
keystrokes and process them in a manner which bypass
the BIOS keyboard handler. Thus the extended features
are not available to users via the keyboard in these
environments.
Some utilities written for DOS require direct BIOS

accessibility, and hence cannot execute in operating
environments that prevent direct access. In order to
support compatibility with current systems that access
extended features via the keyboard, operating environ
ments that place restrictions on BIOS accessibility, and
the additional requirement to improve system diagnos
tic support, a standardized access method to BIOS ex
tended features independent of the operating environ
ment and hardware system is provided.
The disclosed architecture permits access to extended

BIOS features independently of the operating environ
ment. This is accomplished by letting the features be
"self-defining'. This refers to the ability of the operat
ing environment to access features in a manner indepen
dent of the hardware system. An extended feature is
viewed by the operating environment as an abstract
hardware device or service processed by BIOS with its
characteristics embedded in BIOS. The operating envi
ronment's only reference to the extended feature is
through an identifier that is subsequently defined by
BIOS.
The centerpiece of this architecture is a table embed

ded in BIOS that contains a list of extended features
supported by the hardware and its respective attributes.
Through the use of this table, the operating environ
ment and the extended features are totally isolated from
one another. This allows the operating environment to
access extended features in a consistent manner inde
pendent of the BIOS. Conversely, the extended features
can be developed independently of the specific operat
ing environment, since they are redefined by the BIOS
in each specific machine.
The table improves upon the current software inter

rupt access method to BIOS, since this is not supported
by all operating environments. OS/2, for example, does
not allow this. DOS has a different problem: program:
mers can generally redefine any software interrupt,
which means that access to extended feature support
could be cut off by applications or even by users.
By using the disclosed innovations, BIOS program

mers can modify extended features without affecting

5,291,585
15

other parts of the architecture. This reduces the need to
update vendor source code. Utilities that take advan
tage of these extended features can be developed inde
pendently of the operating environment, and thus will
have greater portability.
Object-Oriented Paradigm for Feature Inheritance
By utilizing the embedded BIOS table as a method

table, the architecture can be developed around an ob
ject-oriented paradigm to access the extended features
in BIOS. As shown in FIG. 2, by viewing every Dell
hardware system as a subclass of a generic Dell hard
ware system class, supporting all extended features
across every systems, BIOS programmers can choose to
inherit or modify any or all of these features for their
particular system. (Thus, this is only a two-level hierar
chy, which avoids problems with "grandchild inheri
tance.) Each extended feature is assigned a unique iden
tifier. When utility applications need to access this fea
ture, they can use this unique identifier in a message that
is dispatched to an interface. This interface subse
quently determines the behavior of the extended feature
by matching the message to the identifier within the
table.

The Self-describing System Software Extension
The "XBIOS' self-describing system software exten

sion contains hardware specific features that extend the
standard BIOS operations. An "extended feature" is
either a system level routine or data used to service
hardware components or to obtain system information
unique to Dell hardware systems. Since XBIOS is an
extension to BIOS, access to all the standard BIOS
functions will remain intact via the interrupt vector
table, but an additional access method is provided for
the extended features. To implement this access scheme,
in the presently preferred embodiment, a table called
the extended feature table ("XFIT") is embedded in
BIOS. The XFT is used to match service requests for
extended features from the operating environment to
identifiers representing the extended features listed in
the table. Corresponding attributes associated with each
feature identifier determine whether the extended fea
ture is an XBIOS function or a pointer to a block of
data. The XF-F permits BIOS programmers to define,
modify and support extended features for any system
without having support built directly into the operating
environment or utilities.

Extended Feature Table ("XFT")
The XFT is a table containing extended system fea

tures supported by XBIOS. FIG. 1 diagrams the layout
of the XFT. The table consist of a header followed by
an array of extended hardware feature entries that can
be fragmented throughout XBIOS. The header is com
posed of a signature used to detect XBIOS support by
verifying the existence of the XFT, and the XFT ver
sion number.

FIG. 3 shows additional details of the structure of
each individual feature entry. Each entry contains at
least three fixed members: a feature ID, attribute flags,
and a 32-bit XBIOS pointer. Each table may also con
tain two optional members (as determined by the attri
bute flag settings): a feature keystroke trigger and an
appendix-block of additional data.
The XFT is relocatable, as are all the XBIOS ex

tended features. Anchoring an XFT pointer at the same
XBIOS address in all systems provides a standard

16
method of finding the XFT regardless of the system,
and allows BIOS programmers the flexibility to locate
the table anywhere in XBIOS.

XFT Header

Signature: At header offset 0, the signature
("DELLXBIOS") is a null terminated string of bytes
used to identify the existence of an XFT confirming that
XBIOS is supported by the system.

10

15

20

25

30

35

45

50

55

60

65

XFT Version Number: At header offset 2, the XFT
version is a 2-byte value used to verify the current XFT
version.

XFT Feature Entry
Feature ID: At feature offset 0, the feature ID is a

2-byte value serving as a selector to identify system
supported features. The XFT is scanned to match a
feature request against the XFT feature ID list. If a
match is found then the request is processed. No match
indicates that the request is unsupported. Two feature
ID's are reserved for XFT support operations: Chain
ID and NULL ID. The Chain ID (0xFFFF) is used to
indicated that the corresponding 32-bit pointer refer
ences the next table fragment in XBIOS. The NULL ID
(0x0000) is used as the XFT termination entry.

Attributes: At feature offset 2, the attributes is a 2
byte bit field containing various characteristics about
the feature entry. The flags describes the type of the
corresponding XBIOS pointer, whether the features
supports a DOS compatible keystroke trigger, and de
termines if the feature entry record contains extended
information. The attribute flags are described as fol
lows:

real mode: 1 bit. Real mode code pointer flag.
protect mode: 1 bit. Protected mode code pointer

flag.
XBIOS ptrformat: 1 bit. Denotes linear or seg:offset.
keystroke trigger: 1 bit. Optional keystroke trigger.
appendix flag: 1 bit. Feature entry has appended data.
To indicate that the corresponding XBIOS pointer

references bimodal code, both real mode and protected
mode flags are set. If neither the flags are set then it is
assumed that the XBIOS pointer references data and an
XBIOS address is returned. The pointer format flag
indicates the address format. When set, the pointer
format is segment:offset; when clear, the pointer format
is linear.
XBIOS Pointer: At feature offset 4, the XBIOS

pointer is a 32-bit pointer that references either code or
data depending upon the corresponding attribute flag
settings. If the real mode or protected mode flag is set
then the pointer contains an XBIOS feature routine
entry point. If the data mode is set then the pointer
simply contains an address to a block of data. The
XBIOS pointer is either a linear address or an address of
segment:offset form. Whenever there is a conflict be
tween the usage of either address format, segment:offset
should be used since conversion to linear form will
always yield a valid address.

Keystroke: A keystroke trigger is used to maintain
compatibility with systems that can access features
through the keyboard. Whenever the keystroke trigger
attribute flag is set a two byte keystroke field immedi
ately follows the permanent members of the feature
entry at offset 8. The keystroke field is a 2-byte field
consisting of the keyboard shift state in the high byte
and the scan code in low byte. For example, if a key
stroke trigger is designated as ctrl-alt-enter, the ctrl and

5,291,585
17

alt state bits are set in the high byte and low byte value
is set to hex C (enter key scan code).

Appendix: The appendix contains supplemental infor
mation attached to the feature entry. This provides
greater control and flexibility to XBIOS feature design.
The appendix follows either the permanent members of
the feature entry record at offset 8, or the keystroke
field at offset 10 (if one is designated by the keystroke
trigger attribute flag). The first two bytes of the appen
dix contain the length of the subsequent data block.

XFT Pointer

The XFT pointer is a 32 bit pointer in segment:offset
format anchored at the start of the OEM reserved
area-location F000:ED00-in YBIOS. This allows
BIOS programmers to relocate the XFT and enables
uniform access to the table regardless of the Dell system
type (FIG. 4). XFT isolates BIOS programmers and
reduces the impact from changes made to XBIOS. This
isolation allows BIOS programmers to continue to de
ploy the development environment that comply best
with their needs. XFT requires only the extended fea
tures supported by the system and BIOS programmers
can add or remove features as desired.

Standard and Generic Interface Configurations
The XBIOS interface is organized into two configu

rations: standard and generic. In the standard XBIOS
interface configuration, which is used in the presently
preferred embodiment, direct access to XBIOS is pro
vided by the XBIOS API library that is linked to the
utility application. The library contains an XFT inter
face that locates XBIOS features and executes XBIOS
feature routines (FIG. 5). In the generic XBIOS inter
face configuration, access to XBIOS is accomplished
indirectly through a device driver that contains the
XFT interface. The XBIOS API library communicates
with the device driver via the I/O control API supplied
by the operating environment (FIG. 6).

Generic Interface through API
In this alternative version, access to XBIOS is pro

vided via an application programming interface (API)
used by utilities. Utilities are applications that interact
with users and need control of the system-dependent
features. The XBIOS API corresponds to the features
provided by XBIOS and is consistent among all operat
ing environments and Dell computer systems. By re
stricting the access to XBIOS only through the API,
portable system dependent utilities can be developed in
a machine independent style with a high level language.
The utilities thus developed will be portable to other
operating environments and to other Dell systems. This
also permits the XBIOS interface to be organized into
various configurations based upon the strategy that best
supports the operating environment and customers
needs.

Access to XBIOS Feature Routines

XBIOS feature routines are machine specific func
tions embedded in the ROM BIOS of each hardware
system. The XFT interface executes feature routines
indirectly using the XBIOS feature pointer when either
the real or protect attribute flag is set. The routines must
adhere to a standardize XBIOS function call protocol.

5

O

15

25

30

35

45

50

55

65

This protocol enables the XFT interface to call any
XBIOS function in a uniform manner.

18
Each routine defines a set of input and output vari

ables that are passed to and from the feature routine via
a parameter buffer and returns a status value back to the
XFT interface. Routines can optionally define subfunc
tions under a single feature ID which are executed
through a subfunction identifier also placed in the pa
rameter buffer. XBIOS internal variables are defined
within the routine's code segment (usually in segment
F000h), and addressability is obtained by assigning the
data segment register (DS) to the code segment register
(CS).
Upon entry, the XBIOS routine assigns DS to CS

(after saving DS on the stack), and receives a pointer to
the parameter buffer in ES:BX. The input variables
within the parameter buffer are addressed incrementally
from ES:BX followed by the output variables and the
optional subfunction identifier. Various status flag are
passed to the routine in the AX register that can be used
to convey information such as the processor modes
(real/protected; USE16JLJSE32). One alternative
which was dropped from the presently preferred em
bodiment was to use the system XFT interface stack for
parameter variables. This would have allowed a "C"
language interface to the XBIOS routines. Due to the
possible stack addressing discrepancies from the base
pointer (BP) in the USE16 and USE32 address modes of
the processor, the current model using ES:BX was
chosen. However, as 32-bit architecture and operating
environments become increasingly standard, it may be
advantageous to implement such alternative XBIOS
routines to support the "C' language interface.
Upon exit, the XBIOS routine returns successful

(zero) or failure (non-zero) status in AX and restores the
DS register. FIG. 7 shows a typical XBIOS feature
routine organization.
Specific XBIOS Features in the Presently Preferred

Embodiment

XBIOS "features' are extensions to standard BIOS
that support hardware extensions. A feature is either a
hardware routine or data that is embedded into XBIOS.
The following list describes various XBIOS features:

Identify: Identifies the current system
Setup Entry: Entry point to the ROM based setup
program; optional keystroke trigger via ctrl-alt
enter.

Toggle Speed: Selects the next speed setting; optional
keystroke trigger via ctrl-alt-backslash.

Speed: Set of routines to handle the system speed
Returns the number of system speed settings.
Returns the current speed setting.
Sets the system speed.

Reverse Video: Reverses the monitor video attri
butes; optional Keystroke Trigger: via ctrl-alt
backspace.

Monitor Toggle: Toggles between video monitors;
optional keystroke trigger via ctrl-alt-F11.

Contrast: Set video contrast; optional keystroke trig
ger via ctrl-alt-F12.

Shadow RAM: Enable/Disable Shadow Ram
EMS: Enable/Disable EMS
Standby: Enable/Disable Standby
Gate A20: Used to set up fast gate A20.
Diagnostics: Entry point to memory diagnostic rou

tines.
Battery: Returns the Battery Voltage Level
SmartWu: Controls the Smart Vu device The Smart
Vu TM device is a very small character display in

5,291,585
19

the computer chassis, which is used, under low
level control, to output status and diagnostic mes
Sages.

Password: Set/Alter the system password
Peripheral: Enables/Disable peripheral devices
Reset: Controls the Reset Button
Speaker: Controls the speaker volume
OS2Init: Machine specific initialization for OS/2.
Of course, the disclosed innovative system architec

ture can be used to add other such features if desired.

Further Modifications and Variations

It will be recognized by those skilled in the art that
the innovative concepts disclosed in the present applica
tion can be applied in a wide variety of contexts. More
over, the preferred implementation can be modified in a
tremendous variety of ways. Accordingly, it should be
understood that the modifications and variations sug
gested below and above are merely illustrative. These
examples may help to show some of the scope of the
inventive concepts, but these examples do not nearly
exhaust the full scope of variations in the disclosed
novel concepts.
For example, the set of extended features can readily

be expanded. One way to use this capability is to pro
vide the user with additional debug functions which can
be used to interrupt the application software, as desired,
to monitor register values, memory usage, etc.
Another advantageous use of the extended feature

routines is for dial-up diagnostics (and/or debug). One
example of a hardware configuration which is suitable
for such dial-up operation is disclosed in published PCT
application WO 90/06548, which is hereby incorpo
rated by reference; but of course other hardware con
figurations can be used instead.
The contemplated primary advantage of the self

describing system software extension feature routines
provided by the present invention is for system-operate
functions, such as those listed above; but the capabilities
of the disclosed architecture can also be exploited ad
vantageously by device drivers for third-party-peri
pherals. For example, a power-hungry peripheral in a
small portable computer can use an XBIOS call to
check the battery status before initiating a high-current
operation.
The self-describing system software extension feature

routines can also be highly advantageous in controlling
closely-bundled peripherals. For example, one optional
add-on available with most computers in the Del TM
line is a disk drive array controller, known as the Dell
Drive Array TM (DDA). The present inventors have
already begun work on implementing some control
functions for the Dell Drive Array TM with the X
BIOS of the presently preferred embodiment, and this
direct interface is contemplated as one example of an
advantageous use of the disclosed concepts.

For another example, many application developers
are struggling with the problem of the range of installed
hardware capabilities. Business software may run on a

10

15

20

25

30

35

45

SO

55

wide range of "IBM-compatible' machines. Even if 60
very old or very low-end machines are excluded, a
commercial package such as WordPerfecty TM or
Paradox TM may be expected to run on anything from
an 8-MHz 80286 ISA EGA machine with a crowded 40
msec disk to a 50-MHz 80486 EISA TIGA machine
with a disk drive array. This range of machines will
provide more than an order of magnitude difference in
real-world performance, which poses a dilemma for

65

20
application software developers: the features which
provide product differentiation, and which run well on
high-end machines, will completely bog a lesser ma
chine. Some vendors have responded to this problem by
preparing scaled-down versions of their current pri
mary products, to permit operation on machines with
less power (such as 8088- or 80286-based portable ma
chines). However, this presents more difficulty in prod
uct distribution and support. One way to advanta
geously exploit the disclosed innovations is for such
application software (at installation or startup, or on
user command) to use the extended feature table to find
out the basic system configuration, and modify its own
software configuration or installation accordingly.

Referring to FIG. 8, there is illustrated a flow chart
depicting a preferred embodiment of the present inven
tion. At step 800, the CPU initiates operation. Next, at
step 801, the CPU retrieves the startup software from
nonvolatile memory. Thereafter, at step 802, the CPU
automatically begins running the startup software on
the CPU including self-test and bootstrap software.
Next, at step 803, from execution of the startup soft
ware, the CPU launches into execution of the operating
system software. At step 804, from execution of the
operating system software, the CPU launches into exe
cution of the application software. The CPU, under
control of the application software, may programmably
call on the basic system software (step 805) from the
nonvolatile memory to interface to an I/O device ac
cording to a format which is substantially independent
of the type of hardware being used within the computer
system.
The CPU may also proceed to step 806 where, under

control of the application software, it programmably
calls on device driver software to interface with an I/O
device according to a from at which is substantially
independent of the computer system hardware. Also,
the CPU may proceed to step 807 where, under control
of the operating system software it programmably calls
on machine-specific system feature extension software
to provide a low-level interface to electrical operations.
The system feature extension software is partly stored in
nonvolatile memory and contains a self-describing fea
ture table and a plurality of machine-dependent routines
which are be executed by the CPU. Note that device
driver programs are also able to make calls to the ma
chine-dependent routines which are dependent upon
data in the self-describing feature table.

Referring next to FIG. 9, there is illustrated a pre
ferred embodiment of the present invention whereby
CPU 900 is coupled to program storage unit 901 from
where CPU 900 can read and programmably execute
application software programs. CPU900 is also coupled
to I/O devices 902, which include at least one input
device and at least one output device. CPU 900 is also
coupled to nonvolatile memory (ROM) 903 which con
tains basic system software at addresses which are ac
cessible by application software programs to provide
translation for at least some input and output operations.
Startup software stored within nonvolatile memory 903
is called up by CPU 900 whenever CPU 900 initially
commences operation. Operation system software con
figured within either or both nonvolatile memory 903
and volatile memory 904, which is also coupled to CPU
900, is executed by CPU 900 after the startup software
is launched. The operating system software allows a
user to command the CPU to begin execution of appli
cation software programs.

5,291,585 21
System feature extension software is also stored in

nonvolatile memory 903. The system features extension
software contains a plurality of machine-dependent
routines and a self-describing feature table which con
tains pointers to the machine-dependent routines. Multi- 5
ple device driver programs each accessible by the appli
cation software programs running on the CPU define a
software interface to specific features of at least one of
the I/O devices. The device driver programs are able to

22
The disclosed innovations have been described with

primary reference to a uniprocessor CPU, but they can
also be advantageously applied to multiprocessor sys
tem.

As will be recognized by those skilled in the art, the
innovative concepts described in the present application
can be modified and varied over a tremendous range of
applications, and accordingly the scope of patented

make calls to the machine-dependent routines which are 10 subject matter is not limited by any of the specific exem
dependent upon data in the self-describing feature table. plary teachings given.

reneeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeer arraneaeroenterreroenaeataeanetary A03
/ Check for existence of XBIOS / AO3
fearanteers arearnettereoartonehearerrerettereoatheteentherestrataratar/ AO3

getAnaker: AO3
now cx, XFTSIGNEN ; lood signature length A03
lea di, xbhdr.xft signature load addr of signature AO3
assure es: dgroup AO3
nov ax, ds AO3
now eS ex ; es -> dgroup A03
assume ds: nothing AO3
lds si, PXFTADDR ;dissi -> a. of ptr to xft A03
ids si, ds: (sil ;ds: si -> a of xft A03
repz carpsb ; check for signature match AO3
jz initxbios ; Jump if supported A03
jmp init no xbios ; jurip to old machid stuff A03

; XBIOS exists - use it for initiatization

init-xbios: ; AO3
now xbstatus, ; XBIOS exists A03
add si, WORDEN ; adjust pointer to entries ;AO3
push si ; Save as input to find xbios; AO3
push ds ;AO3

; locate System identify Routine

OW ax,xB SYSTEM_IDENTIFY ; find system identify entry ; A03
cal find xbios entry AO3
Ov bx, offset Sidata ; es: bx -> return data area AO3

cal ds: (si).xft.ptr ; call xbios routine ;AO3

filt in nech pecket from returned model string and bios revision
-

push s A03
pop ds AO3

nov di, offset dgroup:mach packet.nodel ; es:di a mach packet A03
OW si, offset sidiata.system ds:sia of returned string AO3

xbgetchars: AO3
Odisb A03

cmp al, 00h copy until O encountered AO3
jz xbget rev done, go get bios rev AO3
Stosb AO3
toop xbgetchars ; loop until done A03

5,291,585
23 24

xbget rev:
now di, offset dgroup: nach packet. rom es:di a mach packet A03
nov byte ptres: (di), "P" ; Phoenix BIOS A03
inc di ; point to next char AO3

xbget revchar: A03
odsb ds:sia of returned BIOS rev AO3

cTp al., 00h ; copy until O encountered ;AO3
jz xbsys init ; done ; AC3
stosb AO3
loop xbget revchar ; loop until done AO3

; locate OS/2 init routine

xbsys init: ; AC3
ov ax,XBOS21 NIT ; find OS2 machine init routine; A03

cal find xbios entry AO3
cmp ax, OFFFFh found? A03
je Smartwu ; no - skip machine init ; AC3
call ds: sil.xft.ptr ; call OS2 init routine ;AO3

Locate SmartWu routine

smartvu A03

ROV ax,xB SMARTVuoloFF find Snertvu On/Off routine AO3
call find xbios entry AO3
crp ax, OFFFFh found? A03
je CheckPanther ; no - skip smartvu init ;AO3

Turn on Smartvu (prevent BiOS from overwriting what we do...)

push CS ; Save our data segment ; AO3
wow ax, XB, SMARTWUON turn on SmartWu AO3
push X push as input to XBIOS A03
push SS ;AO3
pop es ; set es: bx to a of input parm A03
OW bx, sp AO3

call ds: (si).xft.ptr ; cat SmartWu on/off routine A03
pop X ; realign stack ;AO3
pop S ; restore es A03

Write OS/2 to Snart Vu

OW ax, XBSMARTWU find SmartWu Write routine A03
cal find xbios entry " ; AO3 .
cTp ax, OFFFFh ; found? AO3
je CheckPanther no - shouldn't happen A03
OV bx, offset smudata es: bx -> date to write ;AO3

cal ds: (si).xft ptr ; call xbios routine A03
jmp Gate20 ; go setup Gate A20 AO3

; Locate Gate A20 X8 OS routine

5,291,585
25 26

Gate 20: AOS
OW ax, XBA20 ; find system Gate A20 entry AOS

call find xbios entry AO3

set OS/2 gate A20 address to XBIOS A20 routine shell

W ax, offset DHA20 xbios ; offset of gate A20 routine AO3
ow A20, ax ; store it ;AO3

save address of XBIOS GATEA20 routine for real & prot node
(prot node selector generated on first A20 call - see DHNODESWAS)

ow di, offset fpxbiosA20 real ; es:di -> real node cat a : A03
did si,4 ; dissi -> XFT routine address AO3
OWSW ; store offset AO3
OYSw ; Store segment AO3
ow di, offset fpxbiosA20prot.offs ; es: di -> prot node offset ; A03
OW ax, eS ; restore dis A03
OW ds, ax ;AO3
OY si, offset fpxbiosA2Oreat.offs ; ds: si -> real node offset A03
OYS ; store prot node offset ;AO3

; Time to leave....

pop x ; Make Stack right... ;AO3
pop X ; (was saved ds : si for find xbios); A03
jmp exit nachid ; go to exit A03

feateneeeeeeeraseratest resentereretterestreatherstartereretterrarare/A03 A.

; /* ROUTINE NAME: find xbios entry

?t INPUT:
/ starting address of XBIOS feature table on stack...
/ ax C- X8 OS id to locate

fit OUTPUT:
; /t ds: si C- a of XBIOS feature table entry for id
/ ax s - (FFFF) means id not found
yetetrahetaertarreretterneatenartarestreateneratesterestartenetreamera/A03

assume dis: nothing, es:dgroup
find xbios entry proc near

pop CX ; pop return address
pop dis ds : si -> start of XFT entries
Pop si

push si save on stack for next call...
push dis

push C ; put return address back on stack
init feature loop:

carp ds: (si).xft id, XBNULL ;are we at the end of XFT?
je initloop error yes, break; ERROR
crp ds: (si).xft id, XBCHAIN is XFT chain id located?
jne init found id ; if not - we found an id

lds
jmp

init found id:
cmp ds: (si).xft id, ax
je initioop exit
nov bx, XFT FEATURELEN
test ds: (si).xft attr, WASK keyb
jz initcheck appx
add bx, XFTKEYBLEN

initcheck appx:
test ds: (si).xft attr, MASK appx
jz init calcnext id
add bx, ds : (Si). (bx)
add bx, XFTAPPXLENFLD

init catcnext id:
add Si, bx
jp init feature loop

initloop exit:
ret

27
si, ds: (sil.xft.ptf
SHORT init feature loop

initioop error:
now

jp
ax, OFFFFh
init loop exit

find xbios entry endp

PAGE , 132
E PC DOS KEYB Cowan

5,291,585

; set next xft block
; continue search

it welve found an ID, is it the one we wanted?

; is the id the one we want?
; yes, we're done
sizeof (feature) to bx
is keystroke trigger?

; if not check for appendix
add length of keyb to bx

; is there an appendix?
; if not calc next id addr
add appendix length to box
add size (appx.lenfield)

locate next id
; continue table scan

- De feature support

s
A.

; DELLKEYB -- Delt hardware feature support
st

a

; Copyright (C) 1991 Delt Computer Corporation

CODE

xb Signature
xb siglen
Rax keys
key count
key codes
key handlers
current funct
ofs int9

NCLUDE postequ.inc
EXTRN SHIP. T.; NEAR
EXTRN machid: NEAR
SEGEN PUBC CODE

ASSUME CS: CODE, DS: NOTHING
PUBLIC init_dett
PUBLIC int9 swap
PUBLIC Det key
cb DELLXBIOS',00
equ 10
acu 32
did

did maxkeys dup (?)
did maxkeys'2 dup (?)

b. ?
did

table sized for n key codes
of codes logged in table

;ct salt codes handed by XBIOS
far addresses of XBIOS handlers
re-entry avoidance flag
old NT9 handler address

; Initialize Det-specific functions
; Temporarily exchange INT9 handlers
; handle - at t-keys on at Delt systems
XBIOS signature string len

seg int9
setup F
setup E8
speed toggle
monitor toggle
contrast toggle
video toggle

Mach Type
Bios VER
Setup Addr
LT System
DEL

NON DELL
PNXBIOS
PCL BIOS
FBLOCK
E8 BLOCK
DELLLAPTOP
NOTDELLLAPTOP
ENT KEY
BS KEY
BKEY
F 11 KEY
F 12 KEY

CMOSMC
MT. FLAG
CEFLAG
canos data port
cmos funcport
iojcinos
iojump

29
dw 7

OfDOOO 100h
did OeSOOO 100th
did Of OOOff6Oh
did. Of OOOOO4h

Of OOOff86h
did of OOOffs2h

PUBLIC Mach Type
PUBLIC Blos VER
PUBLIC Setup. Addr
PUBLIC LT System
db

b. ?

b. ?

equ 00001000b
equ 00010000b
oqu 71h
equ 7Oh
equ 8
necro dev

rept iojdev
Jop S-2

endrin
end

PROC NEAR

pushf
e

or at 80h
iojump canos
out cinos funcport, at
iojurp cos
in at , Cros data port
push ax
now all, ODh
iOjump cmos

5,291,585
30

; F000-based ROM setup
E800-based ROM setup
;ROM-based speed toggle
;ROM-based laptop Ronitor toggle
;ROM-based laptop contrast toggle
;ROM-based laptop reverse video toggle

machine type

bios version

; Setup addr

; laptop flag (LCD monitor)

Enter key used for Setup
Backstash key for Speed Switch
backspace key for reverse video.

; F1 key for monitor toggle
; F 12 key for contrast.

cinos Ronitor/contrast byte address
; nonitor toggle flag bit
contrast enhancer flag bit

; used for REAL TIME CLOCK
used for REAL TIME CLOCK

; Canos Ram

;AL -> COS byte at Al

; point to register D

5,291,585
31 32

out canos funcport, a enable NMI
iojump canos
in at canos deta port ; requisite read from data port
pop ax
popf
ret

incinos data ENDP

swat low key PROC NEAR ; re-enable keyboard
pushf
cli

mov a 20h ; send end-of-interrupt
out 20h, at
Rov at ENAKBD ; re-enable keyboard interrupts for
call Shi PT ;SETUP (DOS 5.0 SHI PIT doesn't STI)
popf
ret

swat low key ENDP
trirrtt refer frt frt first seriest tertar tyre retire terrir irrir regrgrrrr,

Build Ouick Reference Table

The following routine scans the feature table for entities with keystroke
activation, and saves a list of the keystroke codes, with the corresponding
routine addresses, in system RAM.

This routine can be plugged into a third-party keyboard-handling routine,
to preserve the XBIOS keystroke handling when INT9 is remapped, without
knowing in advance what the active XBIOS keystroke triggers should be.

init del PROC NEAR

push ds
push es

nov cs: key count, O ; flag no valid XBIOS keys
nov CS: current funct, O ; flag no handlers executing
now ax, Of OOOh
mov es, ax

les dies: (OedOOh)
push ds
push cs

go init done:
xbios chain:
for feature:

next feature:

33
pop ds
tea sics:xb signature
now cx,xb siglen
repe crpsb
pop dis
add di, 2
jcxz for feature
jorp xb init done
tes dies: dit-2)
now axes: (di)
add diz
Cup ax, 0
je go init done
cap ax,65535
je xbios chain
now axes: di)
add di, 2
test ax, 00000001b
jz next feature
test ax, 00001000b
jz next feature
test ax00010000b
jz next feature
now bx, es: dit-4)
and bh, 11 b
xor bh, 11 b
jnz next feature
now Sics: key count
sh si,
now cs: key codes (si), bx
sh si,
now bx, es: di)
nov CS: key handers (si), box
now bx, es: dit-2)
nov CS: key handlers (sitz), bx
inc cs: key count
crop CS: key count,nex keys
jae xb init done
add di, 4
test al., 10000b
jz for feature
Vov bx, ex
and bx, 10000b
shr bx, 1
shr bx, 1
shr bx, 1
add dibx
test ax, 100000b
jz for feature
add dies: Idi
add dia
jmp for feature

5,291,585
34

; took for X810S signature text
at (FOOO: EDOO)

; skip version 1 D, if present

; no signature, no XBIOS
; handle XFT chain feature...
get feature identifier

; ULL feature?
yes, end of feature table

; CHAIN feature?
Yes, go find next fragment...
else get feature attributes

reat mode calls accepted?
; no, can't call it froR KEYB
; standard seg: off pointer?
; no, wouldn't be prudent at
this juncture

; not keystroke, don't record
get keystroke data

; both ctrl and alt flags set?
; no, key code not accessible
; from standard KEYB.COM
else record the keystroke in

; "quick-reference table...

; write far proc offset

; write far proc segment
; burp key counter
; any more room in table?
; no, Stop SCanning
skip handler address
keystroke or appendix?

; no, nothing else to skip

; keystroke?

BX2 if keystroke present,
; else O

; appendix?

; yes, add blocklent 2 to skip

xb init done:

init. Dell

35
now ax,3509th
int 21h

now seg int9,es
nov ofsint9, bx
cat nechid

pop es

pop ax
ret

ENDP

5,291,585

record current INT9 address
; so int? shap can swap it out

identify other machine
characteristics

ints swap

int9 swep

PROC NEAR

push ex
push bx
push Cx
push ds
push es
Xor ax, ax

mov ds, ax
tes bx, ds: 94)
nov ax, es: ofsint 9
nov cx,cs: seg int9
nov cs: seglint 9, es
mov cs: ofsint9, bx
pushf
ci
now ds: (94), ax
now ds: 942), ex

pop es

pick up current int 9 vector...
; and exchange with vector
; stored during initialization

36

5,291,585
37 38

This code uses the Quick Reference Table in system RAM, and
provides quasi-real-time handling of keystroke calls.

1 territter titt treet terrrt treet very fert retrittee friger arrier

XBIOS key PROC NEAR ; Check for XBIOS ctrl-alt code in AX
;Calt XBIOS & return CaO if handed

crp cs: current funct,0
cc don't at to re-entry into XBIOS
jne XB return handlers

nov cs: current funct,
push ax
push bx
push cK
push dx
push bp
push si
push di
push ds
push es

nov cx, CS: key count
carp. cx,
jb XB exit ; no XBIOS keys logged, exit w/C=1
xor ah, ah
push CS
pop es

nov di, OFFSET cs: key codes
now dx, di
cid

repne Scasw scan key code table
SC

jne XB exit ;key not found, exit w/Cs
sub dia else point to match
Sub didx get table offset 2
sh di 1 *4 to index jump table
push di
cell swallow key
pop di
cal int9 swap avoid KEYB re-entrancy
now ax,40h set DSs4OH in case XBIOS wants it
now ds, ax
cat DWORD PTR cs: key handlers (di
call int9 Swap put KEYB NT9 handler back
clic ; signal XBIOS call accomplished

XB exit: pop es
pop dis
pop di
pop si
pop bp
pop dx.

5,291,585
39 40

pop CX

pop bx
pop ex

now cs: current funct, O
XB return: ret
XBIOS key ENDP

The following code attempts to call the routine XBIOS key, to handle
XBIOS calls. However, this code can also operate as a simple old-style
keystroke handler, for backward compatibility. Comparison of this code with
the XBIOS key routine shows some of the advantages derived from the claimed
innovations.

grger terrerrrrrrrrrrrrrrr

Det key PROC Try to handle key AL through XBIOS
(or BIOS on older Dell/PCL Rachines)

push ax
bx

C.

push dx
bp

push si
push di
push dis
push es
catt XBIOS key ;XBIOS function present?
jnc key processed yes, keypress handled
carp Mach Type, DELL
jne not Det key
carp BIOS VER, PNX BIOS
jne not del key ; not Dell/Phoenix machine

carp all, ENT. KEY ENTER triggers ROM-based SETUP
je cat setup
crp a , BSKEY ; "V" key toggles CPU speed
je toggle speed
crp Lt. System, DELLLAPTOP
jne not Det key ; not a 3.6LT/52OLT, skip other tests
crp at, BKEY ; backspace key inverts video
je invert video
carp al., F11 KEY ; f1 toggles LCD/external nonitor
je togg tenonitor
cap at, F12 KEY ; F12 toggles enhanced LCD contrast
je toggle contrast
jmp short not delt key

key processed: db 85h stic becomes test cx, di; sets C=O
not. Det key: stic key not handed in BIOS

pop es

pop ds
pop di
pop si

41

cal setup:
call Swatow key
catl int's swap
camp Setup Addr, f. LOCK
jne E8 setup
cat (setup F)
jrp short end setup
cal setup E8)
call int9 Swap
jrp key processed

E8 setup:
end setup:

toggle speed:
call (speed toggtel
jmp key processed

invert video:
cat (video toggle)
jmp key processed

toggle monitor:
nov al., COSMC
cat in Cros data
test al., MT. FLAG
jz not del key
call (monitor toggle)
jrp key processed

toggle contrast:
mov at , CMOSMC
call incinos data
test al., CEFLAG
jz not Dell key
cal contrast toggle)
jmp key processed

Det key ENDP

CODE ENDS

END

5,291,585
42

invoke ROM-based SETUP program

ditch the KEYB keypress handler

far call to SETUP vector

restore our NT9 handler

Toggle CPU speed

: Invert LCD video

;Select LCD/externat Ronitor

; ... but only if option is active

else ignore key

; Toggle LCD contrast enhancement

;... but only if option is active

; else ignore key

tryirst referrery friger retirregger grierrergy

5,291,585 43
of a - - - - - - - - - - a s a s a ob as a eu as a a up as a to so a p r u o as a use as a or up v up as a 4 up at Op r

st t

; : Isbel XBIOS
t r

r

; Check for De XBIOS machines t
t r r

; ARGS: None
; RETS: Ax = 1 if we're on a Dett XBIOS machine, O otherwise
; REGS: All regs/flags preserved except AX
w t

t Stores address of XBIOS A20 handler in pextA2OHandler
t y t

; Note: ID method given by Delt Computer Corp.
; t

as a so su - a - r as a e o a n e s a s a was a use e s a - a - as s a - - - - so s vs - e o so e s - a n e o s is so

xb signature
xb sigten

sdel XBIOS

xbios fait:

xbios chain:
for feature:

db DELXBIOS',00
equ 10
PUBLIC Isfet XBIOS
PROC NEAR

pushf
pusha
push ds
push es
co

mov ax, Of000h
nov es, ax

les dies: (OedOOh)
push ds
push cs
pop ds
lea sics:xb signature
now cx,xb siglen
repe carpsb
pop ds
add di, 2
jcxz for feature
clic

jmp xb init done
tes dies: dit2)
now axes: di)
add di, 2
clip ax, O
je xbios fail
crp ax,65535
je xbios chain
crp ax, 11
jne next feature
now axes: di)
test ax, 00001000b
jz next feature

;XBIOS signature string & ten

took for XBIOS signature text
at (FOOO: ED00)

; skip version ID, if present

; no XBIOS A20 handler present

handle XFT chain feature...
; get feature identifier
; index attribute flags
; NULL feature?
yes, end of feature table

; CHAIN feature?
; yes, go find next fragment...
A20 feature?

; no, skip it
; else get feature attributes
; standard seg: off pointer?
; no, wouldn't be prudent at
; this juncture

45
les bx, es: dit2)

5,291,585
46

now ORD PTR pextA2OHander, bx else record hander addr...
now WORD PTR lpextA2Ohandlert-2,es
stic

xbin it done: pop es
pop dis
pope

now ax0
rc ax,
popf
ret

next feature: now ax, es: (di)
add di,6
test at 110000b
jz for feature
mov bx, ax
and bx, 10000b
sh r bx, 1
shr bx, 1
shr bx, 1
add dibX
test ax, 100000b
j2 for feature
add dies: di)
odd di, 2
jrp for feature

Isoet XBIOS ENDP

;... and return OK
C=1 if XBIOS OK, 0 otherwise

get feature attributes
skip attribs & handler addr

; keystroke or appendix?
; no, nothing else to skip

; keystroke?

; BX=2 if keystroke present,
; else D

appendix?

Yes, add blocklen-2 to skip

; : XBIOS. NC t;
; : -------------------------------- t;
; SLog: X:/bios/core/xbios/xbios. inv S
t t;
comment :

Include file contains the XBIOS structure declarations for the header

and the permanent part of the feature entry. Also included are bit
field records for flag entries and equates for the feature entry id's.

r

; XFT Header Structure. t;
xft header tag struc

xft signature dib "DELLXBIOS, O
xft version c 10Oh

xft header tag ends

; XFT feature Structure. t;
xft feature tag stric

xft id did
xft attr dw 7
xft Ptr did

xft feature tag ends
;" XFT Keystoke Trigger Structure. t;
xft keybtag struc

xft keyb dw 0

5,291,585
47 48

xft keybtag ends
; XFT Appendix Structure. t;
xft appx tag Struc

xft appx dw 0
xft appx dat

xft appytag ends

; : xFT POINTER LOCATION (Offset into F blk). t;
XFTPTR_LOC edu OEDOOh
XFTLINRPTR LOC equ OFEDOOh

XFT LENGTH EQUATES t;
XFTHDRLEN equ (size xft header tag)
XFT FEATURELEN edu (size xft feature tag)
XFTSIGNLEN equ (offset xft version - offset xft signature)
XFTKEYBLEN equ (size xft keyb tag)
XFTAPPXLENFLD equ (size xft appx)
; : XFT FEATURE AT TRIBUTE FLAGS. t
XAT TR REAL equ 0000000000000001b ;xftptr. to reat node proc
XATTR PROT equ 000000000000001Ob ;xftpt to protect node proc
XATTRXXXX edu 0000000000000100b reserved bit
XATTRSEGM ecu OOOOOOOOOOOOOOOb xftptr in seg: off format
XATTRKEYs equ 000000000001 0000b optional keystroke trigger
XAT TRAPPx equ 0000000000100000b optional appendix
XATT RBI MODAL equ (XATTR REAL or XATTR PROT)
XATTR DATA equ (XATT RB1 MODAL xor XATTRBI MODAL)
XATTRLINR eCu (XATTRSEG4 xor XATTRSEGM)
XFTATT R FLAGS record resv: 10=0, appx:1, keyb:1, form: , xxxx:1=0, prot:1, real: 1
; XFT KEYBOARD TRIGGER SHIFT STATE FLAGS. t;
XKEYBCTRL equ OOOOOOOb ; ctrl key
XKEYBALT edu OOOOOOOb at key
XFT KEYBFLAGS record unused:6=0, alt: 1, ctrl :

; : t;
; XBIOS FEATURE EQUATES t;
comment ;

The following are equates used to identify XBIOS extended features.
The XBNULL and XB CHAIN entries are reserved. Place new entries before
the XBCHAIN and include a short description of the feature and its
protocol.

comment ;
The NULL feature entry indicates the end of the extended feature table.

XBNULL equ 00000h XFT terraination identifier

FUNCTION: System identify
lNPUT: es:bw - points to output stack frame

CS,ds XBIOS routine segment/selector (must be F000 block)
INPUT STACK FRAME: None

5,291,585
49 SO

OUTPUT: Results are put in output stack frare, which is treated
like a buffer. For tong names, could be up to 32 bytes long.
The first byte stored in the buffer is the Del system

t model number (binary), followed by the Del System revision
nuber (binary). Next is the system name, which is an
ASCII String terminated with a zero. Finally, the BIOS

t version is included, another ASCII string terminated with
r 2ero.

OUTPUT SACK FRAME:

system id db 32 dup(?)

XBSYSTEM_IDENTIFY equ 0000th

FUNCTION:
NPUT:

NPUT STACK FRAME:

OUTPUT:
OUTPUT STACK FRAME:

st
A.

XB SETUPENTRY edu 00002h

FUNCTION: Toggle speed
NPU None

INPUT STACK FRAME: No input
OUTPUT: None

OUTPUT ST ACK FRAME: No output
thr

XBTOGGLE SPEED equ OOOO3

* FUNCTION: Speed Control and Status
INPUT: es: b - points to input stack frame

CS - XBIOS routine segment/selector (must be F000 block)
INPUT ST ACK FRAME:

t OUTPUT:

OUTPUT STACK FRAME:
at

XB SPEED CONTROL equ OOOOh
t a D - O on as as t;

comment :
FUNCTION: Toggle black/white video background on portable systems
NPUT: None

INPUT STACK FRAME: No input
OUTPUT: None
OUTPUT STACK FRAME: No output

XB REVERSEVIDEO equ 00005h.
t - a us as so e s e as a do o an o os as es up b t;

comment :
FUNCTION: Toggle CRT/LCD displays on portable systems

5,291,585
51

NPUT: None

INPUT STACK FRAME: No input
OUTPUT: None

OUTPUT STACK FRAME: No output

XB MONITOR TOGGLE equ OOOO6

comment ;
FUNCTION: Toggle text node contrast / graphics mode palettes on portables
INPU: None

INPUT ST ACK FRAME: None
OUTPUT: None

OUTPUT SACK FRAME: None

XB CONTRAST equ OOOO7

?t FUNCTION:

NPUT:

INPUT ST ACK FRAME:
t OUTPUT:

* OUTPUT STACK FRAME:

XBSHADORAM equ OOOO8.

FUNCTION:
NPUT:
NPUT STACK FRAME:

OUTPUT:

OUTPUT STACK FRAME

FUNCTION: Disable/enable "Standby" keyboard NMI on portable systems
NPUT: es: bx - points to input stack frame
INPUT ST ACK FRAME: First byte 0 to disable standby key, 1 to enable
OUTPUT: None

OUTPUT SACK FRAME: None
s
f

XB STANDBY equ OOOOAh
XB STANDBYD SABLE equ O
XB STANDBYENABLE equ
!" -

comment ;
FUNCTION: Enable/Disable A20 line

* 1 NPUT: es: bx - points to input stack frame
CS XBIOS routine segment/selector (Rust be F000 block)

t The input stack frame contains the subfunction id:
- O means disable A20 tine (wrap addresses at 1MB)
- Rheans enable A20 tine (a tow high remory access)

5,291,585
53 S4

NPUT ST ACK FRAME
Subfunc db 2

OUTPUT: A20 line enabled/disabled
OUTPUT STACK FRAME: None

a

X8A20 equ OOOOBh
XB A20 DISABLE equ O
XB A20 ENABLE equ 1

FUNCTION:

INPUT:
NPUT STACK FRAME:

t OUTPUT:

OUTPUT STACK FRAME:
s

XB DI AGNOSTICS Ocu OOOOCh

comment ;
t FUNCTION:

PUT:
NPUT STACK FRAME:

OUTPUT:
OUTPUT STACK FRAME:

xBBATTERY equ OOOOOh
; w w w e os -- t;

comment ;
FUNCTION: Output characters on Smartvu device
NPUT: es: bx - points to input stack frame

CS - XBIOS routine segment/selector (rust be F000 block)
The stack frame contains the ASCIIZ string to be displayed

r on the SmartWu device. es: bx points to the first character
t (leftmost) to be displayed.

NPUT STACK FRAME:
string db x dup (?) - ASCJZ string of any length

* OUTPUT: ASCII2 string displayed on Smartvu device
OUTPUT SACK FRAME: None

XB SMARTVU equ OOOOEh

FUNCTION:
NPUT:

s NPU STACK FRAME:

OUTPUT:

OUTPUT ST ACK FRAME:
st

XBPASSWORD equ OOOOFh

FUNCTION:

5,291,585
SS S6

NPUT:

NPUT STACK FRAME:

t OUTPUT:

OUTPUT ST ACK FRAME:
er
v

XB PER1 PHERAL equ 0001Oh

FUNCON:

INPUT:

NPUT STACK FRAME:

OUTPUT:

OUTPUT SACK FRAME
st

XBRESET CCU OO011h

comment ;
* FUNCTION: Perform OS/2 Specific Machine Initiatization
* NPUT: CS - XBIOS routine segment/selector (must be FOOO block)

NPUT SACK FRAME: None

OUTPUT: machine specific actions performed, no data returned
OUPU SACK FRAME. None

XB OS2INT edu O002h

FUNCTION: Turn SmartWu On/Off
* 1 NPUT: es: bx - points to input stack frame

CS - XBIOS routine segment/selector (must be F000 block)
The input stack frame contains the subfunction id:

y 0 turns on SmartWu (disbates BOS writes to SmartWu)
r - 1 turns off Smartvu (enables BIOS writes to Smartvu)
INPUT STACK FRAME

r Subfunc do

OUTPUT: BIOS updates to SmartWu enabled or disabled
OUTPUT STACK FRAE. None

XBSMARTVU on OFF equ OOO13h
XBSMARTWUON equ O
XB SMARTVU OFF equ

os s - - - r u o on a s as a s - - - as a on so s - as a as a v on arm as ess so e o or a sa e s - s s r. see or a s - is Tre

comment ;
FUNCTION: Turn system processor cache on/off
INPUT: es: bx - points to input stack frame

CS - XBIOS routine segment/Selector (must be F000 block)
PU STACK FRAME

status db

OUTPUT: Machine specific actions performed, no data returned
OUTPUT STACK FRAME:

st

5,291,585
57 S8

XB SYSTEM CACHE equ

X8. SYSCACHE OFF equ O
XBSYSCACHE ON equ

FUNCTION: Unlock the FE3021 chip
NPUT: cs, ds - selector to OFOOOh
NPUT ST ACK FRAME:

OUTPUT: 2F c 1 : Unlock failure
ZF E O : Unlock O.K

OUTPUT STACK FRAME:

FUNCTION: Get/Set Monitor Type, System Video Status
INPUT: es: bx - points to input stack frame

g CS - XBIOS routine segment/selector (rust be F000 block)
NPUT ST ACK FRAME:

OUTPUT:

OUTPUT STACK FRAME:

XB MONITOR TYPE equ 00016

comment ;
The chain feature entry indicates that the XFT is fragmented and that
its corresponding X FT pointer references the next fragment.

XBCHAIN equ OFFFFh XFT chain indicator.

fie XOS H sample XBIOS table definitions in C
A/

typedef struct
(

unsigned modenum;
unsigned board rev;
char name 32);
char bios version (16);
) sysld;
unsigned get XFT version(void);
char far find feature(unsigned featureid);
unsigned system identify(SysID ID);
unsigned get system speed(unsigned speed);
unsigned get supported speed count (unsigned speed);
unsigned set syster speed(unsigned speed);
unsigned set A20(unsigned status);
unsigned set system cachecunsigned status);
unsigned rom setup(void);
unsigned reverse video(void);
unsigned monitor togglec void); t

5,291,585
59 60

unsigned speed toggleCVoid);
unsigned contrast toggle(void);
unsigned set standby (unsigned status);
unsigned OS2 init(void);
unsigned write smartvu(char far "string);
unsigned set smartvu(unsigned status);
unsigned unlock 3021 (void);
unsigned get monitor type(unsigned montype);
unsigned set nonitor type (unsigned Pontype);
unsigned get system video status(unsigned status);
#define XBSIGLEN 10
#define XBNULL O
idefine xe CHAIN 65535
idefine XBSYSTEM IDENTIFY 1
idefine XBSETUP ENTRY 2
idefine XBTOGGLESPEED 3
idefine XB SPEED CONTROL 4
#define XBREVERSE VIDEO 5
#define XBon ITOR TOGGLE 6
idefine XBCONTRAST 7
idefine XBSHADORAM 8
idefine XBEMS 9
idefine XB STANDBY 10
idefine XBA20 11
#define XBDI AGNOSTICS 12
idefine x8 BATTERY 13
ildefine XBSMARTVU 14
idefine XBPASSWORD 15
#define XBPERIPHERAL 16
#define XBRESET 1.7
idefine XBOS2INIT 18
#define XBSMARTWUON OFF 19
#define XBSYSTEM CACHE 20
#define XB UNLOCK 3021 21
#define XBMONITORTYPE 22

fite XAPI C Sample XBIOS test code in C
?treet enterest treets that it at that attent at that htarrett /
/t ty

W XAP - - Turbo C++ XBIOS application program interface /
/t t/

/ Compile with Turbo C++ v1.0 or later, medium model t/
At ty

/ t/
year trantet at that treet at that ottette tetratt et at attty
?pragma intine
it include (stdio.h>

include Colos.h>
include stolib.h>

include Catoc.h>

include biosh

yeater teetneteerinetetraetetra-tetreateresteeresareasessesse?

5,291,585 6
unsigned get XFT version(void)
(

unsigned XFT vers;
Static char xb signature) s ("OELLXBIOS");
asin

now ax, Of OOOh; now es, ax; ties dies: (0edOOh);
tea sixb signature; now cx,XBSIGLEN; clid; repe carpsb;
jne not valid;
now ax, es: (di); now XFT vers, ax;

return XFT vers;
not valid:

return 0;
X

yettetter at that that that entreat at that reestatenetraataan/
char far find feature(unsigned featureid)
C

char far *ntr = NULL;
asm

mov ax, Of000h; moves, ax; ties dies: (OedOOh);
add di, XBSIGLEN+2;
D

CITp loop:
ash

now ax, es: (di; add di,2;
crp ax, feature id; je found;
cTip ax, XBNULL; je eot;
now axes: di); add dié;
test al., 110000b; jz carp loop;
nov bx, ax; and bx, 10000b; shr bx, 1; shr bx, 1; shr bx, 1; add di, bx;
test at , 100000b; jz cmp loop;
now ax, (di); add di, 2; add di, ax; jrp crp loop;
)

found:

asin
now axes: di); add di,2;
and ax, 1000b; jz linearptr;
tes dies: (di);
now ORD PTR pntr, di; now WORD PTR prtre2, es;
jmp eot;

linearptr;
asm

now axes: dit2); Row ah, at ; xor a lat; now c,4; sh ax, cl: now es, ax;
now dies: di);
now WORD PTR pntr, di; now WORD PTR prtr2, es;
jup eot;
D

eot:

return pntr;
X

featre areastenerattreet at arent retarrett treat attentent/

62

5,291,585
63

unsigned system identify(sysi D ID)
(

unsigned char buffer (323;
char far feature;
if ((feature=find featurecKBSYSTEM IDENTIFY)) == NULL)

return 0;
ast

push ss; pop es; tea bx, buffer;
push ds; push si; push di; push bp; now ax, Of OOOh; Rov ds, ax;
call DORD PTR feature);
pop bp; pop di pop si; pop dis;

1D->model num=buffer (0);
ID->board rev=buffer (1);
strcpy (ID->name,&buffer (2));
strepy (ID->bios version, buffer (3+striencebuffer (2))));
return i;

D

first ent treatnett at that that the treet attenterestreet/
unsigned get system speed(unsigned speed)
C

char far feature;
unsigned char fin (4);
if ((features find feature(XBSPEED CONTROL)) as NULL)

return 0;
fn(3) is 0;
as:

push ss; pop es; ea box, fin;
push ds; push si; push di; push bp;
now ax,40h; Nov disax;
cal DORD PTR feature;
pop bp; pop di; Pop si; pop dis;
carp ax, 0; jne error;
y

speed s fin (2);
return 1;

error

return 0;
D

feet to treat that that that that attent attent treet treaty
unsigned get supported speed count (unsigned speed)

char far feature;
unsigned char fin (4);

if ((feature=find feature(Xe SPEED CONTROL)) == NULL)
return 0;

fins) = 0;
sm

push ss; pop es; ea bx, fin;
push ds; push si; push di; push bp;
vov ax,40h; now disax;

64

5,291,585
65

celt DORD PTR (feature);
pop bip; pop di; pop si; pop dis;
cap ax, 0; jne error;
O

"speed s fin1;
return 1;

error

return 0;
D

/*********tterestarterestarrearraraesareer,
Unsigned Set-system speed(unsigned speed)

char far feature;
unsigned char frn 4;

if ((feature=find feature(XB SPEED CONTROL)) as NULL)
return 0;

frn 3) = 1;
fin (O) is speed;
asin

push Ss; pop es; ea box, fin;
push dis; push si; push di; push bp;
now ax,40h; now ds, ax;
cal DWORD PTR feature);
pop bp; pop di; pop si; pop dis;
capax, 0; jne error;
D

return 1;
error:

return 0;
)

Aaaaaatetetterestettestatestettettetettett/
unsigned set A20(unsigned Status)

p

char far feature;

if (cfeature=find feature(XBA20)) se NULL)
return 0;

asin

push ss; pop es; ea box, status;
push dis; push si; push di; push bp;
cat DORD PTR feature);
pop bp; pop di; pop si; pop ds;

return 1;

?teeresaaaaaaaaaaaaaaaaaaaaaatstreet entennett attentent/
unsigned set system cachecunsigned Status)

char far feature;

if ((feature=find feature(XB SYSTEM CACHE)) ss NULL)
return 0;

66

5,291,585
67

ash

push 8s; pop es; ea box, status;
push dis; push si; push di push bp;
cat DORD PTR feature);
pop bp; pop di; pop si; pop dis;
D

return i;
)
yaraatreaterstandarrent attattootherneatretrated retreaterran/
unsigned rosetup(void)
{

char far feature;

if ((feature=find feature(XBSETUPENTRY)) ss. NULL)
return 0;

est

push ds; push si; push di; push bp;
cal DORD PTR (feature);
pop bp; pop di; pop si; pop ds;
D

return 1;

yareasterestreet entenant near terreranteen renarestarrent/
unsigned reverse video(void)
C

char far feature;

if ((feature=find featurecKB REVERSE VIDEO)) == NULL)
return 0;

asin

push ds; push Si; push di; push bp;
cal DORD PTR feature);
pop bp; pop di; pop si; pop ds;

return 1;
)

years are rearranean enter eneratant streeteen rearnereaweesaraway
unsigned monitor toggle(void)
C

char far feature;

if (cfeature=find feature(XBMoni TOR TOGGLE)) is NULL)
return 0;

asin
push dis; push si; push di; push bp;
cat DORD PTR (feature);
pop bp; pop di; Pop Si; pop dis;
D

return 1;
)

fattent that retreatnet attentreraetetreatenetreatenetraetetetra/
unsigned contrast togg tec void)
(

68

5,291,585
69

char far feature;

if ((feature=find feature(XB CONTRAST)) EE NULL)
return 0;

asTK

push ds; push si; push di; push bp;
catt DWORD PTR (feature);
pop bp; pop di; pop si; pop dis;
)

return 1;
D
feateranteehannetternate at theatretreatertaeheaeteanetarre/
unsigned speed toggle.cvoid)
C

char far feature;

if ((feature=find feature(XBTOGGLESPEED)) == NULL)
return 0;

aSTC
push ds; push si; push di; push bp;
call DORD PTR feature);
pop bp; pop di; pop si; pop dis;

return 1;
D

yet retate treet test that attent atternate that that art atterretty
unsigned set standby (unsigned status)

char far feature;

if ((featuresfind feature(XB STANDBY)) EE NULL)
return 0;

SRK

push ss; pop es; lea box, status;
push dis; push Si push di; push bp;
cal DuORD PTR (feature);
pop bp; pop di; pop si pop dis;
)

return 1;
)
years arrara-errestrata teetetteretteretterestetraetreaterrett/
unsigned OS2 init(void)

char far feature;

if ((features find feature(XBOS2INIT)) ss NULL)
return 0; r

as

push dis; push Si; push di; push bp;
cal DORD PTR feature);
pop bp; pop di; pop si; Pop dis;
)

70

5,291,585
71

return ;

yaaaaaaaaaarate treet attent treet treet treet teetetterstarrett/
unsigned set smartvu(unsigned Status)

char far feature;

if ((features find feature(XB SMARTWUON OFF)) EE NULL)
return 0;

ast

push SS; pop es; lea bK, status;
push dis; push si; push di; push bp;
cal DORD PTR feature;
pop bp; pop di; pop si; pop dis;
O

return i;

yerseereer/

unsigned write smartvu(char far string)
(

char far feature;

if ((featuresfind feature(XB SMARTWU)) is NULL)
return 0;

as
tes bx, string;
push dis; push si; push di; push bp;
cat DORD PTR feature;
pop bp; pop di; pop si; pop dis;

return 1;

fatheraean entrarestreaternanesentatasetanet retreatereserty

unsigned unlock 3021 (void)
C

char far feature;

if ((feature=find feature(XB UNLOCK 3021)) Es NULL)
return 0;

SC

push dis; push si push di; push bp;
now ax, Of000h; now disax;
cal DuORD PTR (feature);
pop bp; pop di; pop si; pop dis;
O

return i;

fittettt test attent tetreat state retreatenetrate/
unsigned get monitor-type(unsigned frontype)

char far feature;
unsigned char fin (4);

72

5,291,585
73

if (cfeature=find feature(xs on I TORTYPE)) = NULL)
return 0;

fn(3) = 0;
asr

push ss; pop es; lea box, fin;
push dis; push si; push di; push bp;
now ax40h; now disax;
cat DORD FF feature;
pop bp; pop a pop si; pop dis;
camp ax,0; jne error;

montype E frn (2);
return

error

return 0;
O
pattrastreeteratetterritteetherestratrastreat-treterstreeterretty
unsigned get syster video status(unsigned status)
C

char far feature;
unsigned char fin (4);

if ((feature=find feature(XB MONITORTYPE)) ss NULL)
return 0;

fnS) = 0;
asin

push SS; pop es; lea bfn;
push dis; push si; push di; push bp;
now ax,40h; now disax;
cal DORD PTR feature);
pop bp; pop di; pop si; pop dis;
carp ax,0; jne error;
O

status e fin (1);
return 1;

error

return 0;
)
fear tetrestetteetenerattreet that treet attent etetterestretty
unsigned set nonitor type(unsigned montype)
C

char far feature;
unsigned char frn (4);
if ((feature=find feature(xso I TORTYPE)) as NULL)

return 0;
fn(3) s 1;
fn (O) = nontype;
es

Push ss; pop es; tea bic, fr;
push dis; push si push di; push bp;
nov ax,40h; now disax;
cal DORD PTR feature;

74

5,291,585
75

pop bp; pop di; pop si; Pop dis;
crp ax, 0; jne error;

return 1
error

return 0;

What is claimed is:

1. A method for operating a computer system, com
prising the steps of:

(a) automatically running startup software, from non
volatile memory, on a central processing unit
(CPU) whenever said computer system first initi
ates operation, said startup software including self
test and bootstrap software;

(b) launching said CPU, from execution of said
startup software, into execution of operating sys
tem software; and

(c) launching said CPU, from execution of said oper
ating system software, into execution of application
software;

(d) wherein said CPU, under control of said applica
tion software, programmably calls on one of
(d1) said operating system software, for interfacing

to an I/O device according to a format which is
substantially independent of a hardware type of
said computer system, said CPU, under control
of said operating system software, programma
bly calling machine-specific system feature ex
tension software to provide low-level interface
to electrical operations, said system feature ex
tension software being partly stored in said non
volatile memory and containing a self-describing
feature table and a plurality of machine-depend
ent routines executed by said CPU; and

(d2) device driver software, stored in said nonvola
tile memory, for interfacing to said I/O device
according to a format which is substantially in
dependent of said hardware type of said com
puter system.

2. The method of claim 1, wherein said basic system
software is interrupt-driven,

3. The method of claim 1, wherein said device driver
programs include a keyboard interface driver program.

4. The method of claim 1, wherein said device driver
programs includes a modern interface driver program.

5. The method of claim 1, wherein said device driver
programs include a graphics-interface-card driver pro
gram.

6. The method of claim 1, wherein said device driver
programs includes a mouse interface driver program.

7. The method of claim 1, wherein said self-describ
ing feature table includes plural items, said plural items
including callable routines and readable data structures.

8. The method of claim 1, wherein said nonvolatile
memory is an EPROM.

9. The method of claim 1, wherein said operating
system software runs continuously as a background
process on said CPU.

10. The method of claim 1, wherein said basic system
software provides translation for input and output oper
ations to a mass storage device.

15

20

25

30

35

45

50

55

65

76

11. The method of claim 1, wherein said basic system
software and said self-describing feature table are both
stored in a ROM.

12. The method of claim 1, wherein said basic system
software is stored in a ROM, and said ROM also con
tains a pointer to an address of said self-describing fea
ture table, and said self-describing feature table is stored
in rewritable nonvolatile memory.

13. The method of claim 1, wherein said device driver
software also provides translation for input and output
operations to a peripheral device which shares a data
bus with said CPU.

14. The method of claim 1, wherein said step of
launching said CPU into execution of operating system
software is performed automatically.

15. A method for operating a computer system which
includes a central processing unit (CPU), a program
storage unit connected to said CPU so that said CPU
can read and programmably execute application soft
ware programs therefrom, plural I/O devices including
an input device and an output device, a mass storage
device, and a nonvolatile memory, said method con
prising the steps of:

(a) automatically running startup software on said
CPU whenever said system first initiates operation,
said startup software including self-test and boot
strap software, said startup software being re
trieved from nonvolatile memory;

(b) launching said CPU, from execution of said
startup software, into execution of operating sys
tem software; and

(c) launching said CPU, from execution of said oper
ating system software, into execution of application
software;

(d) wherein said CPU, under control of said applica
tion software, programmably calls on one of:
(d1) said operating system software, for interfacing

to a selected one of said I/O devices according
to a format which is substantially independent of
a hardware type of said computer system, said
CPU, under control of said operating system
software, calling on machine-specific system
feature extension software to provide low-level
interface to electrical operations, said system
feature extension software being partly stored in
said nonvolatile memory and containing a self
describing feature table and a plurality of ma
chine-dependent routines executed by said CPU;
and

(d2) device drive software, stored in said nonvola
tile memory, for interfacing to said selected I/O
device according to a format which is substan
tially independent of said hardware type of said
computer system.

16. The method of claim 15, wherein said basic sys
item software is interrupt-driven.

5,291,585
77

17. The method of claim 15, wherein said device .
driver programs include a keyboard interface driver
program.

18. The method of claim 15, wherein said self-describ
ing feature table includes plural items, said plural items
including callable routines and readable data structures.

19. The method of claim 15, wherein said basic sys
ten software provides translation for input and output
operations to said mass storage device.

20. The method of claim 15, wherein said basic sys
tem software and said self-describing feature table are
both stored in a ROM.

21. The method of claim 15, wherein said basic sys
ten software is stored in a ROM, and said ROM also
contains a pointer to an address of said self-describing
feature table, and said self-describing feature table is
stored in rewritable nonvolatile memory.

22. The method of claim 15, wherein said device
driver software also provides translation for input and
output operations to a peripheral device which shares a
data bus with said CPU.

23. The method of claim 15, wherein said step of
launching said CPU into execution of operating system
software is performed automatically.

24. A computer system, comprising:
a central processing unit (CPU);
a program storage unit, coupled to said CPU so that

said CPU can programmably execute application
software therefrom;

plural I/O devices coupled to said CPU, including an
input device and an output device;

operating system software, running on said CPU, and
accessible by said application software running on
said CPU;

multiple device driver programs, each accessible by
said application software running on said CPU to
define a software interface to specific features of at
least one said I/O device; and

nonvolatile memory coupled to said CPU, containing
a machine-specific system feature extension soft
ware to provide a low-level interface to electrical
operations, said system feature extension software
containing a plurality of machine-dependent rou
tines, and a self-describing feature table which
contains pointers to said machine-dependent rou
tines,

wherein said device driver programs can make calls
to said machine-dependent routines which are de
pendent on data in said self-describing feature ta
ble, and

wherein said CPU, under control of said application
software, programmably calls on one of:

said operating system software, for interfacing to a
selected one of said plural I/O devices according
to a format which is substantially independent of a
hardware type of said computer system, said CPU,
under control of said operating system software,
calling on said machine-dependent system feature
extension software to provide said low-level inter
face to electrical operations; and

said device driver programs for interfacing to said
selected I/O device according to a format which is
substantially independent of said hardware type of
said computer system.

25. The system of claim 24, wherein said application
software programs can make calls directly to said self

O

15

20

25

30

35

40

45

50

55

65

78
describing feature table and thereby to a desired one of
said machine-dependent routines.

26. The system of claim 24, wherein said self-describ
ing feature table includes plural items, said plural items
including callable routines and readable data structures.

27. The system of claim 24, wherein at least one said
input device is a keyboard.

28. The system of claim 24, wherein at least one said
output device is a display,

29. The system of claim 24, further comprising in
stalled graphical-user-interface software which adds to
the functionality of said operating system software.

30. The system of claim 24, wherein said operating
system software is also configured so that said CPU
automatically returns to execution of said operating
system software after normal termination of any top
level program of the application software,

31. The system of claim 24, wherein said operating
system software is stored at an address, in said nonvola
tile memory, which is accessible to said CPU.

32. The system of claim 24, wherein said operating
system software is stored at an address, on a magnetic
recording medium, which is accessible to said CPU.

33. The system of claim 24, wherein said operating
system software runs continuously as a background
process on said CPU.

34. The system of claim 24, wherein at least one said
program storage unit is RAM.

35. The system of claim 24, wherein at least one said
program storage unit comprises both a nonvolatile re
writable mass storage medium and a random-access
memory.

36. The system of claim 24, wherein at least one said
program storage unit consists of a volatile RAM.

37. The system of claim 24, further comprising
startup software running on said CPU which includes a
system self-test routine and a bootstrap program-load
ing routine.

38. A computer system, comprising:
a central processing unit (CPU);
at least one program storage unit, coupled to said
CPU so that said CPU can programmably execute
application software programs therefrom;

plural I/O devices coupled to said CPU, including at
least one input device and at least one output de
vice;

a nonvolatile memory coupled to said CPU contain- .
ing basic system software at addresses which are
accessible by said application software programs to
provide translation for at least some input and out
put operations;

startup software, stored in said nonvolatile memory,
which is connected so that said CPU call calls said
startup software whenever said CPU initially com
mences operation;

operating system software, configured within com
puter system memory so that said startup software
launches said CPU into execution of said operating
system software, and so that a user can command
said CPU, through said operating system software,
to begin execution of an application software pro
gram, and

system feature extension software, stored in said non
volatile memory, which contains a plurality of
machine-dependent routines, and a self-describing

5,291,585
79

feature table which contains pointers to said ma
chine-dependent routines;

wherein said CPU, under control of said application
Software program, programmably calls on one of:

said operating system software, for interfacing to a
selected one of said plural I/O devices according
to a format which is substantially independent of a
hardware type of said computer system, said CPU,
under control of said operating system software,
calling on said system feature extension software to
provide a low-level interface to electrical opera
tions; and

device driver software for interfacing to said selected
I/O device according to a format which is substan
tially independent of said hardware type of said
computer system.

39. The system of claim 38, wherein said basis system
software provides translation for input and output oper
ations to at least one mass storage device.

40. The system of claim 38, wherein said basis system
software is stored in ROM.

41. The system of claim 38, wherein said basis system
software is stored in a ROM, and said ROM also con
tains a pointer to the address of said self-describing
feature table.

42. The system of claim 38, wherein said basic system
software is stored in a ROM, and said ROM also con
tains a pointer to the address of said self-describing
feature table, and said self-describing feature table is
stored in rewritable nonvolatile memory.

43. The system of claim 38, wherein said basic system
Software and said self-describing feature table are both
stored in a ROM.

44. The system of claim 38, wherein said device
driver software can make calls to said machine-depend
ent routines, which are dependent on data in said self.
describing feature table.

45. The system of claim 38, wherein said device
driver software provides translation for input and out
put operations to at least one peripheral device which
shares a data bus with said CPU.

46. A family of computer systems, said family com
prising first, second, and third pluralities of systems;

wherein each individual one of said computer sys
tems comprises:

a central processing unit (CPU);
a program storage unit, coupled to said CPU so that

said CPU can programmably execute application
software programs therefrom;

plural I/O devices coupled to said CPU, including an
input device and an output device;

a nonvolatile memory coupled to said CPU contain
ing basis system software at addresses which are
accessible by application software programs to
provide translation for at least some input and out
put operations;

startup software, stored in said nonvolatile memory,
which is connected so that said CPU calls said

O

5

20

25

30

35

45

50

55

65

80
startup software whenever said CPU initially con
mences operation;

operating system software, configured within com
puter system memory so that said startup software
launches said CPU into execution of said operating
system software, and so that a user can command
said CPU, through said operating system software,
to begin execution of an application software pro
gram;

system feature extension software, stored in said non
volatile memory, which contains a plurality of
machine-dependent routines, and a self-describing
feature table which contains pointers to said ma
chine-dependent routines; and

multiple device driver programs, each accessible by
said application software programs running on said
CPU to define a software interface to specific fea
tures of at least one said I/O device; and wherein
said device driver programs can make calls, to said
machine-dependent routines, which are dependent
on data in said self-describing feature table; and

wherein said CPU, under control of said application
software, programmably calls on one of

said operating system a software, for interfacing to a
selected one of said plural I/O devices according
to a format which is substantially independent of a
hardware type of said computer system, said CPU,
under control of said operating system software,
calling on said system feature extension software to
provide a low-level interface to electrical opera
tions; and

said device driver programs for interfacing to said
selected I/O device according to a fromat which is
substantially independent of said hardware type of
said computer system;

wherein said systems of said first plurality are all
mutually similar to each other, and said systems of
said second plurality are all mutually similar to
each other, and said systems of said third plurality
are all mutually similar to each other;

wherein said systems of said first plurality each differ,
in at least one hardware element, from every sys
tem of said second plurality;

wherein said systems of said first plurality each differ,
in at least one hardware element, from every sys
tem of said third plurality;

wherein said systems of said second plurality each
differ, in at least one hardware element, from every :
system of said third plurality;

wherein at least one of said device deriver programs
are able to make calls, to said machine-dependent
routines, which are conditioned on data in said
self-described feature table, and exits in the same
form in all said computer systems, of said first,
second, and third pluralities.

