
United States Patent (19)
Amini et al.

(54)

75

(73)

21
(22)
(51)
(52)
(58)

(56)

PARTY ERROR DETECTION AND
RECOVERY

Inventors: Nader Amini; Bechara F. Boury;
Sherwood Brannon, all of Boca
Raton; Richard L. Horne, Boynton
Beach, all of Fla.

Assignee: International Business Machines
Corp., Armonk, N.Y.

Appl. No.: 816,184
Filed: Jan. 2, 1992
int. C. .. G06F 11/00
U.S. C. 395/575; 371/49.1
Field of Search 395/575, 725, 325, 425;

371/49.1, 51.1, 29.5, 40.1
References Cited

U.S. PATENT DOCUMENTS
3,806,716 4/1974 Lahti et al. .

SYSTEM
BUS
DATA

76

102

SYSTEM PO
BUS BUS

ADDRESS/INTERFACE INTERFACE
CONTROLS

ERROR
CAPTURE

ERROR
ADDRESS
STORAGE

US005313627A

11 Patent Number: 5,313,627
45 Date of Patent: May 17, 1994

4,858,234 8/1989 Hartwell et al. 371/14
5,072,450 12/1991 Helm et al. 37/51.1
5,173,905 12/1992 Parkinson et al. 371/51.1
5,235,694 8/1993 Umeda 395/425
5,247,671 9/1993 Adkins et al. 395/725

Primary Examiner-Robert W. Beausoliel, Jr.
Assistant Examiner-Albert Decady
Attorney, Agent, or Firm-Robert S. Babayi
57 ABSTRACT
In a computer system having a CPU and several buses
which includes a system bus and an I/O bus, parity
error can occur when data is being written between the
I/O bus and the system bus. This invention provides a
technique for detecting whether a parity error has oc
curred on data being written between the system bus
and the I/O bus. If a parity erroris detected, the address
at which such error occurred is stored and then sent on
to the system bus to the CPU.

12 Claims, 7 Drawing Sheets

LOGIC

U.S. Patent May 17, 1994 Sheet 1 of 7 5,313,627

FERIESY BUFFER BUFFER

U.S. Patent May 17, 1994 Sheet 2 of 7 5,313,627

BEER ECC
82

BUS INTERACEAEBUF
f 28

DEVICES

U.S. Patent May 17, 1994 Sheet 3 of 7 5,313,627

FIG.2

FIG. 2A

64

102 104

SYSTEM BUS
TO / O BUS

ATION
DRIVER / TRANS:O DRIVER /
RECEIVER RECEIVER

SYSTEM
BUS

U.S. Patent May 17, 1994 Sheet 4 of 7 5,313,627

1 OBUS
EXPECTED ADDR.

GENERATION GENERATION
CIRCUIT CIRCUIT

SYSTEM BUS FIFO 1 OBUS
CONTROLLER BUFFER SLAVE
INTERFACE INTERFACE

BUS TO BUS
PACING

CONTROL LOGIC

U.S. Patent May 17, 1994 Sheet 5 of 7 5,313,627

FIG. 3
124

125C M 125A
BUFFER BUFFER

16 BYTES 16 BYTES
TO SYSTEM TOWOBUS

BUS ADDR ADDR SLAVE
CONTROLLER INTERFACE

BUFFER BUFFER
D B

16 BYTES 16 BYTES

ADDR ADDR

TOSYSTEM BUS FIFO TO VOBUS
ADDRESS EXPECTED

GENERATION CONTROL ADDRESS
CIRCUIT CIRCUIT GENERATION

CIRCUIT
TO BUS TO BUS

PACING CONTROL LOGIC

U.S. Patent May 17, 1994 Sheet 6 of 7 5,313,627

SYSTEM
BUS
DATA

76

102

ERROR
CAPTURE
LOGIC

PO
iNTERFACE

BUS
ADDRESS/
CONTROLS

BUS
INTERFACE

Sheet 7 of 7 5,313,627 May 17, 1994 U.S. Patent

FIG.5

ARB/GNT

5,313,627
1.

PARTY ERRORDETECTION AND RECOVERY

RELATED APPLICATIONS
The following United States patent applications are

incorporated herein by reference as if they had been
fully set out:
application Ser. No. 07/815,992 Filed Jan. 1, 1992 Enti

tled "BUS CONTROL LOGIC FOR COMPUTER
SYSTEM HAVING DUAL BUS ARCHITEC
TURE'

application Ser. No. 07/816,116 Filed Jan. 1, 1992 Enti
tled 'ARBITRATION MECHANISM' which is
now U.S. Pat. No. 5,265,211.

application Ser. No. 07/816,204 Filed Jan. 1, 1992 Enti
tled "CACHESNOOPING AND DATA INVAL
DATION TECHNIQUE"

application Ser. No. 07/816,203 Filed Jan. 1, 1992 Enti
tled "BUS INTERFACE LOGIC FOR COM
PUTER SYSTEM HAVING DUAL BUS ARCHI
TECTURE’ which is now U.S. Pat. No. 5,255,374

application Ser. No. 07/816,691 Filed Jan. 1, 1992 Enti
tled "BIDIRECTIONAL DATA STORAGE FA
CILITY FOR BUS INTERFACE UNIT"

application Ser. No. 07/816,693 Filed Jan. 1, 1992 Enti
tled "BUS INTERFACE FOR CONTROLLING
SPEED OF BUS OPERATION'

application Ser. No. 07/816,698 Filed Jan. 1, 1992 Enti
tled "METHOD AND APPARATUS FOR DE
TERMINING ADDRESS LOCATION AT BUS
TO BUS INTERFACE

FIELD OF THE INVENTION

The present invention relates to parity error recovery
in a computer system, and more particularly to a tech
nique for detecting the address at which a parity error
has occurred on data being written to or from memory
in a device coupled to an I/O bus, and writing the ad
dress to a system bus to which a CPU is coupled.

BACKGROUND OF THE INVENTION
Generally in computer systems and especially in per

sonal computer systems, data is transferred between
various system devices such as a central processing unit
(CPU), memory devices, and direct memory access
(DMA) controllers. In addition, data is transferred be

10

15

20

25

30

35

45

tween expansion elements such as input/output (I/O)
devices, and between these I/O devices and the various
system devices. The I/O devices and the system devices
communicate with and amongst each other over com
puter buses, which comprise a series of conductors
along which information is transmitted from any of
several sources to any of several destinations. Many of
the system devices and the I/O devices are capable of
serving as bus controllers (i.e., devices which can con
trol the computer system) and bus slaves (i.e., elements
which are controlled by bus controllers).

Personal computer systems having more than one bus
are known. Typically, a local bus is provided over
which the CPU communicates with cache memory or a
memory controller, and a system I/O bus is provided
over which system bus devices such as the DMA con
troller, or the I/O devices, communicate with the sys
ten memory via the memory controller. The system
I/O bus comprises a system bus and an I/O bus con
nected by a bus interface unit. The I/O devices commu
nicate with one another over the I/O bus. The I/O
devices are also typically required to communicate with

SO

55

65

2
system bus devices such as system memory. Such com
munications must travel over both the I/O bus and the
system bus through the bus interface unit.

In the case of reading and writing data between dif
ferent buses, and particularly in the case when an I/O
bus master device is writing data to or reading data
from system memory, parity errors can occur. It is
essential that these errors be identified to the CPU or
other device so that appropriate action can be taken.

Accordingly, it is an object of this invention to pro
vide a parity error recovery system which will detect
and flag parity errors occurring during a read from or
write to system memory by a device coupled to the I/O
bus which is acting as a bus master in control of the I/O
bus. Also, to capture the address at which the error
occurred and to make it available to the system for
appropriate action.

SUMMARY OF THE INVENTION

According to the present invention a computer sys
tem is provided which includes a CPU complex, system
memory and a plurality of devices communicating with
the CPU complex and system memory through a system
bus. At least one of the devices communicates through
a bus to bus interface unit. The interface unit includes
means to detect a parity error in data being transmitted,
means to store the address of the data containing the
parity error and means to write the address of the parity
error on the system bus. In more particular aspects, the
invention also includes means to latch the stored ad
dress of the data containing the parity error until it has
been read by a system bus device.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1A, 1B is a schematic block diagram of a com

puter system incorporating a bus interface unit con
structed according to the principles of the present in
vention.
FIG. 2A, 2B is a schematic block diagram of the bus

interface unit of the computer system of FIG. 1.
FIG. 3 is a schematic block diagram of the FIFO

buffer of the bus interface unit of FIG. 2;
FIG. 4 is a block diagram of the logic used for the

error memory support logic; and
FIG. 5 is a timing diagram of the detection and writ

ing of a parity error.
DETAILED DESCRIPTION OF THE

PREFERRED EMBODIMENT

Referring first to FIG. 1, a computer system shown
generally at 10 comprises system board 12 and proces
sor complex 14. Processor complex includes processor
portion 16 and base portion 18 connected at processor
local bus 20 via local bus connector 22. Processor por
tion 16 operates at 50 MHz and base portion 18 operates
at 40 MHz.

System board 12 includes interleaved system memo
ries 24 and 26 and input/output (I/O) devices 28. Com
munications between memories 24 and 26 and processor
complex 14 are handled by memory bus 30, and commu
nications between I/O devices 28 and processor com
plex 14 are carried by I/O bus 32. Communications
between I/O devices and memories 24 and 26 are han
dled by I/O bus 32, system bus 76 and memory bus 30.
I/O bus 32 may conform to MICRO CHANNEL (R)
computer architecture. Memory bus 30 and I/O bus 32
are connected to processor complex base portion 18 via

5,313,627
3

processor complex connector 34. I/O devices such as
memory expansion devices may be connected to the
computer system 10 via I/O bus 32. System board 12
may also include conventional video circuitry, timing
circuitry, keyboard control circuitry and interrupt cir
cuitry (none of which are shown) which may be used by
computer system 10 during normal operation.

Processor portion 16 of processor complex 14 in
cludes central processing unit (CPU) 38 which, in the
preferred embodiment, is a 32-bit microprocessor avail
able from Intel, Inc. under the trade designation i486.
Processor portion 16 also includes static random access
memory (SRAM) 40, cache control module 42, fre
quency control module 44, address buffer 46 and data
buffer 48. Local bus 20 comprises data information path
50, address information path 52 and control information
path 54. Data information paths 50 are provided be
tween CPU 38, SRAM 40 and data buffer 48. Address
information paths 52 are provided between CPU 38,
cache control module 42 and address buffer 46. Control
information paths 54 are provided between CPU 38,
cache control module 42 and frequency control module
44. Additionally, address and control information paths
are provided between cache control module 42 and
SRAM 40.
SRAM 40 provides a cache function by storing in

short term memory information from either system
memories 24 or 26 or from expansion memory which is
located on an I/O device 28. Cache control module 42
incorporates random access memory (RAM) 56 which
stores address locations of memories 24 and 26. CPU 38
may access information cached in SRAM 40 directly
over the local bus 20. Frequency control module 44
synchronizes operation of the 50 Mhz processor portion
16 with the 40 Mhz base portion 18 and also controls
the operation of buffers 46 and 48. Accordingly, fre
quency control module 44 determines the times at
which information is captured by buffers 46 and 48 or
the times at which information that is stored in these
buffers is overwritten. Buffers 46 and 48 are configured
to allow two writes from memories 24 and 26 to be
stored simultaneously therein. Buffers 46 and 48 are
bi-directional, i.e., they are capable of latching informa
tion which is provided by the CPU 38 and information
which is provided to the CPU. Because buffers 46 and
48 are bi-directional, processor portion 16 of the proces
sor complex 14 may be replaced or upgraded while
maintaining a standard base portion 18.

Base portion 18 includes memory controller 58, di
rect memory access (DMA) controller 60, central arbi
tration control point (CACP) circuit 62, bus interface
unit 64 and buffer/error correction code (ECC) circuit
66. Base portion 18 also includes driver circuit 68, read
only memory (ROM) 70, self test circuit 72 and buffer
74. System bus 76 comprises a data information path 78,
and address information path 80 and a control informa
tion path 82. The data information path connects buffer
74 with bus interface unit 64; bus interface unit 64 with
DMA controller 60 and buffer/ECC circuit 66; and
buffer/ECC circuit 66 with system memories 24 and 26.
The address information path and the control informa
tion path each connect memory controller 58 with
DMA controller 60 and bus interface unit 64; and bus
interface unit 64 with buffer 74.
Memory controller 58 resides on both CPU local bus

20 and system bus 76, and provides the CPU 38, the
DMA controller 60 or bus interface unit 64 (on behalf of
an I/O device 28) with access to system memories 24

10

15

20

25

30

35

45

50

55

65

4.
and 26 via memory bus 30. The memory controller 58
initiates system memory cycles to system memories 24
and 26 over the memory bus 30. During a system mem
ory cycle, either the CPU 38, the DMA controller 60 or
bus interface unit 64 (on behalf of an I/O device 28) has
access to system memories 24 and 26 via memory con
troller 58. The CPU 38 communicates to system mem
ory via local bus 20, memory controller 58 and memory
bus 30, while the DMA controller 60 or bus interface
unit 64 (on behalf of an I/O device 28) access system
memory via system bus 76, memory controller 58 and
memory bus 30.
For CPU 38 to I/O bus 32 read or write cycles, ad

dress information is checked against system memory
address boundaries. If the address information corre
sponds to an I/O expansion memory address or I/O
port address, then memory controller 58 initiates an I/O
memory cycle or I/O port cycle with an I/O device 28
(via bus interface unit 64) over the I/O bus 32. During
a CPU to I/O memory cycle or I/O port cycle, the
address which is provided to memory controller 58 is
transmitted from system bus 76 to I/O bus 32 via bus
interface unit 64 which resides intermediate these two
buses. The I/O device 28 which includes the expansion
memory to which the address corresponds receives the
memory address from I/O bus 32. DMA controller 60
and the bus interface unit 64 control the interchange of
information between system memories 24 and 26 and
expansion memory which is incorporated into an I/O
device 28. DMA controller 60 also provides three func
tions on behalf of processor complex 14. First, the
DMA controller 60 utilizes a small computer subsystem
control block (SCB) architecture to configure DME
channels, thus avoiding the necessity of using pro
grammed I/O to configure the DMA channels. Second,
DMA controller provides a buffering function to opti
mize transfers between slow memory expansion devices
and the typically faster system memory. Third, DMA
controller 60 provides an eight channel, 32-bit, direct
system memory access function. When providing the
direct system memory access function, DMA controller
60 may function in either of two modes. In a first mode,
DMA controller 60 functions in a programmed I/O
mode in which the DMA controller is functionally a
slave to the CPU 38. In a second mode, DMA control
ler 60 itself functions as a system bus master, in which
DMA controller 60 arbitrates for and controls I/O bus
32. During this second mode, DMA controller 60 uses a
first in, first out (FIFO) register circuit.
CACP circuit 62 functions as the arbiter for the

DMA controller, I/O device bus controllers and the
CPU (if accessing I/O devices). CACP circuit 62 re
ceives arbitration control signals from DMA controller
60, memory controller 58 as well as from I/O devices,
and determines which devices may control the I/O bus
32 and the length of time during which the particular
device will retain control of the I/O bus.

Driver circuit 68 provides control information and
address information from memory controller 58 to sys
ten memories 24 and 26. Driver circuit 68 drives this
information based upon the number of single in-line
memory modules (SIMMs) which are used to construct
system memories 24 and 26. Thus, driver circuit 68
varies the signal intensity of the control and address
information which is provided to system memories 24
and 26 based upon the size of these memories.

Buffer circuit 74 provides amplification and isolation
between processor complex base portion 18 and system

5,313,627
5

board 12. Buffer circuit 74 utilizes buffers which permit
the capture of boundary information between I/O bus
32 and bus interface unit 64 in real time. Accordingly, if
computer system 10 experiences a failure condition,
buffer circuit 74 may be accessed by a computer repair
person to determine the information which was present
at connector 34 upon failure of the system.
ROM 70 configures the system 10 upon power-up by

initially placing in system memory data from expansion
memory. Self test circuit 72, which is connected to a
plurality of locations within base portion 18, provides a
plurality of self test features. Self test circuit 72 accesses
buffer circuit 74 to determine if failure conditions exist,
and also tests the other major components of base por
tion 18 upon power-up of the system 10 to determine
whether the system is ready for operation.

Referring to FIG. 2, a schematic block diagram of the
bus interface unit 64 of the system of FIG. 1 is shown.
Bus interface unit 64 provides the basis for implementa
tion of the present invention by providing a bi-direc
tional high speed interface between system bus 76 and
/O bus 32.
Bus interface unit 64 includes system bus driver/-

receiver circuit 102, I/O bus driver/receiver circuit 104
and control logic circuits electrically connected there
between. Driver/receiver circuit 102 includes steering
logic which directs signals received from the system bus
76 to the appropriate bus interface unit control logic
circuit and receives signals from the bus interface unit
control logic circuits and directs the signals to the sys
ten bus 76. I/O bus driver/receiver circuit 104 includes
steering logic which directs signals received from the
I/O bus 32 to the appropriate bus interface unit control
logic circuit and receives signals from the bus interface
unit control logic circuits and directs the signals to the
/O bus 32.
The bus interface unit control logic circuits include

system bus to I/O bus translation logic 106, I/O bus to
system bus translation logic 108, memory address con
pare logic 110, error recovery support logic 112, and
cache snooping logic 114. Programmed I/O circuit 116
is also electrically coupled to system driver/receiver
circuit 102.
The system bus to I/O bus translation logic 106 pro

vides the means required for the DMA controller 60 or
the memory controller 58 (on behalf of CPU 38) to act
as a system bus controller to access the I/O bus 32 and
thereby communicate with I/O devices 28 acting as
slave devices on the I/O bus. Translation logic 106
translates the control, address and data lines of the sys
tem bus 76 into similar lines on the I/O bus 32. Most
control signals and all address signals flow from the
system bus 76 to the I/O bus 32 while data information
flow is bi-directional. The logic which acts as system
bus slave monitors the system bus 76 and detects cycles
which are intended for the I/O bus 32. Upon detection
of such a cycle, the system bus slave translates the tim
ing of signals on the system bus to I/O bus timing, initi
ates the cycle on the I/O bus 32, waits for the cycle to
be completed, and terminates the cycle on the system
bus 76.
The I/O bus to system bus translation logic 108 com

prises system bus address generation circuit 118, I/O
bus expected address generation circuit 120, system bus
controller interface 122, FIFO buffer 124, I/O bus slave
interface 126 and bus to bus pacing control logic 128.
System bus controller interface 122 supports a high
performance 32 bit (4 byte) i486 burst protocol operat

10

5

25

30

35

45

50

55

65

6
ing at 40 MHZ. Data transfers of four, eight and sixteen
bytes in burst mode and one to four bytes in no-burst
mode are provided. I/O bus slave interface 126 moni
tors the I/O bus 32 for operations destined for slave
devices on the system bus 76 and ignores those opera
tions destined for the I/O bus 32. All cycles picked up
by the I/O bus slave interface 126 are passed on to the
FIFO buffer 124 and the system bus controller interface
122.
The I/O bus to system bus translation logic 108 pro

vides the means required for an I/O device 28 to act as
an I/O bus controller to access system bus 76 and
thereby read or write to system memories 24 and 26. In
either of these operations, an I/O device controls the
I/O bus. The asynchronous I/O bus interface 126, oper
ating at the speed of the I/O device, permits the bus
interface unit 64 to act as a slave to the I/O device
controller on the I/O bus 32 to decode the memory
address and determine that the read or write cycle is
destined for system memories 24 or 26. Simultaneously,
the system bus controller interface 122 permits the bus
interface unit 64 to act as a controller on the system bus
74. The memory controller 58 (FIG.2) acts as a slave to
the bus interface unit 64, and either provides the inter
face 64 with data read from system memory or writes
data to system memory. The reads and writes to system
memory are accomplished through the FIFO buffer
124, a block diagram of which is illustrated in FIG. 3.
As shown in FIG.3, FIFO buffer 124 is a dual ported,

asynchronous, bi-directional storage unit which pro
vides temporary storage of data information between
the system and I/O buses 76, 32. FIFO buffer 124 com
prises four sixteen-byte buffers 125A-125D and FIFO
control circuit 123. The four buffers 125A-125D buffer
data to and from I/O bus controllers and system bus
slaves, thereby allowing simultaneous operation of the
I/O bus 32 and the system bus 76. The FIFO buffer 124
is physically organized as two thirty-two byte buffers
(125A/125B and 125C/125D). The system bus control
ler interface 122 and the I/O bus slave interface 126
each control one thirty-two byte buffer while the other
thirty-two byte buffer operates transparent to them.
Both of the thirty-two byte buffers are utilized for read
and write operations.
Each FIFO 124A, 125B, 125C, 125D has an address

register section either physically associated with the
respective FIFO, or logically associated therewith. As
data is transferred from the I/O bus 32 to FIFO 125A,
the data will be accumulated until the 16 byte buffer is
filled with 16 bytes of data, provided that the addresses
are contiguous. If a non-contiguous address is detected
by the address action, the FIFO 125A will transfer the
stored data to FIFO 125C, and at the same time FIFO
125B will start to receive this data from the new non
contiguous address. FIFO 125B will continue just as
FIFO 125A did until it is filled with 16 bytes of data, or
another non-contiguous address is detected. FIFO 125B
will then transfer the stored data to FIFO 125D, and
FIFO 125A again starts to store data; thus, it is possible
to store up to four 16 byte blocks of non-contiguous
address data.

Further, by having two 32 byte buffers in parallel the
reading and writing of data can be toggled between
them thus giving an essentially continuous read or write
function.
Moreover, by splitting the 32 byte buffers into two 16

bytes buffer sections which are coupled to other I/O
bus 32 or system bus 26, the number of storage buffers

5,313,627
7

can be increased with minimal impact on the perfor
mance of the FIFO as related to the capacitive loading
on signals clocking data in or out of the storage regis
ters. This is accomplished because for every two buffers
added (in parallel) only half the capacitive loading is
added to the loading of clock signals on each bus.

Additionally, by having two 16 byte buffers in series
in each leg, once one of the 16 byte buffers is filled with
data, such as in a read operation, the data can be trans
ferred to the other 16 byte buffers in series therewith,
while the other parallel leg is accumulating data. Hence,
there is no time lost in either accumulating data, or
transferring the data from one bus to the other.
The logic for controlling the operation of the FIFO

124 is supplied by FIFO Control Circuit 123.
A particular I/O device 28 may write to system mem

ories 24 or 26 via I/O bus in bandwidths of either 1, 2 or
4 bytes (i.e., 8, 16 or 32 bits). During writes to system
memory by an I/O device 28, the first transfer of write
data is initially stored in the FIFO buffer 125A or 125B.
The I/O bus expected address generation circuit 120
calculates the next expected, or contiguous, address.
The next contiguous address is checked against the
subsequent I/O address to verify if the subsequent trans
fers are contiguous or not. If contiguous, the second
byte or bytes of write data is sent to the same FIFO
buffer 125A or 125B. The FIFO receives data at asyn
chronous speeds of up to 40 megabytes per second from
the I/O bus 32.
This process continues until either buffer 125A or

125B is full with a 16-byte packet of information or a
non-contiguous address is detected. On the next clock
cycle, assuming that buffer 125A is full, the data in
buffer 125A is transferred to buffer 125C. Similarly,
when buffer 125B is full, all of its contents are trans
ferred to buffer 125D in a single clock cycle. The data
stored in the buffers 125C and 125D is then written to
system memory via an i486 burst transfer at the system
bus operational speed. The operation of FIFO buffer
124 during a write to system memory by an I/O device
is thus continuous, alternating between buffers 125A
and 125B, with each emptying into adjacent buffer
125C or 125D, respectively, while the other is receiving
data to be written to system memory. The FIFO buffer
124, then, optimizes the speed of data writes to system
memory by (i) anticipating the address of the next likely
byte of data to be written into memory and (ii) accom
modating the maximum speed of write data from the
FIFO buffer to system memory via the system bus 76.

During reads of data from system memory to an I/O
device 28, FIFO buffer 124 operates differently. The
system bus address generation circuit 118 uses the initial
read address to generate subsequent read addresses of
read data and accumulate data in buffer 125C or 125D.
Because the system bus supports transfers in band
widths of 16 bytes wide, the system bus controller inter
face 122 may prefetch 16-byte packets of contiguous
data and store it in buffers 125C or 125D without the
I/O bus 32 actually providing subsequent addresses,
thus reducing latency between transfers. When buffer
125C is full of prefetched data, it transfers its contents to
buffer 125A in one clock cycle. Buffer 125D similarly
empties into buffer 125B when full. The data in buffers
125A and 125B may then be read by a particular I/O
device controller in bandwidths of 1, 2 or 4 bytes. In
this way, system bus address generation circuit 118
functions as an increment counter until instructed to by
the I/O controller device to stop prefetching data.

10

15

20

25

30

35

45

8
Bus to bus pacing control logic 128 creates a faster

access to system memory for high speed I/O devices.
The bus to bus pacing control logic 128 overrides the
normal memory controller arbitration scheme of system
10 by allowing an I/O device in control of the I/O bus
32 uninterrupted access to system memory during trans
fers of data by faster devices which require multiple
cycles, rather than alternating access to the memory
controller 58 between the I/O device and the CPU.
Thus, even if a local device such as the CPU has a
pending request for control of the memory bus during a
multiple cycle transmission by an I/O device, the bus to
bus pacing control logic 128 will grant the I/O device
continued control of the memory bus.
The programmed I/O circuit 116 is the portion of the

bus interface unit 64 which contains all of the registers
which are programmable within the bus interface unit
64. The registers have bits associated therewith to de
termine whether a particular register is active or inac
tive. These registers define, inter alia, the system mem
ory and expansion memory address ranges to which the
bus interface unit 64 will respond, the expansion mem
ory addresses which are either cacheable or noncachea
ble, the system memory or cache address ranges, and
whether or not parity or error checking is supported by
the bus interface unit. Accordingly, programmed I/O
circuit 116 identifies for the bus interface unit 64 the
environment in which it resides, and the options to
which it is configured. The registers in programmed
I/O circuit 116 cannot be programmed directly over
the I/O bus 32. Hence, in order to program the system
10, the user must have access to an I/O device which
may communicate over the system bus to the pro
grammed I/O circuit 116 at the CPU level.
Memory address compare logic 110 determines if a

memory address corresponds to system memory or
corresponds to expansion memory which is located on
I/O device 28 coupled to the I/O bus 32. Because the
system memory as well as the expansion memory may
be in non-contiguous blocks of addresses, memory ad
dress compare logic 110 includes a plurality of compar
ators which are loaded with boundary information from
registers in the programmed I/O circuit 116 to indicate
which boundaries correspond to which memory. After
a particular memory address is compared with the
boundary information by the memory address compare

50

55

65

logic, the bus interface unit is prepared to react accord
ingly. For example, if an I/O device controlling the I/O
bus 32 is reading or writing to expansion memory, the
bus interface circuit need not pass that address to the
memory controller 58, thereby saving time and memory
bandwidth.

Error recovery support logic 112 permits the system
10 to continue operations even if a data parity error is
detected. On any read or write access by an I/O device
28 to system memories 24 or 26, parity of the data is
checked. Support logic 112 interacts with a register in
the programmed I/O circuit 116 for capturing the ad
dress and the time of the detected parity error. The
contents of this register may then be acted upon by
appropriate system software. For example, the CPU 38
may be programmed for a high level interrupt to pull
the address out of the register at any time a parity error
is detected. The CPU may then decide, based on the
system software instructions, whether to continue sys
tem operations or merely terminate operation of the
identified source of the parity error.

5,313,627
9

Cache snooping logic 114 permits the bus interface
unit 64 to monitor the I/O bus 32 for any writes to
expansion memory by an I/O device taking place over
the I/O bus 32. The snooping logic first determines if
the write to expansion memory occurred in expansion
memory which is cacheable in SRAM 40. If it is not
cacheable expansion memory, there is no danger of
corrupt data being cached. If, however, a positive com
pare indicates that the write occurred in cacheable ex
pansion memory, a cache invalidation cycle is initiated
over the system bus 76. The CPU is thus instructed to
invalidate the corresponding address in SRAM 40.
Cache snooping logic 114 provides means to store the
address of a positive compare so that snooping of the
I/O bus may continue immediately after detection of
the first positive compare, thereby permitting continu
ous monitoring of the I/O bus 32.
The error recovery support logic 112 is provided to

detect if a parity error has occurred on data that is being
either written to the system memory 24, 26 through the
FIFO 124 from the I/O bus 32 or read from the system
memory 24, 26 through the FIFO when a device cou
pled to the I/O bus 32 is in control of the I/O bus 32 as
a bus master, and if there is a parity error detected, to
capture the address of the location of the data contain
ing the parity error and to write to or flag the system
bus 76 that such an error has occurred. As is shown in
FIG. 4, the error recovery support logic 112 includes
parity check logic 140 coupled to the system bus 76
through multiplexers 142 and 144 and parity check logic
146 coupled to the channel bus 32 through multiplexers
148 and 150. The parity check logic can be any of vari
ous known logic schemes and thus need not be de
scribed in detail. The bus interface unit 64 generates a
command for and checks for parity during alternate
system bus master read and write cycles. If a parity
error is detected by parity check logic 146 in data being
written into the FIFO 124 from the I/O bus 32 or by
parity check logic 140 in data being written into the
FIFO 124 from system bus 76 (I/O device 28 memory
read cycles), an error signal is generated in error cap
ture logic 152 as an error flag. This will also generate a
channel check signal on line 153 which will write a
signal on the I/O bus 32 which will eventually be de
tected by the CPU 38 or some other device on the
system bus.
At the same time that the error signal is generated the

address at which the error occurred is stored in error
address storage register 154. When the CPU 38 or other
device detects the system check signal on the system
bus 76, it will take control of the system bus 76 during
the first arbitration cycle and check all the devices
coupled to the system bus 76. This check will reveal
that the error flag in the error capture logic 152 was set
indicating that the error occurred during the operation
of an I/O controller coupled to the I/O bus 32. The
CPU 38 will also read the address of the error from the
error address storage register 154. Once the address has
been read by the CPU 38 the system bus 76 may be
returned for normal arbitration.
The CPU 38 can then take whatever action or actions

which are appropriate with regard to the address of the
error which was stored. These actions are prepro
grammed in the CPU complex 14. Thus, if a parity error
has occurred in the data being written into or out of one
of the devices on the I/O bus 32, the CPU or any other
control device does not necessarily have to shut down
the entire computer system and repower it, but it may

5

0.

15

20

25

30

35

40

45

50

55

65

10
well just isolate either one or all of the I/O devices and
continue operation. This will allow for more efficient
operation of the CPU in as much as it may continue
operating even if a parity error has been detected on
one of the devices coupled to the I/O bus without ne
cessitating a system shut down and repowering of the
entire computer system which can be costly and time
consuming.

It should be noted that data containing the error is not
corrected or rewritten but is merely passed on in its
"corrupted' form. This error recovery support logic
112 does not contain any code for correcting the parity
error but merely identifies that data containing a parity
error has been written into the FIFO 124 and captures
its address and makes the address available to the CPU
or other device for correcting the error. Indeed, such
other device could be some sort of error correction
device which may attempt to correct the error before it
is detected by the CPU 38 for appropriate action.
A timing diagram shown in FIG. 5 depicts an occur

rence of a typical parity error and how it is flagged, its
address stored, the error occurrence reported to the
CPU and the address interrogated. As indicated above,
the parity error check is initiated when a device cou
pled to the I/O bus 32 is a bus master on the I/O bus 32
and the system bus 76, and the bus interface unit 64 is
the slave and there is either a system memory write
cycle to a system memory 24 or 26 location a read cycle
from system memory 24 or 26 by a device 28 coupled to
the I/O bus 32.

In this diagram, a typical occurrence of a parity error
and how it is flagged, how its address is stored and the
occurrence of the error and the address thereof is re
ported to the CPU 38, Line 160 represents arbitration/.
grant cycles of the logic as described in application ser.
no.07/816,116 filed Jan. 1, 1992, entitled "Bus Control
Logic For Computer System Having Dual Bus Archi
tecture", line 162 represents the command cycles to
transfer data generated from an I/O bus master to pro
vide necessary timing, and line 164 represents an I/O
bus check cycle for error reporting generated by the
bus interface unit 64. As shown on line 160, the system
bus includes alternating arbitration cycles 166 and grant
cycles 168. It is only on the grant cycles that a bus
master may transfer data.

If during a grant cycle 168 a parity error occurs dur
ing any system memory 24 or 26 transfer, an error signal
ES is generated and this signal is written on the I/O bus
as an error check signal ECS indicating a parity error.
This will raise a flag in the error capture logic 152 and
store the address of the error in error address storage
register 154 by generating the I/O error check signal
ECS which is written on the signal line 153. The ad
dress of the error is latched into the error address stor
age register 154 until it is read out by the CPU 38. By
flagging and latching the address of the first error to
occur during a write operation, it is not necessary to
flag or store any additional errors that may occur dur
ing this write cycle before the processor has taken con
trol of the system bus 76. This is so since the CPU 38
will have the address location of where the first error
occurred and any data transfers that take place after
that can be discarded or otherwise treated as corrupted.
However, it is necessary that this first error be latched
to prevent it from being lost by any subsequent error,
and the address of the original error being overwritten
with the address of the subsequent error in the address
rwgister 154. Thus, the latching of the first error identi

5,313,627
11

fies the location where an error has occurred without
the necessity of identifying subsequent errors during
that grant cycle.
At the conclusion of the grant cycle during which the

error has been detected, the CPU 38 will take control of
the system bus 76 and maintain control of the system
bus 76 until the CPU 38 interrogates the error capture
logic 152 to determine if the error occurred on a device
coupled to the I/O bus, and if so it will interrogate the
error address storage register 154 and take any neces
sary error recovery actions before returning the system
to normal arbitration.
As described above since the address of the first de

tected parity error is latched by the error address stor
age register 154 this address location will be determined
irrespective of whether additional errors are detected
during the same grant cycle, and will be retained until
the CPU 38 has read the address and released the system
bus 76 for arbitration.
Although one embodiment of this invention has been

shown and described, various adaptations and modifica
tions can be made without departing from the scope of
the invention as defined in the appended claims.
Having thus described the preferred embodiment, the

invention is now claimed to be:
1. A dual-bus computer system, comprising:
system memory and a central processing unit electri

cally interconnected by a system bus;
a bus interface unit electrically interconnecting said

system bus to an input/output bus, said input/out
put bus having at least one input/output device
attached thereto, said input/output device able to
initiate individual memory write or memory read
cycles to and from said system memory, respec
tively, over said input/output bus, said bus inter
face unit and said system bus, said bus interface unit
including a bi-directional buffer circuit wherein
read or write data transferred between said system
bus and said input/output bus over said bus inter
face unit during said memory read or memory
write cycle is temporarily stored during the trans
fer; and

error detection and storage logic in said bus interface
unit for (i) detecting occurrences of parity errors
occurring in said temporarily stored data; (ii) iden
tifying and storing in a storage device the address
of a first of said parity errors detected during said
individual memory read or memory write cycles;
and (iii) generating an error signal on said system
bus to indicate the occurrence of a parity error.

2. The computer system as defined in claim 1, further
comprising a central arbitration control point residing
on said system bus for serially performing (i) arbitration
cycles wherein said central arbitration control point
arbitrates, between input/output devices having re
quests pending for access to said input/output bus, to
determine which of said input/output devices should be
granted control of said input/output bus and (ii) grant
cycles wherein said central arbitration control point
grants control of said input/output bus and extends
control of said system bus to one of said input/output
devices; and

wherein said error detection and storage logic detects
occurrences of parity errors and generates said

5

10

15

20

25

30

35

45

50

55

65

12
error signal on said system bus only during said
grant cycles.

3. The computer system as defined in claim 1, further
comprising circuitry for generating an error check sig
nal on said input/output bus responsive to the detection
of a parity error.

4. The computer system as defined in claim 1,
wherein said bus interface unit butter circuit comprises
a dual ported, asynchronous storage unit, in which is
temporarily stored all data transferred during input
/output device initiated memory read cycles and mem
ory write cycles.

5. The computer system as defines in claim 4, wherein
said asynchronous storage unit comprises four sixteen
byte buffers.

6. The computer system as defined in claim 1, further
characterized by a latch for latching an address stored
in said storage device until said address has been written
out thereof.

7. The computer system as defined in claim 6,
wherein said central processing unit is responsive to
said generation of said error signal on said system bus to
read said latched address in said storage device.

8. A method of detecting and storing parity errors in
a dual-bus computer system comprising (i) system mem
ory and a central processing unit electrically intercon
nected by a system bus; and (ii) a bus interface unit
electrically interconnecting said system bus to an input
/output bus, said method comprising the steps of:

initiating with an input/output device connected to
said input/output bus an individual memory read
cycle from system memory or a memory write
cycle to system memory;

temporarily storing in a bi-directional buffer circuit in
said bus interface unit read or write data trans
ferred between said system bus and said input/out
put bus over said bus interface unit during said
memory read cycle or memory write cycle;

detecting occurrences of parity errors occurring in
said temporarily stored data;

identifying and storing in a storage device the address
of a first of said parity errors detected during said
individual memory read or memory write cycle;
and

generating an error signal on said system bus to indi
cate the occurrence of a parity error.

9. The method as defined in claim 8, wherein said
buffer circuit comprises a dual ported, asynchronous
storage unit, in which is temporarily stored all data
transferred during input/output device initiated mem
ory read cycles and memory write cycles.

10. The method as defined in claim 8, wherein said
dual-bus computer system further comprises a latch for
latching an address stored in said storage device until
said address has been written out thereof.

11. The method as defined in claim 10, wherein said
central processing unit responds to said generation of
said error signal on said system bus to read said latched
address in said storage device.

12. The method as defined in claim 8, further com
prising the step of generating an error check signal on
said input/output bus responsive to the detection of a
parity error.

k sk k

