
United States Patent (19)
Dell et al.

54

75

73

21
22
(51
52
58

56

SYSTEM DATA

METHOD AND STRUCTURE FOR
PROVIDING ERROR CORRECTION CODE
AND PARTY FOREACH BYTE ON SMMS

Inventors: Timothy J. Dell, Colchester, Vt.;
Scott Washabaugh, Cary, N.C.

Assignee: International Business Machines
Corporation, Arnonk, N.Y.

Appl. No.: 187,859
Filed: Jan. 28, 1994
Int. Cli.. G06F 11/10
U.S. Cl. 371/40.1; 371/51.1
Field of Search 37/40.1, 51.1, 37.3,

371/37.7, 40.4, 49.1, 49.3
References Cited

U.S. PATENT DOCUMENTS

4,850,892 7/1989 Clayton et al. .
5,014,273 5/1991 Gagliardo et al. 371/37.7
5,058,115 10/1991 Blake et al. 371/40.
5,070,450 12/1991 Holman, Jr. et al. .
5,127,014 6/1992 Raynham 371/37.3
5,235,602 8/1993 Klim 371/49.1

34-d

CHECK BT
GENERATOR

PARTY BIT
GENERATOR

MEMORY CHECK BITS

SYSTEM PARITY

IIIHIIIHIIII
USOO5379304A

11 Patent Number: 5,379,304
45 Date of Patent: Jan. 3, 1995

5,241,643 8/1993 Durkin et al. .

FOREIGN PATENT DOCUMENTS

1-208799 8/1989 Japan 371/40.4

Primary Examiner-Joseph Ruggiero
Assistant Examiner-Steven R. Garland
Attorney, Agent, or Firm-Califee, Halter & Griswold
57) ABSTRACT

A SIMM is provided which adds ECC onto a computer
system which system does not have ECC capabilities.
The SIMM has ECC on board, and does ECC on each
byte of a data word. Thus, individual bytes of multiple
data words can be written without the need for read
modify-write cycles. Also, parity of the written data
bytes is checked, and check bits used for the ECC are
manipulated to check parity on the read cycle. Hence,
additional or dynamically changeable wait states need
not be present in the system. Therefore, the SIMM is
usable on a great number of different computer systems
without modification.

9 Claims, 3 Drawing Sheets

34d

NVERT
CHECK BTS

34c

U.S. Patent Jan. 3, 1995 Sheet 1 of 3 5,379,304

PARITY 3 PROCESSORE/GEN

34-d 34-d

CHECK BT CHECKBITs>

PARTY BIT
GENERATOR

SYSTEM PARTY 34c
Fig3

RAS MOns

W/R TO SIMM
W/R TO DRAM

OE
(GENERATED ASIC)

SYS DATA
TO SIMM VALID DATA BTS

SYS DATA AND
CHECK BS VALID CHECK R DATA BS

Fig4

5,379,304 Sheet 2 of 3 Jan. 3, 1995 U.S. Patent

U.S. Patent Jan. 3, 1995 Sheet 3 of 3 5,379,304

--WRITE 42
LATCHED
WITH CAS LTH 46 -DELAYED

WRITE
TO DRAMS

-WRITE-Do-D

Fig.5

RAS

CAS

W/R MOns GN
DATA AT DRAMS VALID DATA

FROM DRAM
DATA AT SIMM

PINS (AFTER ASIC) SVALID DATA
AT SIMM PNS

Fig.6

5O

SYSTEM DATA MEMORY DATA
CORRECTOR

ERROR LINE

5,379,304

METHOD AND STRUCTURE FOR PROVIDING
ERROR CORRECTION CODE AND PARTY FOR

EACH BYTE ON SEMMS

RELATED APPLICATION
Application Ser. No. 08/188,245, filed Jan. 28, 1994,

entitled "Method and Structure for Providing Error
Correction Code for Each Byte on SIMMs” (Atty.
Docket No. BC9-93-080).

FIELD OF THE INVENTION

This invention relates generally to error correction
code on single inline memory modules (SIMMs) which
can be used in computer systems, which systems do not
themselves have error correction code. More particu
larly, this invention relates to providing error correc
tion code on each byte of a data word written to a
SIMM as a part of a multiple byte data word or as a
single-byte data word and which SIMMs can be used on
computer systems which do not have or cannot change
dynamically their wait states.

BACKGROUND OF THE INVENTION
The integrity requirements for personal computer

Systems have grown rapidly in the past few years. At
the present time, newer operating systems and applica
tions require a great deal of memory, and the amount of
memory which can be accommodated in personal com
puter systems continues to increase rapidly. Such per
sonal computer systems have in the past typically been
provided only with the capability of writing and check
ing parity-if even that. In such a case of parity, if an
odd number of bits of memory is corrupted, the bad
parity condition will be flagged, and generally the sys
tem will halt when the error is detected. This poses a
significant problem since users can ill afford to have
periodic system crashes and/or loss of data, and as the
amount of memory increases, the possibility of such
data corruption increases significantly. In the case of
systems which do not write and check parity, corrupted
data can cause malfunction of the system. Moreover,
with the advent of large applications which normally
require large amounts of memory, these are the most
exposed to such a crash and data corruption.
As indicated above, until very recently most conven

tional current low end personal computer systems con
tained at best only parity SIMMs which can detect an
odd number of bit errors, but cannot correct such er
rors. Moreover, a parity function cannot detect double
or other even number bit errors.
One solution which has been proposed to eliminate

system crash or corruption of data due to single-bit
errors is to provide error correction code for use in
computer systems which do not have error correction
code capabilities internal thereto. Typically, this error
correction code allows for the detection of most dou
ble-bit errors and the correction of all single-bit errors.
These schemes are a significant improvement over
purely parity SIMMs. One technique for utilizing ECC
is the so-called 32/7-bit ECC algorithm. This ECC
algorithm requires 7 check bits for each double word
(i.e., 4 bytes or 32 bits, thus the designation 32/7). This
results in a 39-bit wide memory SIMM required for
each double word and associated 7-check bits (32 data
bits--7 check bits). Thus, the widely-used 36-bit wide
memory SIMM is not available to be used, although this
is a conventional and popular size SIMM and is used

10

15

20

25

30

35

40

45

50

55

65

2
with double words containing only parity bits which
requires only 36 bits (32 data bits plus 4 parity bits).
More importantly, many. Systems do not have wait
states programmed either in the system or in the bus
interface circuit, and thus read-modify-write (RMW)
operations cannot be performed because of the addi
tional time required from RMW. RMW is required
when less than all of the bytes of a multiple data byte
word are being written For example, if only one byte of
a four-byte data word is being rewritten, a RMW cycle
must be performed to recalculate and generate new
check bits or the check bits associated with the entire 32
bits of data will be in error.

Thus, in the case of systems configured to write less
than all the bytes of a multiple byte data word (which is
typical) and where ECC has been attempted, the sys
tems or at least the interface circuit has to be modified
to provide for the necessary delays to perform a RMW
cycle when the ECC algorithm uses all of the data bits
and generate check bits such as in the 32/7 bit ECC
algorithm.

Thus, it is an object of the present invention to pro
vide an improved ECC on SIMM which allows writing
of single byte words and which SIMMs are compatible
with systems which do not have wait states necessary
for RWM cycles and wherein parity of the written data
is checked. If bad parity is detected such bad parity is
flagged on the read cycle.

SUMMARY OF THE INVENTION

According to the present invention, a SIMM and
method of operating the SIMM are provided wherein
the SIMM has error correction code on board and is
compatible with computer systems not having error
correction code and which computer systems write
single bytes of multiple byte words and do not have
wait states necessary to perform read-modify-write
operations when writing less than all of the bytes of a
multiple byte data word. The error correction code
logic and circuitry on the SIMM is configured to write
a 4-bit error correction code for each byte of a data
word that is written and to read the stored data bytes
and check bits and correct all single-bit errors and de
tect some multi-bit errors or detect all two-bit errors but
not correct single-bit errors, but not both. The error
correction code circuitry and logic is configured to
perform the required function without requiring a delay
State and thus without a RMW cycle. This is accom
plished by utilizing a DRAM on the SIMM that oper
ates faster than the total read or total write operation of
the SIMM according to JEDEC or other standards. By
using a fast DRAM, the late write feature on the
DRAM can be employed on the write cycle to write
check bits before good data is latched into the register;
on the read cycle, the fast DRAM is used to read the
data bits, generate new check bits and syndrome bits,
and correct all one-bit errors before the corrected data
is placed on the system bus of the computer system.
Thus, every byte has check bits written to that specific
byte, and error checking and correction takes place on
each byte read from memory, all within the time con
straints of a standard JEDEC SIMM and without the
necessity for read-modify-write cycles in the computer
system or interface chip. Also, parity of the written data
is checked. If bad parity is detected, the generated
check bits are manipulated to show such bad parity on
the read cycle.

5,379,304
3

DESCRIPTION OF THE DRAWINGS
FIG. 1 is a high-level diagram showing the intercon

nects of a personal computer with a bus and an add-on
memory cards according to this invention;
FIG. 2 is a high-level schematic representation of a

SIMM card with ECC capabilities according to this
invention connected to a computer system bus;
FIG. 3 is a block diagram showing the generation of

check bits according to this invention;
FIG. 4 is a timing diagram of certain signals used on

the write cycle;
FIG. 5 is a block diagram of the components to do a

late write function;
FIG. 6 is a timing diagram of the read cycle; and
FIG. 7 is a block diagram showing the regeneration

of check bits, generating syndrome bits, and correcting
single-bit errors and delay some multi-bit errors accord
ing to this invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

The preferred embodiment will be described in the
environment of an IBM Personal Computer using an
Intel 80386 or 80486 microprocessor and with single
in-line memory (SIMMs) having dynamic random ac
cess memory (DRAM) chips to provide and control the
memory function. (A SIMM is sometimes referred to as
a DRAM card which means the DRAM and all chips
and circuits on the SIMM.) For the purpose of this
description, the system will be described as it is used
with a CPU capable of generating parity bits for the
databytes that it writes and also reading and comparing
parity information read from storage, The CPU and its
associated system will not have error correction code
logic contained within the CPU system.
As can be seen in FIG. 1, there is provided a CPU 10

which is connected to a CPU or system bus 12. A parity
generation and check unit 13 preferably is provided
which also generates or checks parity of data being
either written by or read by the CPU 10 to or from the
bus 12. However, generation of parity bits is not essen
tial to the functioning of this invention. The CPU bus 12
may also have local I/O ports 14, CACHE memory 16,
and firmware subsystems 18 associated therewith. A
memory controller 20 is also connected to the system
bus 12, coupling it to a memory subsystem 22, and also
normally to an expansion bus 24 if one is present. The
memory subsystem 22 is typically comprised of one or
more SIMMs 26, each of which is provided with
DRAM chips and ASIC chips having error correction
code. It is to be understood that the system just de
scribed is illustrative of systems on which the present
invention can be used since one feature or aspect of the
present invention is the provision of a SIMM card hav
ing ECC which can be utilized on virtually any system
CPU and system having the capacity of receiving non
ECC SIMMs as add-on memory.
As indicated above, the CPU 10 is capable of writing

data onto the bus 12 which in turn will be conveyed to
the correct memory address in subsystem 22 by the
memory controller 20. Upon writing data by the CPU
10, parity bits are generated for each byte of informa
tion written to memory by the parity generating and
checking device 13 which also checks parity on infor
mation read from the memory subsystem 22 during a
read cycle to determine parity error. The memory con
troller also provides the necessary signals, such as Row

10

15

20

25

30

35

45

50

55

65

4
Activation Strobe (RAS), Column Activation Strobe
(CAS), Write Enable (WE), and on some systems Out
put Enable (OE), and Byte Select (BS), etc., to the
memory subsystem 22. The memory controller reads
and writes both data and parity to each of the SIMMs
26, also as shown in FIG. 2. It should be understood
that this invention is applicable to a wide variety of
SIMMs having many different form factors. For exam
ple, it can be used in conjunction with the following
SIMM forms: 72 pin x 32; 72 pinx 36; 168 pin x 64; 168
pin x 72; 88 pin DRAM card; 68 pin DRAM card; 68
pin PCMCIA card, and 72 pin small outline DRAM
card.
The error correction code logic includes logic which

will check the parity bits written by the CPU on a
“write' cycle and manipulate the check bits if bad par
ity is detected to show bad parity when read. The logic
will also regenerate parity bits for each byte fetched on
a read cycle.

Referring now to FIG. 2, a 72 pin SIMM 26 con
structed according to this invention is shown. The
SIMM26 has a plurality of DRAMs 28a–28l. These are
conventional 1MX4 DRAM chips which are commer
cially available. The 1MX4 DRAMs have 4 data I/O
pins (DQ 1-4) and 220 addresses. Thus, each series of 3
DRAM chips can receive 12 data bits, i.e., 28a, 28b, 28c
can each receive a 4-bit wide data field, and thus to
gether have a 12-bit wide bus. DRAM 28d, 28e and 28f
also each are 1MX4 and together form a 12-bit wide
data bus. The same is true for DRAMs 28g-28i, and
DRAM28j-28l. These type of DRAMs used on SIMMs
are conventional for add-on memory modules and need
not be described further. Other DRAMs such as
256KX4; 4MX4; 16MX4, etc., can also be used. If
desired, the DRAMs can be formed in a stacked config
uration as shown in dotted lines, thus having a second
DRAM chip 30a-301, each stacked respectively on the
corresponding DRAM chip 28a-28l. This configuration
as shown in dotted lines does in fact provide a more
dense memory if desired.
Also provided on the SIMM are 4 ASIC (application

specific integrated circuit) chips 32a, 32b, 32c and 32d.
As can be seen in FIG. 2, various lines coming from the
memory controller 20 bring the various signals such as
RAS, CAS and WE. Also, a bus between the SIMM28
and the memory controller 20 provides for interchange
of data between the SIMM 26 and CPU 10. In this
particular format, a 36-bit wide bus is used which deliv
ers 8 data bits and 1 parity bit to each ASIC chip 32a,
32b, 32c and 32d. The ASIC chips 32a-32d provide,
among other things, the logic needed to perform the
read and write functions of the data to the DRAMs
26a-26l, and in so doing generate check bits, the check
bits being generated such that there are 4 check bits
generated for each byte of data. Each data byte (8bits)
together with the generated 4 check bits from the ASIC
chip 32a are stored in DRAMs 28a, 28b and 28c, four
bits in each DRAM for a total of 12 bits, i.e., a single
byte plus 4 check bits. The same is true for ASIC chips
32b, 32c and 32d with respect to DRAM 28d-28f,
28g-28i, and 28j-281, respectively. Thus, it will be ap
preciated that the arrangement and configuration of the
SIMM 26 as shown allows a 4-byte data word to be
written and the ECC check bits generated individually
for each byte and each byte with its associated check
bits stand individually. Therefore, if during any write
cycle less than the entire four byte data word is being
written or rewritten, this can be done without doing a

5,379,304
5

read-modify-write cycle which would be required if all
of the data bytes participated in writing all of the check
bits such as is common in the 32/7 algorithm. Hence, a
wait state need not be programmed into the computer
system, including the processor or memory controller,
but rather during each write operation check bits are
generated, and during each read operation check bits
are regenerated as syndrome bits and error correction
made on each byte individually on each read operation.
The logic and generation of the bits will be described

with respect to the ASIC chip 32a, in combination with
the DRAM chips 28a, 28b and 28c. It is to be under
stood that the same operations take place with respect
to the ASIC chip 32b and the DRAMs 28d, 28e and 28f.
ASIC chip 32c in combination with DRAMs 28g, 28h
and 28i, and ASIC chip 32d in combination with
DRAMs, 28i, 28k and 28l. Thus, each ASIC receives 8
bits of data plus 1 parity bit on the 36-bit bus, and in
cluded in the logic of each ASIC chip 32 the circuitry
generates 4 check bits from the 8 data bits supplied
thereto with the check bits being generated specifically
with the data bits only of 1 byte of data.
The circuitry for generating check bits is shown in

FIG. 3. The data bits DQ0 through DQ7 and parity bit
PQ8 are received by ASIC chip 32a. The ASIC chip 32
checks parity, and the data bits DQ0-DQ7 are supplied
to a check bit generator 34a which generates 4 check
bits. The handling of parity will be discussed presently.
The check bits are supplied together with the 8 memory
data bits to a 12-bit bus line 36a, and the data bits are
then stored in the DRAMs 28a, 28b, 28c. As indicated
above, each DRAM is MX4 So that 4 of the data bits
are stored in DRAM 28a, 4 data bits are stored in
DRAM 28b and the 4 check bits in DRAM 28c. The
error correction algorithm is shown in Table I below. In
this table, the data bits which participate in generating
each check bit are shown and marked with an 'X'.

TABLE I
Data Bit 7 6 5 4 3 2 1 O

Check Bit O X X X X X
Check Bit 1 X X X X X
Check Bit 2 X X X X
Check Bit 3 X X X X

The handling of the parity is as follows: since the
ECC does not store a parity bit perse, each access must
handle parity bit generation on the fly. For read opera
tions, the parity bit is generated from the 8 data bits and
is not affected by the check bits unless an error occurs
in which case bad parity is flagged to the CPU. On a
write operation, parity is checked on each byte, every
single write cycle. The reason for this can be under
stood by comparing the ECC parity bit handling ac
cording to this invention with a typical X36 SIMM's
parity handling. In a typical X36 SIMM, the parity bit
is just another "data” bit and, if bad parity is sent on a
store operation, it will remain in memory as bad parity.
On any subsequent read of that data, bad parity will be
presented to the system and recognized. In the ECC,
the parity bit is not used at all to generate the check bits
and is not stored. Therefore, if parity were not distinctly
checked and accounted for, a write with bad parity
would be stored in memory with correctly generated
check bits for the incorrect data pattern. Then, the
subsequent access of that data would see a new parity
bit generated and the data would be sent back to the
system with correct parity on incorrect data. The effect
is to change a detectable error into an undetectable one.

15

25

30

35

45

50

55

65

6
Since this is clearly not a desirable effect, the parity is
checked on every write and if an error is detected, the
check bits are manipulated such that on the subsequent
read of that data, an uncorrectable error syndrome is
generated and bad parity is guaranteed to be sent back
to the System, regaining the data integrity that is re
quired. The manipulation of the check bits in the pre
ferred embodiment is to "flip' each check bit to its
inverted logic state. As will be seen presently, this will
have the effect of causing the subsequently generated
syndrome bits to show an uncorrectable error.
The timing for generating and storing the check bits

together with the data bits is crucial and can best be
understood by reference to the timing diagram shown in
FIG. 4. In FIG. 4, the timing diagram shows the RAS,
CAS, W/R to SIMM, W/R DRAM, OE, the system
data to SIMM and system data and check bits to the
DRAMs. W/R to SIMM is the signal from the memory
controller to the SIMM and the W/R to DRAM is the
"late' write enable signal to the DRAM. In order for
the error correction code to operate within a single
write operation cycle of the SIMM without requiring
wait states and to be able to read the check bits, gener
ate syndrome bits and correct data, it is necessary that
the DRAMs 28a-28l operate at a faster speed than the
operating speed of the SIMM itself. SIMM architecture
standards are, in general, governed by JEDEC (Joint
Electronic Device Engineering Council) standards.
Industry standards for timing are based on the JEDEC
architecture standards. According to one conventional
industry standard, either a read operation or a write
operation based on the timing of the signals must be
completed within 70 nanoseconds. However, the
JEDEC industry standards do not presuppose error
correction taking place, and thus in order to stay within
this parameter, it is necessary to perform the error cor
rection function within the time limit normally allo
cated to merely read and write and perhaps check par
ity. To accomplish this, DRAM chips are selected
which have a faster operating speed than the speed of
the SIMM by at least about 10 nanoseconds. Thus, for a
SIMM which has an operating time or parameter of 70
nanoseconds for a read operation or write operation,
the DRAM must operate at about 60 nanoseconds or
faster.

Referring now to FIG. 4, after RAS goes low fol
lowed by the W/R to SIMM going low when CAS
goes low valid data will appear on the bus from the
memory controller 20 to memory subsystem 22. To
assure a read cycle does not occur, the OE signal from
ASIC chip 32a is used to tristate the DRAM I/O's
before the W/R to SIMM goes low. However, this data
cannot be latched into memory until the check bits are
generated, which requires a certain finite amount of
time. Thus, to this end, as indicated above, the late write
cycle on the DRAM is used. This is done by maintain
ing the W/R to DRAM line high for about 10 nanosec
onds after CAS has gone low. During this 10 nanosec
onds, check bits are being written. At the end of these
10 nanoseconds when the W/R to DRAM goes low,
both the data bits and the check bits are latched into
DRAMs 28a, 28b, 28c as indicated before. This is shown
in the system data-to-SIMM and system data-to-DRAM
lines wherein it is shown that valid data write takes
place when the CAS goes low, but the valid data and
check bits do not appear until the write to DRAM line

5,379,304
7

has gone low. These data bits and check bits are latched
in DRAMs 28a–28c.
The logic to perform this and to manipulate the check

bits for bad parity is shown in FIG. 5, wherein the W/R
to SIMM line and the CAS lines are shown going to a
latch 40. The output from the latch 40 is supplied as a
--write latched together with CAS to an AND gate 42,
the output of which is supplied to a delay block 44 and
thence to a driver 46 the output of which is the delayed
write to DRAM. Also, inputs to the AND gate are a
--not CBR (CAS before RAS) and also a -- CAS input.
The --write latched with CAS is also supplied to a
second driver 48 so as to provide an OE signal to the
DRAM.
The reason for and functioning of this circuit are as

follows. Typically, the W/R to SIMM must be valid
and often only is valid before CAS falls and then held
for about a maximum of 15 ns after CAS falls. A straight
delay on W/R to SIMM would not be wide enough to
write data. Hence, this is written to the latch 40, and
when CAS falls, the latch samples the signal on W/R to
SIMM line. The latch 40 maintains the data valid as
long as CAS stays low.
The latch 40 is transparent, so what is impressed on

the input of the latch 40 appears at the output which is
a write enable as CAS goes low, and will stay as an
output as long as CAS is low. In this state, the data
flows through the latch 40 and thus the need for the
delay. The AND gate 42 operates to block signals be
fore CAS becomes active. The delay block 44 provides
the necessary time to generate the check bits before the
data is latched into memory. The time of delay is less
than 20 ns, typically 7-9 ns. The --CAS and not CBR
(CAS before RAS) signals are impressed on the input of
the AND gate 42 so that data will not be written on a
refresh cycle if CAS is low during a refresh mode done
as CBR. Thus, by utilizing the late write function of the
DRAMs together with a DRAM that is faster than the
speed of the SIMM, an 8-bit data byte can be written
and check bits generated in the normal write operation
of the SIMM.
The data when read on a read operation goes through

logic which generates new check bits, compares the
newly-generated check bits with the stored check bits
and then writes a syndrome table which is the well
known manner of error correction of single-bit errors
and detection of some multi-bit errors. This also has to
be done within the time standard set for the SIMM card.
Once again, there is a need for the fast DRAM, the
DRAM being at least 10 nanoseconds faster than the
SIMM. The circuitry for the error correction code is
shown in FIG. 7 wherein the 8 bits of memory data
constituting a data byte are read from memory to a
corrector 50. At the same time, the 4 stored check bits
that have been stored with the 8bits of data memory are
impressed on a comparator 52. The 8 memory data bits
are also impressed on a check bit generator 54 which
regenerates the check bits based on the stored 8 bits of
data. These regenerated check bits are also supplied to
the comparator 52 where the originally-generated and
stored check bits are compared with the newly
generated check bits to generate syndrome bits. The
syndrome bit table and the errors which they indicate
are shown in Table II below.

10

15

20

25

30

35

45

50

55

60

65

8
TABLE I

Action
Syndrome Toggle Toggle Error

3210 Bit in Error Data Parity Output

0000 None N N N
0001 Check Bit O N N Y
O010 Check Bit 1. N N Y
0.011 Data Bit 0 Y Y Y
01.00 CheckBit 2 N N Y
01.01 Data Bit 1 Y Y Y
010 Data Bit 2 Y Y Y
011 Data Bit 3 Y Y Y
1000 Check Bit 3 N N Y
001 Data Bit 4 Y Y Y
1010 Data Bit 5 Y Y Y
1011 Data Bit 6 Y Y Y
1100 Data Bit 7 Y Y Y
101 Multi Bit N /y Y

Error
110 Multi Bit N Y Y

Error
1111 Multi Bit N Y Y

Error

The syndrome bits are generated by XORing each
newly-generated check bit with the comparable stored
check bit If they are all "0's, the syndrome bits as
shown in the table will be 0000, which will indicate that
there is no error. Single bit errors will show up as vari
ous syndrome bit patterns. It will be noted that all sin
gle-bit errors can be detected and hence corrected.
Certain multi-bit errors can be detected which are
shown in the syndrome table as syndrome 1101, 1110
and 1111. These all indicate multi-bit, and hence uncor
rectable, errors. (It should be noted that if desired a 4-bit
ECC code for a single byte can be used to detect all two
bit errors but not correct them-but it cannot both
correct all single bit errors and detect all two bit errors.)
With respect to the parity handling, if a parity error on
the write cycle was detected, then the check bits gener
ated were all “flipped.” Hence, in this case, when the
check bits are regenerated, and not “flipped' during a
read cycle the XORing will cause a syndrome bit pat
tern of "1111" indicating an uncorrectable error. The
syndrome bits are impressed on the corrector 50 and if
any bit needs to be corrected because of a single-bit
error, that particular bit is "flipped'. The corrected
data is delivered out as system data in 8 bits out to the
system bus. The signal diagram for this is shown in FIG.
6. When the RAS goes low followed by CAS going low
and the W/R to SIMM being high, data is read from the
DRAMs and because it can be read in 60 nanoseconds
as shown on the RAS line, there is an additional 10
nanoseconds available for the generation of the addi
tional check bits, the generation of the syndrome bits
and error correction which is shown as the 10 nanosec
ond delay. After the specified CAS access time (TCAS),
the data at the SIMM can be latched as corrected data
and impressed on the bus to the memory controller 20.
Thus it can be seen that by providing DRAMs which

can operate faster than the operation cycle time of the
SIMM according the JEDEC or whatever other stan
dard to which it has been manufactured, error correc
tion can be performed on each byte of data indepen
dently. Hence, such a SIMM can be utilized in a wide
variety of computer systems which do not have the wait
states necessary to perform read-modify-write opera
tions and which write multi-byte data words and which
allows error correction to take place on the add-on

5,379,304
SIMM even when the computer system is not config
ured to include error correction.

Again, it should be noted that the present invention is
not limited to the particular SIMM as shown and de
scribed, but is applicable to SIMMs have various form
factors. All that is required is that the DRAM on the
SIMM be able to operate at least about 10 nanoseconds
faster than the operating time of a read or write opera
tion of the SIMM. The error correction function thus
can be afforded to any system which writes one or more
data bytes irrespective of the width or number of bytes
in a data word. Of course, there is some penalty for
utilizing 4 bits of error correction for each 8 bits of a
data word; i.e., there is a somewhat increased amount of
storage space necessary as opposed to utilizing a 32/7 or
64/8 algorithm of generating check bits. However, the
advantage is that these SIMMs can be used in many
systems, including those which do not have the neces
sary wait states for a read-modify-write and thus has
wide applicability in retrofitting systems which do not
have error correction code on board.

Also, it is to be understood that the invention can be
performed generating more than 4 check bits; e.g., 5
check bits. In such a case, more types of errors can be
detected and/or corrected. This would require addi
tional memory space and logic for each check bit which
could be supplied by additional x1 DRAMs. At least 4
check bits are necessary to correct all single bit errors.

Accordingly, the preferred embodiment of the pres
ent invention has been described. With the foregoing
description in mind, however, it is understood that this
description is made only by way of example, that the
invention is not limited to the particular embodiments
described herein, and that various rearrangements,
modifications, and substitutions may be implemented
without departing from the true spirit of the invention
as hereinafter claimed.
What is claimed is:
1. A SIMM memory adapted to be added as add-on

memory to a computer system, which system writes
eight-bit bytes of data together with a parity bit and said
SIMM provides error correction and parity check for
said data; and wherein said SIMM is configured to
operate at a given speed for read and write operations,
comprising:

logic to generate at least four check bits from the
eight bits of each data byte written; logic to gener
ate parity bits and compare the generated parity
bits with the system parity bits and manipulate the
check bits to show uncorrectable error when bad
parity is detected; DRAM chips to store said gen
erated four check bits with each data byte in said
DRAM chips without introducing a wait state;

logic to read each data byte and associated check bits
from the DRAM and generate new check bits and
compare the newly-generated check bits with the
stored checkbits to correct and output all single-bit
errors and detect some multi-bit errors and bad
parity in the read data,

said DRAM chips being selected to operate at a speed
of at least about 10 nanoseconds faster than the
speed of operation of the SIMM; and said DRAM
chip including logic to provide a late write func
tion to the DRAM.

2. The invention as defined in claim 1 wherein said
check bits are manipulated by having at least one gener
ated check bit inverted responsive to bad parity written
by the SIMM on the write operation.

O

15

25

30

35

45

50

55

65

10
3. The invention as defined in claim 2 wherein said

check bits are manipulated by having a plurality of
check bits manipulated responsive to bad parity.

4. The invention as defined in claim 2 wherein said
check bits are manipulated by having all check bits
inverted responsive to bad parity.

5. A computer system comprising:
a CPU and a bus having a SIMM memory added as

add-on memory to said computer system, said com
puter system configured to write eight bit bytes of
data together with a parity bit, said SIMM includ
ing error correction and parity check for said data;
said SIMM being configured to operate at a given
speed for read and write operations,

said SIMM including:
logic to generate at least four check bits from the

eight bits of each data byte written; logic to gener
ate parity bits and compare the generated parity
bits with the system parity bits and manipulate the
check bits to show uncorrectable error when bad
parity is detected; DRAM chips to store said gen
erated four check bits with each data byte in said
SIMM without introducing a wait state;

logic to read each data byte and associated check bits
from the DRAM and generate new check bits and
compare the newly-generated check bits with the
stored check bits to correct and output all single-bit
errors and detect some multi-bit errors and bad
parity in the read data and supply said corrected
data to the system bus,

said DRAM chips being selected to operate at a speed
of at least about 10 nanoseconds faster than the
speed of operation of the SIMM; and said DRAM
chip including logic to provide a late write func
tion to the DRAM.

6. The invention as defined in claim 5 wherein said
check bits are manipulated by having at least one gener
ated check bit inverted responsive to bad parity.

7. The invention as defined in claim 6 wherein said
check bits are manipulated by having a plurality of
check bits manipulated responsive to bad parity.

8. The invention as defined in claim 6 wherein said
check bits are manipulated by having all check bits
inverted responsive to bad parity.

9. A method of providing error correction and parity
check on SIMM memory added as add-on memory to a
computer system which system writes eight-bit bytes of
data together with a parity bit; and wherein said SIMM
is configured to operate at a given speed for read and
write operations, comprising the steps of:

generating on said SIMM at least four check bits from
the eight bits of each data byte written and a parity
bit, comparing the parity of the generated parity bit
with the system parity bit and manipulating said
check bits to show uncorrectable error responsive
to bad parity; storing said generated four check bits
with each data byte in DRAMs on said SIMM
without introducing a wait state in the computer
system;

reading each data byte and associated check bits from
the DRAM and generating new check bits and
comparing the newly-generated check bits with the
stored check bits to correct and output all single-bit
errors and detect some multi-bit errors and bad
parity in the read data;

selecting said DRAM chips to operate at a speed of at
least about 10 nanoseconds faster than the speed of
operation of the SIMM; said method including
delaying the write function to the DRAM after
valid data appears for a time sufficient to generate
said check bits.

2. k

