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57) ABSTRACT 

A SIMM is provided which adds ECC onto a computer 
system which system does not have ECC capabilities. 
The SIMM has ECC on board, and does ECC on each 
byte of a data word. Thus, individual bytes of multiple 
data words can be written without the need for read 
modify-write cycles. Also, parity of the written data 
bytes is checked, and check bits used for the ECC are 
manipulated to check parity on the read cycle. Hence, 
additional or dynamically changeable wait states need 
not be present in the system. Therefore, the SIMM is 
usable on a great number of different computer systems 
without modification. 

9 Claims, 3 Drawing Sheets 
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METHOD AND STRUCTURE FOR PROVIDING 
ERROR CORRECTION CODE AND PARTY FOR 

EACH BYTE ON SEMMS 

RELATED APPLICATION 
Application Ser. No. 08/188,245, filed Jan. 28, 1994, 

entitled "Method and Structure for Providing Error 
Correction Code for Each Byte on SIMMs” (Atty. 
Docket No. BC9-93-080). 

FIELD OF THE INVENTION 

This invention relates generally to error correction 
code on single inline memory modules (SIMMs) which 
can be used in computer systems, which systems do not 
themselves have error correction code. More particu 
larly, this invention relates to providing error correc 
tion code on each byte of a data word written to a 
SIMM as a part of a multiple byte data word or as a 
single-byte data word and which SIMMs can be used on 
computer systems which do not have or cannot change 
dynamically their wait states. 

BACKGROUND OF THE INVENTION 
The integrity requirements for personal computer 

Systems have grown rapidly in the past few years. At 
the present time, newer operating systems and applica 
tions require a great deal of memory, and the amount of 
memory which can be accommodated in personal com 
puter systems continues to increase rapidly. Such per 
sonal computer systems have in the past typically been 
provided only with the capability of writing and check 
ing parity-if even that. In such a case of parity, if an 
odd number of bits of memory is corrupted, the bad 
parity condition will be flagged, and generally the sys 
tem will halt when the error is detected. This poses a 
significant problem since users can ill afford to have 
periodic system crashes and/or loss of data, and as the 
amount of memory increases, the possibility of such 
data corruption increases significantly. In the case of 
systems which do not write and check parity, corrupted 
data can cause malfunction of the system. Moreover, 
with the advent of large applications which normally 
require large amounts of memory, these are the most 
exposed to such a crash and data corruption. 
As indicated above, until very recently most conven 

tional current low end personal computer systems con 
tained at best only parity SIMMs which can detect an 
odd number of bit errors, but cannot correct such er 
rors. Moreover, a parity function cannot detect double 
or other even number bit errors. 
One solution which has been proposed to eliminate 

system crash or corruption of data due to single-bit 
errors is to provide error correction code for use in 
computer systems which do not have error correction 
code capabilities internal thereto. Typically, this error 
correction code allows for the detection of most dou 
ble-bit errors and the correction of all single-bit errors. 
These schemes are a significant improvement over 
purely parity SIMMs. One technique for utilizing ECC 
is the so-called 32/7-bit ECC algorithm. This ECC 
algorithm requires 7 check bits for each double word 
(i.e., 4 bytes or 32 bits, thus the designation 32/7). This 
results in a 39-bit wide memory SIMM required for 
each double word and associated 7-check bits (32 data 
bits--7 check bits). Thus, the widely-used 36-bit wide 
memory SIMM is not available to be used, although this 
is a conventional and popular size SIMM and is used 
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2 
with double words containing only parity bits which 
requires only 36 bits (32 data bits plus 4 parity bits). 
More importantly, many. Systems do not have wait 
states programmed either in the system or in the bus 
interface circuit, and thus read-modify-write (RMW) 
operations cannot be performed because of the addi 
tional time required from RMW. RMW is required 
when less than all of the bytes of a multiple data byte 
word are being written For example, if only one byte of 
a four-byte data word is being rewritten, a RMW cycle 
must be performed to recalculate and generate new 
check bits or the check bits associated with the entire 32 
bits of data will be in error. 

Thus, in the case of systems configured to write less 
than all the bytes of a multiple byte data word (which is 
typical) and where ECC has been attempted, the sys 
tems or at least the interface circuit has to be modified 
to provide for the necessary delays to perform a RMW 
cycle when the ECC algorithm uses all of the data bits 
and generate check bits such as in the 32/7 bit ECC 
algorithm. 

Thus, it is an object of the present invention to pro 
vide an improved ECC on SIMM which allows writing 
of single byte words and which SIMMs are compatible 
with systems which do not have wait states necessary 
for RWM cycles and wherein parity of the written data 
is checked. If bad parity is detected such bad parity is 
flagged on the read cycle. 

SUMMARY OF THE INVENTION 

According to the present invention, a SIMM and 
method of operating the SIMM are provided wherein 
the SIMM has error correction code on board and is 
compatible with computer systems not having error 
correction code and which computer systems write 
single bytes of multiple byte words and do not have 
wait states necessary to perform read-modify-write 
operations when writing less than all of the bytes of a 
multiple byte data word. The error correction code 
logic and circuitry on the SIMM is configured to write 
a 4-bit error correction code for each byte of a data 
word that is written and to read the stored data bytes 
and check bits and correct all single-bit errors and de 
tect some multi-bit errors or detect all two-bit errors but 
not correct single-bit errors, but not both. The error 
correction code circuitry and logic is configured to 
perform the required function without requiring a delay 
State and thus without a RMW cycle. This is accom 
plished by utilizing a DRAM on the SIMM that oper 
ates faster than the total read or total write operation of 
the SIMM according to JEDEC or other standards. By 
using a fast DRAM, the late write feature on the 
DRAM can be employed on the write cycle to write 
check bits before good data is latched into the register; 
on the read cycle, the fast DRAM is used to read the 
data bits, generate new check bits and syndrome bits, 
and correct all one-bit errors before the corrected data 
is placed on the system bus of the computer system. 
Thus, every byte has check bits written to that specific 
byte, and error checking and correction takes place on 
each byte read from memory, all within the time con 
straints of a standard JEDEC SIMM and without the 
necessity for read-modify-write cycles in the computer 
system or interface chip. Also, parity of the written data 
is checked. If bad parity is detected, the generated 
check bits are manipulated to show such bad parity on 
the read cycle. 
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DESCRIPTION OF THE DRAWINGS 
FIG. 1 is a high-level diagram showing the intercon 

nects of a personal computer with a bus and an add-on 
memory cards according to this invention; 
FIG. 2 is a high-level schematic representation of a 

SIMM card with ECC capabilities according to this 
invention connected to a computer system bus; 
FIG. 3 is a block diagram showing the generation of 

check bits according to this invention; 
FIG. 4 is a timing diagram of certain signals used on 

the write cycle; 
FIG. 5 is a block diagram of the components to do a 

late write function; 
FIG. 6 is a timing diagram of the read cycle; and 
FIG. 7 is a block diagram showing the regeneration 

of check bits, generating syndrome bits, and correcting 
single-bit errors and delay some multi-bit errors accord 
ing to this invention. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

The preferred embodiment will be described in the 
environment of an IBM Personal Computer using an 
Intel 80386 or 80486 microprocessor and with single 
in-line memory (SIMMs) having dynamic random ac 
cess memory (DRAM) chips to provide and control the 
memory function. (A SIMM is sometimes referred to as 
a DRAM card which means the DRAM and all chips 
and circuits on the SIMM.) For the purpose of this 
description, the system will be described as it is used 
with a CPU capable of generating parity bits for the 
databytes that it writes and also reading and comparing 
parity information read from storage, The CPU and its 
associated system will not have error correction code 
logic contained within the CPU system. 
As can be seen in FIG. 1, there is provided a CPU 10 

which is connected to a CPU or system bus 12. A parity 
generation and check unit 13 preferably is provided 
which also generates or checks parity of data being 
either written by or read by the CPU 10 to or from the 
bus 12. However, generation of parity bits is not essen 
tial to the functioning of this invention. The CPU bus 12 
may also have local I/O ports 14, CACHE memory 16, 
and firmware subsystems 18 associated therewith. A 
memory controller 20 is also connected to the system 
bus 12, coupling it to a memory subsystem 22, and also 
normally to an expansion bus 24 if one is present. The 
memory subsystem 22 is typically comprised of one or 
more SIMMs 26, each of which is provided with 
DRAM chips and ASIC chips having error correction 
code. It is to be understood that the system just de 
scribed is illustrative of systems on which the present 
invention can be used since one feature or aspect of the 
present invention is the provision of a SIMM card hav 
ing ECC which can be utilized on virtually any system 
CPU and system having the capacity of receiving non 
ECC SIMMs as add-on memory. 
As indicated above, the CPU 10 is capable of writing 

data onto the bus 12 which in turn will be conveyed to 
the correct memory address in subsystem 22 by the 
memory controller 20. Upon writing data by the CPU 
10, parity bits are generated for each byte of informa 
tion written to memory by the parity generating and 
checking device 13 which also checks parity on infor 
mation read from the memory subsystem 22 during a 
read cycle to determine parity error. The memory con 
troller also provides the necessary signals, such as Row 
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4 
Activation Strobe (RAS), Column Activation Strobe 
(CAS), Write Enable (WE), and on some systems Out 
put Enable (OE), and Byte Select (BS), etc., to the 
memory subsystem 22. The memory controller reads 
and writes both data and parity to each of the SIMMs 
26, also as shown in FIG. 2. It should be understood 
that this invention is applicable to a wide variety of 
SIMMs having many different form factors. For exam 
ple, it can be used in conjunction with the following 
SIMM forms: 72 pin x 32; 72 pinx 36; 168 pin x 64; 168 
pin x 72; 88 pin DRAM card; 68 pin DRAM card; 68 
pin PCMCIA card, and 72 pin small outline DRAM 
card. 
The error correction code logic includes logic which 

will check the parity bits written by the CPU on a 
“write' cycle and manipulate the check bits if bad par 
ity is detected to show bad parity when read. The logic 
will also regenerate parity bits for each byte fetched on 
a read cycle. 

Referring now to FIG. 2, a 72 pin SIMM 26 con 
structed according to this invention is shown. The 
SIMM26 has a plurality of DRAMs 28a–28l. These are 
conventional 1MX4 DRAM chips which are commer 
cially available. The 1MX4 DRAMs have 4 data I/O 
pins (DQ 1-4) and 220 addresses. Thus, each series of 3 
DRAM chips can receive 12 data bits, i.e., 28a, 28b, 28c 
can each receive a 4-bit wide data field, and thus to 
gether have a 12-bit wide bus. DRAM 28d, 28e and 28f 
also each are 1MX4 and together form a 12-bit wide 
data bus. The same is true for DRAMs 28g-28i, and 
DRAM28j-28l. These type of DRAMs used on SIMMs 
are conventional for add-on memory modules and need 
not be described further. Other DRAMs such as 
256KX4; 4MX4; 16MX4, etc., can also be used. If 
desired, the DRAMs can be formed in a stacked config 
uration as shown in dotted lines, thus having a second 
DRAM chip 30a-301, each stacked respectively on the 
corresponding DRAM chip 28a-28l. This configuration 
as shown in dotted lines does in fact provide a more 
dense memory if desired. 
Also provided on the SIMM are 4 ASIC (application 

specific integrated circuit) chips 32a, 32b, 32c and 32d. 
As can be seen in FIG. 2, various lines coming from the 
memory controller 20 bring the various signals such as 
RAS, CAS and WE. Also, a bus between the SIMM28 
and the memory controller 20 provides for interchange 
of data between the SIMM 26 and CPU 10. In this 
particular format, a 36-bit wide bus is used which deliv 
ers 8 data bits and 1 parity bit to each ASIC chip 32a, 
32b, 32c and 32d. The ASIC chips 32a-32d provide, 
among other things, the logic needed to perform the 
read and write functions of the data to the DRAMs 
26a-26l, and in so doing generate check bits, the check 
bits being generated such that there are 4 check bits 
generated for each byte of data. Each data byte (8bits) 
together with the generated 4 check bits from the ASIC 
chip 32a are stored in DRAMs 28a, 28b and 28c, four 
bits in each DRAM for a total of 12 bits, i.e., a single 
byte plus 4 check bits. The same is true for ASIC chips 
32b, 32c and 32d with respect to DRAM 28d-28f, 
28g-28i, and 28j-281, respectively. Thus, it will be ap 
preciated that the arrangement and configuration of the 
SIMM 26 as shown allows a 4-byte data word to be 
written and the ECC check bits generated individually 
for each byte and each byte with its associated check 
bits stand individually. Therefore, if during any write 
cycle less than the entire four byte data word is being 
written or rewritten, this can be done without doing a 
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read-modify-write cycle which would be required if all 
of the data bytes participated in writing all of the check 
bits such as is common in the 32/7 algorithm. Hence, a 
wait state need not be programmed into the computer 
system, including the processor or memory controller, 
but rather during each write operation check bits are 
generated, and during each read operation check bits 
are regenerated as syndrome bits and error correction 
made on each byte individually on each read operation. 
The logic and generation of the bits will be described 

with respect to the ASIC chip 32a, in combination with 
the DRAM chips 28a, 28b and 28c. It is to be under 
stood that the same operations take place with respect 
to the ASIC chip 32b and the DRAMs 28d, 28e and 28f. 
ASIC chip 32c in combination with DRAMs 28g, 28h 
and 28i, and ASIC chip 32d in combination with 
DRAMs, 28i, 28k and 28l. Thus, each ASIC receives 8 
bits of data plus 1 parity bit on the 36-bit bus, and in 
cluded in the logic of each ASIC chip 32 the circuitry 
generates 4 check bits from the 8 data bits supplied 
thereto with the check bits being generated specifically 
with the data bits only of 1 byte of data. 
The circuitry for generating check bits is shown in 

FIG. 3. The data bits DQ0 through DQ7 and parity bit 
PQ8 are received by ASIC chip 32a. The ASIC chip 32 
checks parity, and the data bits DQ0-DQ7 are supplied 
to a check bit generator 34a which generates 4 check 
bits. The handling of parity will be discussed presently. 
The check bits are supplied together with the 8 memory 
data bits to a 12-bit bus line 36a, and the data bits are 
then stored in the DRAMs 28a, 28b, 28c. As indicated 
above, each DRAM is MX4 So that 4 of the data bits 
are stored in DRAM 28a, 4 data bits are stored in 
DRAM 28b and the 4 check bits in DRAM 28c. The 
error correction algorithm is shown in Table I below. In 
this table, the data bits which participate in generating 
each check bit are shown and marked with an 'X'. 

TABLE I 
Data Bit 7 6 5 4 3 2 1 O 

Check Bit O X X X X X 
Check Bit 1 X X X X X 
Check Bit 2 X X X X 
Check Bit 3 X X X X 

The handling of the parity is as follows: since the 
ECC does not store a parity bit perse, each access must 
handle parity bit generation on the fly. For read opera 
tions, the parity bit is generated from the 8 data bits and 
is not affected by the check bits unless an error occurs 
in which case bad parity is flagged to the CPU. On a 
write operation, parity is checked on each byte, every 
single write cycle. The reason for this can be under 
stood by comparing the ECC parity bit handling ac 
cording to this invention with a typical X36 SIMM's 
parity handling. In a typical X36 SIMM, the parity bit 
is just another "data” bit and, if bad parity is sent on a 
store operation, it will remain in memory as bad parity. 
On any subsequent read of that data, bad parity will be 
presented to the system and recognized. In the ECC, 
the parity bit is not used at all to generate the check bits 
and is not stored. Therefore, if parity were not distinctly 
checked and accounted for, a write with bad parity 
would be stored in memory with correctly generated 
check bits for the incorrect data pattern. Then, the 
subsequent access of that data would see a new parity 
bit generated and the data would be sent back to the 
system with correct parity on incorrect data. The effect 
is to change a detectable error into an undetectable one. 
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6 
Since this is clearly not a desirable effect, the parity is 
checked on every write and if an error is detected, the 
check bits are manipulated such that on the subsequent 
read of that data, an uncorrectable error syndrome is 
generated and bad parity is guaranteed to be sent back 
to the System, regaining the data integrity that is re 
quired. The manipulation of the check bits in the pre 
ferred embodiment is to "flip' each check bit to its 
inverted logic state. As will be seen presently, this will 
have the effect of causing the subsequently generated 
syndrome bits to show an uncorrectable error. 
The timing for generating and storing the check bits 

together with the data bits is crucial and can best be 
understood by reference to the timing diagram shown in 
FIG. 4. In FIG. 4, the timing diagram shows the RAS, 
CAS, W/R to SIMM, W/R DRAM, OE, the system 
data to SIMM and system data and check bits to the 
DRAMs. W/R to SIMM is the signal from the memory 
controller to the SIMM and the W/R to DRAM is the 
"late' write enable signal to the DRAM. In order for 
the error correction code to operate within a single 
write operation cycle of the SIMM without requiring 
wait states and to be able to read the check bits, gener 
ate syndrome bits and correct data, it is necessary that 
the DRAMs 28a-28l operate at a faster speed than the 
operating speed of the SIMM itself. SIMM architecture 
standards are, in general, governed by JEDEC (Joint 
Electronic Device Engineering Council) standards. 
Industry standards for timing are based on the JEDEC 
architecture standards. According to one conventional 
industry standard, either a read operation or a write 
operation based on the timing of the signals must be 
completed within 70 nanoseconds. However, the 
JEDEC industry standards do not presuppose error 
correction taking place, and thus in order to stay within 
this parameter, it is necessary to perform the error cor 
rection function within the time limit normally allo 
cated to merely read and write and perhaps check par 
ity. To accomplish this, DRAM chips are selected 
which have a faster operating speed than the speed of 
the SIMM by at least about 10 nanoseconds. Thus, for a 
SIMM which has an operating time or parameter of 70 
nanoseconds for a read operation or write operation, 
the DRAM must operate at about 60 nanoseconds or 
faster. 

Referring now to FIG. 4, after RAS goes low fol 
lowed by the W/R to SIMM going low when CAS 
goes low valid data will appear on the bus from the 
memory controller 20 to memory subsystem 22. To 
assure a read cycle does not occur, the OE signal from 
ASIC chip 32a is used to tristate the DRAM I/O's 
before the W/R to SIMM goes low. However, this data 
cannot be latched into memory until the check bits are 
generated, which requires a certain finite amount of 
time. Thus, to this end, as indicated above, the late write 
cycle on the DRAM is used. This is done by maintain 
ing the W/R to DRAM line high for about 10 nanosec 
onds after CAS has gone low. During this 10 nanosec 
onds, check bits are being written. At the end of these 
10 nanoseconds when the W/R to DRAM goes low, 
both the data bits and the check bits are latched into 
DRAMs 28a, 28b, 28c as indicated before. This is shown 
in the system data-to-SIMM and system data-to-DRAM 
lines wherein it is shown that valid data write takes 
place when the CAS goes low, but the valid data and 
check bits do not appear until the write to DRAM line 
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has gone low. These data bits and check bits are latched 
in DRAMs 28a–28c. 
The logic to perform this and to manipulate the check 

bits for bad parity is shown in FIG. 5, wherein the W/R 
to SIMM line and the CAS lines are shown going to a 
latch 40. The output from the latch 40 is supplied as a 
--write latched together with CAS to an AND gate 42, 
the output of which is supplied to a delay block 44 and 
thence to a driver 46 the output of which is the delayed 
write to DRAM. Also, inputs to the AND gate are a 
--not CBR (CAS before RAS) and also a -- CAS input. 
The --write latched with CAS is also supplied to a 
second driver 48 so as to provide an OE signal to the 
DRAM. 
The reason for and functioning of this circuit are as 

follows. Typically, the W/R to SIMM must be valid 
and often only is valid before CAS falls and then held 
for about a maximum of 15 ns after CAS falls. A straight 
delay on W/R to SIMM would not be wide enough to 
write data. Hence, this is written to the latch 40, and 
when CAS falls, the latch samples the signal on W/R to 
SIMM line. The latch 40 maintains the data valid as 
long as CAS stays low. 
The latch 40 is transparent, so what is impressed on 

the input of the latch 40 appears at the output which is 
a write enable as CAS goes low, and will stay as an 
output as long as CAS is low. In this state, the data 
flows through the latch 40 and thus the need for the 
delay. The AND gate 42 operates to block signals be 
fore CAS becomes active. The delay block 44 provides 
the necessary time to generate the check bits before the 
data is latched into memory. The time of delay is less 
than 20 ns, typically 7-9 ns. The --CAS and not CBR 
(CAS before RAS) signals are impressed on the input of 
the AND gate 42 so that data will not be written on a 
refresh cycle if CAS is low during a refresh mode done 
as CBR. Thus, by utilizing the late write function of the 
DRAMs together with a DRAM that is faster than the 
speed of the SIMM, an 8-bit data byte can be written 
and check bits generated in the normal write operation 
of the SIMM. 
The data when read on a read operation goes through 

logic which generates new check bits, compares the 
newly-generated check bits with the stored check bits 
and then writes a syndrome table which is the well 
known manner of error correction of single-bit errors 
and detection of some multi-bit errors. This also has to 
be done within the time standard set for the SIMM card. 
Once again, there is a need for the fast DRAM, the 
DRAM being at least 10 nanoseconds faster than the 
SIMM. The circuitry for the error correction code is 
shown in FIG. 7 wherein the 8 bits of memory data 
constituting a data byte are read from memory to a 
corrector 50. At the same time, the 4 stored check bits 
that have been stored with the 8bits of data memory are 
impressed on a comparator 52. The 8 memory data bits 
are also impressed on a check bit generator 54 which 
regenerates the check bits based on the stored 8 bits of 
data. These regenerated check bits are also supplied to 
the comparator 52 where the originally-generated and 
stored check bits are compared with the newly 
generated check bits to generate syndrome bits. The 
syndrome bit table and the errors which they indicate 
are shown in Table II below. 
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8 
TABLE I 

Action 
Syndrome Toggle Toggle Error 

3210 Bit in Error Data Parity Output 

0000 None N N N 
0001 Check Bit O N N Y 
O010 Check Bit 1. N N Y 
0.011 Data Bit 0 Y Y Y 
01.00 CheckBit 2 N N Y 
01.01 Data Bit 1 Y Y Y 
010 Data Bit 2 Y Y Y 
011 Data Bit 3 Y Y Y 
1000 Check Bit 3 N N Y 
001 Data Bit 4 Y Y Y 
1010 Data Bit 5 Y Y Y 
1011 Data Bit 6 Y Y Y 
1100 Data Bit 7 Y Y Y 
101 Multi Bit N /y Y 

Error 
110 Multi Bit N Y Y 

Error 
1111 Multi Bit N Y Y 

Error 

The syndrome bits are generated by XORing each 
newly-generated check bit with the comparable stored 
check bit If they are all "0's, the syndrome bits as 
shown in the table will be 0000, which will indicate that 
there is no error. Single bit errors will show up as vari 
ous syndrome bit patterns. It will be noted that all sin 
gle-bit errors can be detected and hence corrected. 
Certain multi-bit errors can be detected which are 
shown in the syndrome table as syndrome 1101, 1110 
and 1111. These all indicate multi-bit, and hence uncor 
rectable, errors. (It should be noted that if desired a 4-bit 
ECC code for a single byte can be used to detect all two 
bit errors but not correct them-but it cannot both 
correct all single bit errors and detect all two bit errors.) 
With respect to the parity handling, if a parity error on 
the write cycle was detected, then the check bits gener 
ated were all “flipped.” Hence, in this case, when the 
check bits are regenerated, and not “flipped' during a 
read cycle the XORing will cause a syndrome bit pat 
tern of "1111" indicating an uncorrectable error. The 
syndrome bits are impressed on the corrector 50 and if 
any bit needs to be corrected because of a single-bit 
error, that particular bit is "flipped'. The corrected 
data is delivered out as system data in 8 bits out to the 
system bus. The signal diagram for this is shown in FIG. 
6. When the RAS goes low followed by CAS going low 
and the W/R to SIMM being high, data is read from the 
DRAMs and because it can be read in 60 nanoseconds 
as shown on the RAS line, there is an additional 10 
nanoseconds available for the generation of the addi 
tional check bits, the generation of the syndrome bits 
and error correction which is shown as the 10 nanosec 
ond delay. After the specified CAS access time (TCAS), 
the data at the SIMM can be latched as corrected data 
and impressed on the bus to the memory controller 20. 
Thus it can be seen that by providing DRAMs which 

can operate faster than the operation cycle time of the 
SIMM according the JEDEC or whatever other stan 
dard to which it has been manufactured, error correc 
tion can be performed on each byte of data indepen 
dently. Hence, such a SIMM can be utilized in a wide 
variety of computer systems which do not have the wait 
states necessary to perform read-modify-write opera 
tions and which write multi-byte data words and which 
allows error correction to take place on the add-on 
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SIMM even when the computer system is not config 
ured to include error correction. 

Again, it should be noted that the present invention is 
not limited to the particular SIMM as shown and de 
scribed, but is applicable to SIMMs have various form 
factors. All that is required is that the DRAM on the 
SIMM be able to operate at least about 10 nanoseconds 
faster than the operating time of a read or write opera 
tion of the SIMM. The error correction function thus 
can be afforded to any system which writes one or more 
data bytes irrespective of the width or number of bytes 
in a data word. Of course, there is some penalty for 
utilizing 4 bits of error correction for each 8 bits of a 
data word; i.e., there is a somewhat increased amount of 
storage space necessary as opposed to utilizing a 32/7 or 
64/8 algorithm of generating check bits. However, the 
advantage is that these SIMMs can be used in many 
systems, including those which do not have the neces 
sary wait states for a read-modify-write and thus has 
wide applicability in retrofitting systems which do not 
have error correction code on board. 

Also, it is to be understood that the invention can be 
performed generating more than 4 check bits; e.g., 5 
check bits. In such a case, more types of errors can be 
detected and/or corrected. This would require addi 
tional memory space and logic for each check bit which 
could be supplied by additional x1 DRAMs. At least 4 
check bits are necessary to correct all single bit errors. 

Accordingly, the preferred embodiment of the pres 
ent invention has been described. With the foregoing 
description in mind, however, it is understood that this 
description is made only by way of example, that the 
invention is not limited to the particular embodiments 
described herein, and that various rearrangements, 
modifications, and substitutions may be implemented 
without departing from the true spirit of the invention 
as hereinafter claimed. 
What is claimed is: 
1. A SIMM memory adapted to be added as add-on 

memory to a computer system, which system writes 
eight-bit bytes of data together with a parity bit and said 
SIMM provides error correction and parity check for 
said data; and wherein said SIMM is configured to 
operate at a given speed for read and write operations, 
comprising: 

logic to generate at least four check bits from the 
eight bits of each data byte written; logic to gener 
ate parity bits and compare the generated parity 
bits with the system parity bits and manipulate the 
check bits to show uncorrectable error when bad 
parity is detected; DRAM chips to store said gen 
erated four check bits with each data byte in said 
DRAM chips without introducing a wait state; 

logic to read each data byte and associated check bits 
from the DRAM and generate new check bits and 
compare the newly-generated check bits with the 
stored checkbits to correct and output all single-bit 
errors and detect some multi-bit errors and bad 
parity in the read data, 

said DRAM chips being selected to operate at a speed 
of at least about 10 nanoseconds faster than the 
speed of operation of the SIMM; and said DRAM 
chip including logic to provide a late write func 
tion to the DRAM. 

2. The invention as defined in claim 1 wherein said 
check bits are manipulated by having at least one gener 
ated check bit inverted responsive to bad parity written 
by the SIMM on the write operation. 
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3. The invention as defined in claim 2 wherein said 

check bits are manipulated by having a plurality of 
check bits manipulated responsive to bad parity. 

4. The invention as defined in claim 2 wherein said 
check bits are manipulated by having all check bits 
inverted responsive to bad parity. 

5. A computer system comprising: 
a CPU and a bus having a SIMM memory added as 

add-on memory to said computer system, said com 
puter system configured to write eight bit bytes of 
data together with a parity bit, said SIMM includ 
ing error correction and parity check for said data; 
said SIMM being configured to operate at a given 
speed for read and write operations, 

said SIMM including: 
logic to generate at least four check bits from the 

eight bits of each data byte written; logic to gener 
ate parity bits and compare the generated parity 
bits with the system parity bits and manipulate the 
check bits to show uncorrectable error when bad 
parity is detected; DRAM chips to store said gen 
erated four check bits with each data byte in said 
SIMM without introducing a wait state; 

logic to read each data byte and associated check bits 
from the DRAM and generate new check bits and 
compare the newly-generated check bits with the 
stored check bits to correct and output all single-bit 
errors and detect some multi-bit errors and bad 
parity in the read data and supply said corrected 
data to the system bus, 

said DRAM chips being selected to operate at a speed 
of at least about 10 nanoseconds faster than the 
speed of operation of the SIMM; and said DRAM 
chip including logic to provide a late write func 
tion to the DRAM. 

6. The invention as defined in claim 5 wherein said 
check bits are manipulated by having at least one gener 
ated check bit inverted responsive to bad parity. 

7. The invention as defined in claim 6 wherein said 
check bits are manipulated by having a plurality of 
check bits manipulated responsive to bad parity. 

8. The invention as defined in claim 6 wherein said 
check bits are manipulated by having all check bits 
inverted responsive to bad parity. 

9. A method of providing error correction and parity 
check on SIMM memory added as add-on memory to a 
computer system which system writes eight-bit bytes of 
data together with a parity bit; and wherein said SIMM 
is configured to operate at a given speed for read and 
write operations, comprising the steps of: 

generating on said SIMM at least four check bits from 
the eight bits of each data byte written and a parity 
bit, comparing the parity of the generated parity bit 
with the system parity bit and manipulating said 
check bits to show uncorrectable error responsive 
to bad parity; storing said generated four check bits 
with each data byte in DRAMs on said SIMM 
without introducing a wait state in the computer 
system; 

reading each data byte and associated check bits from 
the DRAM and generating new check bits and 
comparing the newly-generated check bits with the 
stored check bits to correct and output all single-bit 
errors and detect some multi-bit errors and bad 
parity in the read data; 

selecting said DRAM chips to operate at a speed of at 
least about 10 nanoseconds faster than the speed of 
operation of the SIMM; said method including 
delaying the write function to the DRAM after 
valid data appears for a time sufficient to generate 
said check bits. 

2. k 


