
United States Patent (19)
Feriozi et al.

|||||||||||||||
USOO530749A

11 Patent Number:
(45) Date of Patent:

5,307,491
Apr. 26, 1994

54 LAYERED SCSI DEVICE DRIVER WITH
ERROR HANDLING CIRCUIT PROVIDING
SENSE DATA FROM DEVICE DIRECTLY TO .
THE DRIVER ON THE OCCURRENCE OF
AN ERROR

75 Inventors: Dan Trotter Feriozi, Pompano
Beach; Bharat Khatri, Boca Raton,
both of Fla.

73) Assignee: International Business Machines
Corporation, Armonk, N.Y.

21 Appl. No.: 654,441

22 Filed: Feb. 12, 1991

51) Int. Cl........................ G06F 13/00; G06F 11/00
52 U.S.C. 395/700; 395/275;

395/325; 395/500; 395/575; 364/239;
364/265.5; 364/926.93; 364/927.99; 364/929.2;

364/943.9; 364/944.7; 364/DIG. 2
58) Field of Search 395/700, 275,325, 500,

395/800, 650, 575, 425

SC AS
:M OPERACly

& M. -- - . -- :--C2
GA REOS, s 10E

O ENTRY SRAEGY ENTRY

WAEATE AND
ROTE COMMAN

->

GENERC CC
WADATE AN

ROUE
SUBCOMMAND

AOCATE AND
BO ACS

REOUEST BLOCK

12

PUT REOUES ON
NATING OUEUE
AND BOCK

TIMEOU

PUT REQUES ON
STARTED OUEE
AND CALLABOS

| STRETRY POINT

RUN FROM INTERRUF

DONE STAGED ON 1

STAGED ON INTERRUPT
Block on
INTERRUPT 122
Run TIMEOUT

CA ABOS
TIMEOU

BLOCK FOR TIME - 12.

CALL ABOS
124 NTERRUPT 28

y

56) References Cited
U.S. PATENT DOCUMENTS

4,649,479 3/1987 Advani et al. 395/700
5,083,262 l/1992 Haff, Jr. 395/500
5,136,709 8/1992 Shirakabe et al. 395/700
5,179,666 M1993 Rinner et al. 395/275

Primary Examiner-Thomas C. Lee
Assistant Examiner-Peter Y. Wang
Attorney, Agent, or Firm-George E. Grosser; Douglas
R. McKechnie

(57 ABSTRACT
A tiered device driver system includes a SCSI generic
device driver (SGDD) in one tier and one or more
SCSI device-class drivers (SDCD) in another tier. In
response to a request to access a SCSI device, the oper
ating system creates a request packet that is passed to
the appropriate SDCD. Such SDCD creates a generic
request packet and associated data structures that con
tain information specific to the SCSI device being ac
cessed. The generic request packet is passed on to a
SCSI generic device driver (SGDD) that creates a
SCSI ABIOS request block which it transmits to a
SCSI adapter for accessing the desired SCSI device.
The SGDD provides functions common to the SDCDs.

4 Claims, 7 Drawing Sheets

SENSEDAA
142 NEEDED

v.
: ISSUE SCSI REQUEST SENSE No 38

COMMAND

RETURN SENSEDAA
TO CALER

O

CONVER ABIOS RETURNC05E
TO OS/2 RETURN CODE

DEALLOCATE ABOS
i REO EST BOCK

128

POST RESULTS OF COMMAN 130

RETURN TO CAER -13

U.S. Patent Apr. 26, 1994 Sheet 1 of 7 5,307.491

'h PROCESSOR

20 KEYBOARD

22 DISPLAY

Application '"
F 24 LOEpisc 46-1 PROGRAMS

48

26 FIXED DISC 54
DRIVE 56

58

OS DRIVERS

OS KERNEL

36

31 O KB

34
(
PRINTER SCS

DEVICE

FIG. 1

OPTICAL SCS
DEVICE

CDROM SCSI
DEVICE

U.S. Patent Apr. 26, 1994 Sheet 2 of 7 5,307.491

18 APPLICATION PROGRAMS

OS KERNEL

-
64

40 SCS ABIOS

30 SCSI ADAPTER

31

32 34 36

OPTICAL SCS PRINTER SCS CDROM SCS
DEVICE DEVICE DEVICE

FIG 2

U.S. Patent Apr. 26, 1994 Sheet 3 of 7 5,307.491

74
SDCD 54 68 72

GENERIC IOCTL REQUEST PACKET SENSE DATA
BUFFER

KERNEL 42
A 66 OS/2 REQUEST I PACKET

PARAMETER
BUFFER

80- 78

SGDD 52 SCB CHAN

70

82

H ABIOS REQUEST BLOCK

Y
SCSI ABIOS 40

FIG 3

U.S. Patent Apr. 26, 1994 Sheet 4 of 7

SDCD FLOW

OS KERNE CALLS STRATEGY
ENTRY POINT WITH A REQUEST

PACKET

84

VALIDATE AND ROUTE
COMMAND

ALLOCATE AND BUILD SCD 88
CHAN HEADER

ALLOCATE AND BUILD GENERIC 90
OCT REQUEST PACKET

CALL SGDD WITH GENERIC 92
IOCTL REQUEST PACKET

94
PROCESS ERROR RETURN IF ANY

POST DATA TO THE CALLER F 96
NDICATED OR NOT ALREADY

86

DONE BY DMA FROM SCSI CARD

SET STATUS CODE 98

5,307.491

100
RETURN TO CALLER FIG 4 turn to cut "

U.S. Patent Apr. 26, 1994 Sheet 5 of 7 5,307.491

SGDD TASK
TIME OPERATION

104. OCT REQUEST
PACKET

DC ENTRY STRATEGY ENTRY

WALDATE AND
ROUTE COMMAND

108

GENERC OCL
VALIDATE AND 110

ROUTE
SUBCOMMAND

ALLOCATE AND 112
BUILD ABIOS

REQUEST BLOCK 116

120 NO PUT REQUEST ON TIMEOUT
WATING OUEUE
AND BLOCK

PUT REQUEST ON
STARTED QUEUE
AND CALL ABIOS
START ENTRY

PONT

DONE STAGED ON TIME 134

STAGED ON INTERRUPT

R. 22 BLOCK FOR TIME

RUN FROM INTERRUPT

126

RUN TIMEOUT

CALL ABIOS CALL ABIOS
No. 124 INTERRUPT 128

FIG 5A

U.S. Patent Apr. 26, 1994 Sheet 6 of 7 5,307.491

134
NO YES

136
CALL ERROR HANDLER

1 SENSE DATA

125

YES
142 NEEDED

ISSUE SCSI REQUEST SENSE No 138
COMMAND

144

RETURN SENSE DATA
TO CALLER

140

CONVERT ABIOS RETURN CODE
TO OS/2 RETURN CODE

DEALLOCATE ABIOS
REQUEST BLOCK 128

POST RESULTS OF
COMMAND 130

RETURN TO CALLER-N132 FIG. 5B

U.S. Patent Apr. 26, 1994 Sheet 7 of 7 5,307.491

SGDD INTERRUPT
TIME OPERATION

OS/2 INTERRUPT ROUTER 152

SCS INTERRUPT HANDLER 154

REQUEST
PENDING

YES NO
158 162

CALL ABIOS INTERRUPT
ENTRY PONT ONCE FOR
EACH PENDING REOUEST

CALL ABIOS INTERRUPT
ENTRY PONT ONCE FOR
EACH DEVICE IN SYSTEM

YES INTERRUPT NO

164 CAME
RUN PENDING BLOCKED 160

THREAD F THERE IS ONE

REQUEST
SENSE NEEDED 172

166 RUN THE WATING THREAD
F THERE IS ONE 70

ISSUE THE END OF
INTERRUPT CALL TO OS/2

74

RETURN TO OS/2
INDICATE IF INTERRUPT

CLAIMED FIG. 6

5,307,491
1.

LAYERED SCSI DEVICE DRIVER WITH ERROR
HANDLING CIRCUIT PROVIDING SENSE DATA
FROM DEVICE DIRECTLY TO THE DRIVER ON

THE OCCURRENCE OF AN ERROR 5

FIELD OF THE INVENTION

This invention relates to the field of data processing,
and, more particularly to improvements in device driv
ers for controlling or managing the flow of data to and 9
from SCSI devices in a programmed data processing
system having a multitasking operating system such as
OS/2 operating system.

BACKGROUND OF THE INVENTION 5

By way of background, device drivers are programs
or routines which control or manage the flow of data to
and from I/O devices. The drivers form part of and
interact with other portions of an operating system. An
operating system normally includes a basic set of device 20
drivers for I/O devices, such as a keyboard, fixed and
floppy disks, display, and printer, commonly used in a
personal computer. When an I/O device is added to a
data processing system, and such device is not operable
under an existing driver, a new driver must be added to 25
the system in order to use the device. Such new driver
is customarily supplied by the maker of the I/O device
and is installed in the system in accordance with proce
dures established by the operating system. In personal
computers operating with IBM DOS or OS/2 operating 30
systems, such drivers are installed, when the computers
are started or rebooted, using commands or instructions
in a CONFIG.SYS file.
The high performance models of the IBM PS/2 per

sonal computers include a bus designed in accordance 35
with Micro Channel architecture. (IBM, OS/2, PS/2
and Micro Channel are trademarks of International
Business Machines Corporation). Such bus is referred to
hereinafter as an "IMC bus” and provides the means by
which additional I/O devices and subsystems can be 40
connected to the personal computers. A SCSI (Small
Computer System Interface) bus is a bus designed in
accordance with SCSI architecture, and provides a
standardized design for the attachment thereto of I/O
devices known as SCSI devices, that is, devices specifi- 45
cally designed for attachment to a SCSI bus. Such ar
chitecture defines a SCSI command set for accessing
the devices. Recently, a SCSI adapter and SCSI ABIOS
(advanced basic input/output operating system) were
developed which allow SCSI devices to be connected 50
to PS/2 computers through the MC bus, and this has
created some difficulties or problems which the present
invention overcomes.

First, the basic OS/2 drivers for common (non-SCSI)
I/O devices cannot be used with SCSI devices, and a 55
driver written for use with one type of operating system
cannot be used with another type. Accordingly, the
makers of SCSI devices are faced with the prospect of
having to write multiple drivers, one for each type of
operating system for which they expect to market a 60
SCSI device. A complete driver is relatively complex
and commonly requires many programmer months to
develop. This can add up to a substantial development
effort if several devices must be supported under differ
ent operating systems, and it may delay the general 65
availability and widespread use of SCSI devices. The
invention, as described in greater detail below, has an
objective of simplifying the driver to be provided by a

2
maker or supplier of SCSI devices for use in a data
processing system programmed to operate under OS/2
operating system. Simplification makes it easier and
cheaper to develop and supply such drivers. This objec
tive is accomplished by a two tier driver system in
which the SCSI developer provides a SCSI driver that
is specific to a class of SCSI devices, and the operating
system includes a generic SCSI driver having functions
commonly used by the specific driver classes. Not only
does such system eliminate the need for developers to
include common functions but it also hides from the
developer the need to program to the relatively com
plex interface with ABIOS.

Second, PS/2 personal computers include micro
processors that operate in both real mode and protected
mode. Binodal operation provides compatibility with
older application programs and allows such micro
processors to run both application programs written for
a DOS environment and application programs written
for an OS/2 environment. Device drivers are also bimo
dal so that such drivers and corresponding devices can
be used for both DOS and OS/2 application programs.
Under OS/2, device drivers are loaded into the low end
of physical memory for access by both DOS and OS/2
application programs. The more drivers there are, the
more memory space is used thereby limiting the amount
of physical memory space used for DOS application
programs which run in real mode. Thus, another objec
tive of the invention is to provide a SCSI driver system
which efficiently uses memory address space. This ob
jective is also satisfied by having a two tier driver sys
tem in which common functions are included in a ge
neric driver. The common functions are used by SCSI
device-class drivers and thus avoid the need for each
driver to be complete in itself and thereby duplicate
functions and waste memory space.

SUMMARY OF THE INVENTION

One of the objects of the invention is to provide a
driver system useful in personal computers which sup
port SCSI peripheral devices under the OS/2 operating
system.
Another object of the invention is provide a tiered

driver system for SCSI devices operating under the
OS/2 operating system, in which one tier contains driv
ers providing functions specific to classes of SCSI de
vices, and another tier contains a device driver provid
ing functions that are common or generic to the device
specific drivers.
A further object of the invention is to provide a tiered

SCSI device driver system operable under OS/2 in
bimodal manner to support application programs run
ning in a real mode and in a protected mode.

Still another object of the invention is to provide a
tiered SCSI device driver system that uses previously
existing interfaces to other portions of OS/2 operating
system, to thereby simplify the use and development of
such drivers.
Another object of the invention is to provide a tiered

SCSI device driver system that efficiently utilizes mem
ory space.
Yet another object of the invention is to provide an

interrupt driven device driver system in which perfor
mance is improved by requiring only one interrupt
handler for all of the SCSI devices controlled by de
vice-class drivers.

5,307,491
3

A further object of the invention is to provide a ge
neric SCSI device driver that reduces the functions to
be included in a driver supplied by a SCSI device devel
oper to those functions that are specific to the particular
class of SCSI device.

Still another object of the invention is to provide a
device driver system with improved error handling
whereby sense data for indicating the nature of an error
encountered while attempting to access a device, is
rapidly returned to a processing routine to prevent loss
of the data.

Briefly, in accordance with the invention, a tiered
device driver system includes a SCSI generic device
driver (SGDD) in one tier and one or more SCSI de
vice-class drivers (SDCD) in another tier. In response
to a request to access a SCSI device, the operating
system creates a request packet that is passed to the
appropriate SDCD. Such SDCD creates a generic re
quest packet and associated data structures that contain
information specific to the SCSI device being accessed.
The generic request packet is passed on to a SCSI ge
neric device driver (SGDD) that creates a SCSI
ABIOS request block which it transmits to a SCSI
adapter for accessing the desired SCSI device. The
SGDD provides functions common to the SDCDs.

DRAWINGS

Other objects and advantages of the invention will be
apparent from the following description taken in con
nection with the accompanying drawings wherein:
FIG. 1 is a block diagram of a data processing system

embodying the invention;
FIG. 2 is a block diagram of a more detailed portion

of the invention;
FIG. 3 is a block diagram illustrating certain data

structures used in the invention;
FIG. 4 is flow diagram of the operation of a SCSI

device-class driver;
FIGS. 5A and 5B form a flow diagram showing task

time operation of the SCSI generic device driver; and
FIG. 6 is a flow diagram showing interrupt time

operation of the SCSI generic device driver.
DETAILED DESCRIPTION

Referring now to the drawings, and first to FIG. 1,
there is shown a data processing system 10 operable
under an operating system such as OS/2. System 10
comprises a processor 12 connected to a bus system 14
which interconnects other elements of system 10. The
other elements include a ROM (read only memory) 16,
a RAM (random access memory) 18, a keyboard 20, a
display 22, a floppy disc drive 24, a fixed disc drive 26,
and a plurality of MC (Micro Channel) connectors 28.
A SCSI host adapter 30 is plugged into one of connec
tors 28 and is connected to a SCSI bus 31 and three
different types of exemplary SCSI devices 32, 34, and
36. The types of illustrated SCSI devices are an optical
SCSI device 32, a printer SCSI device 34, and a
CDROM SCSI device 36. ROM 16 stores SCSI ABIO
(advanced basic I/O system) 40.
The SCSI devices, in accordance with the SCSI ar

chitecture thereof, respond to device commands em
bedded in control blocks that are sent to a device from
SCSI adapter 30. SDDS 48 functions to deliver infor
mation for the control block to SCSI BIOS 40 which
delivers the required control block to the device being
accessed. Adapter 30 requires more information than
just a SCSI control block. It needs to know the memory

O

15

25

30

35

45

50

65

4.
storage address of data and the requested direction of
data flow, in order to control the flow of data to and
from the SCSI device.
RAM 18 may be of a size up to sixteen MB (mega

bytes) and is typically four MB as shown in FIG. 1.
After system 10 is started and initialized, the kernel 42
of the OS/2 operating system is stored in RAM 18 at the
low end of the address space along with the basic. OS
drivers 44 for controlling the standard devices such as
the keyboard, display, floppy disc drive, and fixed disc
drive. When running in real mode, application pro
grams 46 are stored in the address space below 640 KB
(kilobytes) in whatever space is available after the other
programs have been loaded in such space. The amount
of memory allocated to such application programs is
thus dependent on the sizes of such other programs
including the device drivers. In order to operate the
SCSI devices 32, 34, and 36, a SDDS (SCSI device
driver system) 48 is also stored in the low end of RAM
18 for access by programs running in real and protected
modes. SDDS 48 includes a two tiered driver system.
One tier includes a SGDD (SCSI generic device driver)
52. The other tier includes a plurality of SDCD (SCSI
device-class drivers) 54, 56, and 58 correspondingly
specific to different classes of SCSI devices 32, 34, and
36. A given SDCD can access more than one device
provided the device is of the class for which the driver
is designed to operate. SDDS also includes a data area
59 used by the programs. Except for SDDS 48, the
remaining hardware and software of data processing
system 10 are known, commercially available items.
FIG. 2 shows certain of the elements shown in FIG.

1, in a layered structure or model indicating the logical
relationship of the elements, and their interfaces. Appli
cation programs 18 run in a real mode or a protected
mode and coact with OS kernel 42 in order to use I/O
devices including SCSI devices 32, 34, and 36. SDDS
fits between kernel 42 and SCSI ABIOS 40. Kernel 42
coacts with the tier of SDCDs 54, 56, and 58 through an
interface 60 and also provides standard device driver
helper routines known as Devhilp services. The
SDCDs coact with SGDD 52 through an interface 62,
and the SGDD coacts with SCSI ABIOS 40, through
an interface 64. SCSI ABIOS 40 interacts with SCSI
adapter 30 which in turn controls the various SCSI
devices 32, 34, and 36. The interfaces between the ele
ments, other than interfaces 60, 62, and 64, are known
interfaces and need not be described in detail. The sys
tem is considered layered with application programs
being the uppermost layer and hardware devices being
the lowest layer. As control progresses through the
layers from the top down, each layer becomes progres
sively more detailed and the SCSI ABIOS layer is the
software layer that handles the specific details of oper
ating the specific SCSI devices. SCSI ABIOS is de
signed to operate in a multitasking, interrupt driven
environment and is operating system independent. The
interface 64 to SCSI ABIOS is complex and procedur
ally oriented. It hides the operating system details from
ABIOS as well as hiding the details of the SCSI devices
from the operating system.

Since the novelty in the invention results from the
structure, functions and operation of SDDS 48, the
interfaces used therewith will now be briefly described,
with more detailed description and examples appearing
below. Interface 60 is in accordance with the published
interface described in IBM OS/2 Programming Tools
and Information Version 1.2, I/O Subsystems and De

5,307,491
5

vice Support, Vol. 1- Device Drivers, Sept 1989. The
principal data structure used in interface 60 is a conven
tional OS/2 request packet. Interface 64 is in accor
dance with the Supplement for the Personal System/2
and Personal Computer BIOS Interface Technical Ref
erence, published December 1989 by IBM Corporation,
Form number S15f 2161. The principal data structure
used in interface 64 is a conventional ABIOS request
block. Interface 62 is patterned after interface 60 and
uses a generic IOCTL request packet.
The upper level driver, i.e., each one of the SDCDs,

provides the direct connection of SDDS 48 to the oper
ating system while the lower level driver (SGDD 52)
provides access to the SCSI devices through services of
SCSI ABIOS 40. Each SDCD is called a "device-class'
driver because it generally drives devices that belong to
a specific SCSI classification. The illustrated classes
(printer, optical, and CDROM) are examples of SCSI
device types that require a different upper-level class
device driver to work in concert with the lower level
SGDD. The primary functions of a device-class driver
are to present a logical view of the device to the operat
ing system, translate an OS/2 request packet into a
SCSI control block and pass it on to the SGDD, and
provide multiple vendor support by handling vendor
unique features of the device. The general functions of
SGDD 52 are to queue all SCSI requests by device,
provide control block information to SCSI ABIOS,
field all SCSI interrupts, and detect and handle timeout
conditions.
As is publicly known, the SCSI architecture provides

a standard device interface that greatly simplifies the
firmware and software that is necessary to drive a SCSI
device. SCSI devices have the ability to respond to
commands embedded in control blocks. This means that
a SCSI device driver's or driver system's primary task is
simply to translate an operating system request block,
which is created in response to an application program
requesting access to a device, into a control block that
the device can understand. The primary data structures
involved in this process in accordance with the inven
tion, are shown in FIG. 3. The arrows at the left of FIG.
3 suggest the overlapping nature of the data structures
which are generally created by one layer but used by
two adjacent layers. An application program initiates
access to one of the SCSI devices, by making a system
call to operating system kernel 42 which prepares an
OS/2 request packet 66. The kernel then calls the ap
propriate SDCD, e.g. SDCD 54, which prepares age
neric IOCTL request packet 68 using information in
packet 66. Packet 68 includes a pointer 72 to a sense
data buffer 74, and a pointer 76 to a parameter buffer 78.
Parameter buffer 78 includes a pointer 80 to the header
of a subsystem control block (SCB) chain 82 which is
prepared by the SDCD and includes at least one SCB
specific to the particular access. Other entries in the
chain correspond to different device commands that
result from the SDCD breaking down a more general
OS/2 request into a series of more specific device com
mands. SCB chain 82 contains the information specific
to the SCSI device being accessed. The SDCD then
passes the location of packet 68 to the SGDD which
prepares an ABIOS request block 70. Block 70 is then
passed to SCSI ABIOS 40 which then sends informa
tion to adapter 30 to access the desired device. Upon
completion of the device access, the data structures are
accessed in the reverse sequence to pass information
back to the application program. Thus, packets 66 and

10

15

20

25

30

35

45

50

55

65

6
68 and block 70 are the primary means of communica
tion between OS/2, SDCDs, SGDD and SCSI ABIOS.

Request packet 68 contains fields logically divided
into a static and variable sections. The fields contain the
following information:

Static
Field Information

l Length of request packet
2 Block device unit code
3 Command code
4. Request packet status
s Queue linkage

Variable
6 Function category
7 Function code
8 Parameter buffer address
9 Data buffer address

ABIOS request block 70 also contains static and vari
able parts the fields of which contain the following
information:

Static
Field Information

Request block length
2 Logical ID
3 Unit
4 Function
5 Return code (IN/OUT)
6 Time-out (OUT)

Variable
7 Physical pointer to SCB
8 Logical pointer to SCB chain header
9 Time to wait before resuming request (stage on

time)
O Flags
11 Status

SCB chain header 82 contains the following fields of
information:

Field Information

Pointer to next SCB chain header
Logical pointer to TSB
Command
Enable
Logical block address
System buffer address
System buffer byte count
TSB address
Optional SCB chain address
Block count
Block length

Fields 1 and 2 form a header. Fields 3-11 form an
SCB.
A termination status block (TSB) contains the follow

ing information:

Field Information

SCB status
Retry counts
Residual buffer byte count
Residual buffer address
Address status length
Command/SCS status
Command/device error codes
Attachment diagnostic error modifier
Cache information

5,307.491

-continued
Fied Information

10 Last SCB address processed

Within data 59, SGDD 52 also maintains a SCSI
device table for keeping track of what is going on, there
being one entry for each SCSI device allocated. Each
entry contains the following information:

Field Information

Pointer to first waiting request
2 ABIOS logical ID
3 Interrupt level
4. Flags for indicating a busy device, staged-on

interrupt, sense data needed, allocated device,
removable media, retry occurred, request sense
called, primary timeout occurred, and secondary
timeout occurred.

Data 59 also includes a started queue which is a chain
of ABIOS request blocks 70 that have already called the
ABIOS start entry point. This queue is used by the
interrupt handler to get ABIOS blocks for calling the
ABIOS Interrupt entry point. Such queue allows
SGDD to handle concurrent plural requests to access
plural SCSI devices. Data 59 also includes a waiting
queue for receiving ABIOS request blocks when a par
ticular SCSI device is busy and there is more than one
request to access such busy device.
The system is initialized in conventional fashion ex

cept that communication between the SDCDs and
SGDD is through OS/2 architected inter-device driver
communication (IDC) facility. At initialization time,
SGDD 52 registers its IDC entry point with the OS
kernel 42. Later, when a SDCD initializes, it obtains
such entry point from the kernel for use, as described
below, in passing control to SGDD 52.

In response to an application request, kernel 42 calls
the appropriate SDCD. Referring to FIG. 4, the OS
kernel calls the SDCD at its strategy entry point with a
request packet 66 in step 84. SDCD first validates and
routes the command specified in such packet, in step 86.
Then step 88 allocates memory space for and builds an
SCB chain header 82 for the request. Step 90 then allo
cates memory for and builds a generic ioctl request
packet 68. Next, in step 92, SDCD points es:bx to
packet 68, sets up a context for the SGDD, makes a far
call to the SGDD's IDC entry point, and waits for the
return. When control is returned to SDCD, step 94
processes any error that may have occurred while ac
cessing the desired device. Step 96 then posts data to the
application caller if indicated or if it was not already
done by a DMA controller from the SCSI adapter 30.
Step 98 sets the status code and step 100 then returns to
the caller through the OS kernel.

Referring to FIG. 5, the SGDD task time operation
begins in step 102 when an IOCTL request packet 68 is
passed to SGDD 52 by a far call from SDCD by step 92
(FIG. 3), SGDD has two entry points, an IDC entry
104 and a strategy entry 106 which are the same. Step
108 validates and routes the OS/2 command. Step 110 is
entered by recognizing that the OS command is a ge
neric IOCTL command and step 110 validates and
routes such command using the function category and
function code information in packet 68. In step 112,
memory is allocated for an ABIOS request block 70
which is then built by inserting information in its fields

O

S

20

25

30

35

45

50

55

65

8
as appropriate. Step 114 decides if the device is busy. If
not, step 120 puts the request block built in step 112 onto
the started queue and calls ABIOS 40 through the Start
entry point. If the device is busy, step 116 puts the re
quest block on a waiting queue and blocks by calling the
OS/2 DevHlp services. SGDD then waits for a return
from ABIOS and the next step will depend on the re
turn code from ABIOS.
Such return code will indicate different conditions,

"done", "staged on interrupt", or "staged on time'. If
the return code indicates a "done' situation, control
passes to step 125. If the return code indicates a "staged
on interrupt", step 122 calls kernel 42 to perform a
block on interrupt operation and upon completion the
kernel will provide a return code indicating "run" or
"timeout'. If the result as defined by the return code
from kernel 42 in step 122 is "run" step 125 is then
performed. If the result is a "timeout' step 124 calls
ABIOS timeout 124 after which step 125 is performed.
If the result of step 120 is a "staged on time', step 126
then blocks for time and upon "wakeup', step 128 calls
ABIOS interrupt.

Step 125 examines the ABIOS return code and deter
mines if an error was encountered while attempting to
access the device. If no error occurred, step 128 deallo
cates the ABIOS request block, step 130 posts the re
sults of the command, and step 132 returns to the caller.
If there was an error, step 136 calls an error handler and
step 138 determines if sense data is needed. This is done
by examining the associated TSB to determine the na
ture of the error. If the TSB indicates that more error
information should be requested, a request sense com
mand is sent to the device by step 142. The sense data
error information is sent directly (step 144) from the
device to the associated upper level SDCD through the
sense data pointer that is part of the generic IOCTL
request packet. The lower level driver (SGDD) then
returns an error code indicating that valid sense data is
available to the upper level driver to interpret. If sense
data is not available from the device, the ABIOS error
code is mapped by step 140 to an appropriate OS/2
device driver return code and returned to the upper
level driver. The automatic requesting of sense data by
the lower lever driver saves time and code in the upper
level drivers, as well as ensuring that sense data is not
lost by a subsequent command execution that may have
been queued in the lower level driver. The driver that
queues commands must also issue timely requests for
sense data. Following step 140, steps 128, 130 and 132
are sequentially performed. If a timeout 134 occurs
while blocked in step 116, steps 128, 130, and 132 are
performed.

Referring to FIG. 6, in step 152, the OS interrupt
handler first receives the interrupt, determines it is for
the SCSI drivers and then calls the SCSI interrupt han
dler 154 which then proceeds to perform the remaining
steps shown in FIG. 6. Step 156 decides if there is any
pending request on the Started Queue. If the started
queue is not empty, a request is pending, i.e., staged on
interrupt. If there is a request pending, step 158 calls the
ABIOS interrupt entry point once for each request on
the started queue, and provides the address of that
pending ABIOS request block to ABIOS for service. If
there is no request pending, step 162 calls the ABIOS
interrupt entry point once for each device in the system.
After either of steps 158 or 162, step 160 decides if there
is a claimed interrupt, i.e., ABIOS indicates one of the
SCSI devices caused the interrupt. If not, a branch is

5,307,491
9

made to step 174. If there is a claimed interrupt, step 164
runs the pending block thread corresponding to the
serviced request. If ABIOS indicates that an error has
occurred, step 166 checks the associated TSB to see if
such error requires a request sense call. If not, step 172
runs the first thread waiting for access to the device that
caused the interrupt. If a request sense is needed or upon
completion of step 172, step 170 issues an end of inter
rupt call to OS/2. Finally, step 174 returns to OS/2 and
indicates whether or not an interrupt is claimed.

It should be apparent to those skilled in the art that
many changes can be made in the details and arrange
ments of steps and parts without departing from the
scope of the invention as defined in the appended is
claims.
What is claimed is:
1. A data processing system comprising:

10
gram through a third interface, said SGDD means
comprising
second means for constructing an ABIOS request

block in response to receiving said first request
block from said SDCD means, and

third means for calling said SCSI ABIOS program
and passing said ABIOS request block through
said third interface to said SCSI ABIOS pro
gran;

10 said SCSI ABIOS program being operative to trans
mit said SCB to said SCSI adapter for accessing
said SCSI device and to generate and transmit to
said SGDD means, a first return code when said
SCSI device is successfully accessed and a second
return code when a error occurs while accessing
said SCSI device, which error is accompanied by
sense data being generated by said SCSI device
indicating the nature of said error; and

at least one SCSI device of a type within a predeter- said SGDD means further comprising fourth means
mined SCSI device-class; 20

a SCSI adapter connected to control said SCSI de
vice, said adapter being operable upon receiving a
subsystem control block (SCB) to access said de
vice, said SCB containing information affording
access to said device and including an access com-25
mand;

a read only memory for storing a SCSI advanced
basic I/O system (ABIOS) program, said SCSI
ABIOS program being operable to control access
to said device in response to receiving an ABIOS
request block, which includes said SCB;

a main memory for storing a multitasking operating
system, and at least one application program;

a processor for executing said application program is
and operating said data processing system under
control of said operating system whereby said op
erating system creates a system request packet for
accessing said SCSI device in response to receiving
an I/O request from said application program; 40

30

2.
1 wherein:

said data processing system comprises a second SCSI

for automatically furnishing sense data directly
from said SCSI device to said SDCD means in
response to said SGDD means receiving said sec
ond return code, wherein said fourth means com
prises:
fifth means for determining that sense data is

needed;
sixth means for requesting said SCSI device to

furnish said sense data directly to said SDCD
means; and

seventh means for notifying said SDCD means that
valid sense data is available.

A data processing system in accordance with claim

device of a different type but within the same class
as said first mentioned SCSI device;

said operating system is operative to transmit a subse
quent system request packet to the one of said
SDCD means which received said first mentioned
system request packet; and

a device driver system functionally layered between said one SDCD means is operative to process said
said operating system and said SCSI ABIOS pro
gram for translating said system request packet 3.

subsequent system request packet.
A data processing system in accordance with claim

from said operating system into said SCB, said 1 wherein: ad
device driver system comprising a plurality of 45 said data processing system includes a plurality of
SCSI device class driver (SDCD) means each pro SCSI devices;
viding driver functions common to a different class said operating system is operable to receive plural
of SCSI devices, and a SCSI generic device driver
(SGDD) means providing driver functions used in

concurrent requests to access said SCSI devices;
and

common by all of said SDCD means; 50 said second means is operable to construct plural
said SDCD means being functionally layered beneath

said operating system and communicating there
with through a first interface through which said
system request packet is transmitted by said operat
ing system, said SDCD means comprising
first means for constructing said SCB and a first

request block in response to receiving said sys
ten request packet from said operating system;

4.
55 3 wherein:

said SGDD means, in response to a subsequent at

ABIOS request blocks one for each of said re
quests, and to queue said plural ABIOS request
blocks in a started queue.
A data processing system in accordance with claim

tempt to access a busy SCSI device, places an asso
ciated ABIOS request block for such attempt in a
waiting queue; and

said SGDD means being functionally layered be 60 said SGDD means is further operable, upon receiving
tween said SDCD means and said SCSI ABIOS
program, said SGDD means communicating with
said SDCD means by a second interface through
which said first request block is passed, said SGDD
means communicating with said SCSI ABIOS pro- 65

an interrupt when such busy device becomes acces
sible, to remove said associated ABIOS request
block from said waiting queue and place it on said
started queue.

k 2: a k

