
United States Patent (19)
Bealkowski et al.

54 APPARATUS AND METHOD FOR LOADING
BIOS FROMA DISKETTE IN A PERSONAL
COMPUTER SYSTEM

75) Inventors: Richard Bealkowski, Delray Beach;
John W. Blackledge, Jr., Boca Raton;
Doyle S. Cronk, Boca Raton; Richard
A. Dayan, Boca Raton; Scott G.
Kinnear, Boca Raton; George D.
Kovach, Boca Raton, all of Fla.;
Matthew S. Palka, Jr., Raleigh, N.C.;
Robert Sachsenmaier, Boca Raton,
Fla.; Kevin M. Zyvoloski, Raleigh,
N.C.
International Business Machines
Corp., Armonk, N.Y.

21 Appl. No.: 609,043
(22 Filed: Nov. 2, 1990

73 Assignee:

Related U.S. Application Data
63 Continuation-in-part of Ser. No. 399,631, Aug. 25,

1989, abandoned.
51) int. Cl. .. G06F 9/06
52 U.S. Cl. 395/700; 340/825.31;

340/825.34
58) Field of Search 364/200, 900;

340/825.31, 825.34; 395/650, 700
56) References Cited

U.S. PATENT DOCUMENTS

3,931,504 1/1976 Jacoby 235/153
3,996,449 12/1976 Attanasio 235/61
4,446,519 5/1984 Thomas 364/300
4,478,094 10/1984 Salomaa et al. .
4,491,914 1/1985 Sujaku 364/200
4,525,599 6/1985 Curran 178/22.08
4,562,306 12/1985 Chou 178/22,08
4,577,289 3/1986 Comerford.
4,593,353 6/1986 Pickholtz ...
4,685,055 8/1987 Thomas......
4,685,056 8/1987 Barnsdale
4,688,169 8/1987 Joshi.......

||||||||||||||
US005410699A

11 Patent Number:
45 Date of Patent:

5,410,699
Apr. 25, 1995

4,794,085 12/1988 Jessop et al. .
4,796,220 1/1989 Wolfe 364/900
4,817,140 3/1989 Chandra 380/4
5,022,077 6/1991 Bealkowski et al. 380/4

FOREIGN PATENT DOCUMENTS

0169071 1/1986 European Pat. Off. .
0341438 11/1989 European Pat. Off. .

WO91/16675 10/1991 WIPO .

OTHER PUBLICATIONS

Japanese Pupa 61-199127-and Translation-"Micropro
gram Storing System'Mar. 1, 1985.
Japanese Pupa 62-162140-and Translation-"Computer
System' Jan. 13, 1986.
Japanese Pupa 63-254529-and Translation-"Micropro
gram Controlling Type Data Processing System” Apr.
10, 1987.
Japanese Pupa 63-126056–and Translation -"Terminal
Unit Control System' Nov. 14, 1986.
IBM Technical Disclosure Bulletin, vol. 21, No. 2, Jul.,
1978 "Preventing Unauthorized Access to Diskette
Loaded Microcode'.
IBM Application System/400 System Support Diag
nostic Aids (vol. 1), 1988.
IBM Enterprise Systems Architecture/370-Principles
of Operation, 1988.
“Journal of Clinical Immunoassay', vol. 14, No. 2,
Summer 1991.

Primary Examiner-Thomas G. Black
Assistant Examiner-Peter Y. Wang
Attorney, Agent, or Firm-Robert S. Babayi
57 ABSTRACT
An apparatus and method for loading BIOS from a
diskette drive into a personal computer system normally
connected to a hardfille, such as a fixed disk. The per
sonal computer system further includes a system pro
cessor, a random access main memory, a read only
memory and a switching means. The switching means
generates a signal to indicate a mode for whether BIOS
loads from either diskette or disk. In a priority mode,
BIOS loads immediately from diskette. In a recovery

E. A. E. m 3% mode, BIOS loads from diskette after testing the disk
4,757,534 7/1988 Matyas 380/25 subsystem.
4,780,833 10/1988 Atake .
4,785,361 11/1988 Brotby 360/60 32 Claims, 10 Drawing Sheets

IoWERW.W

STAGE Postics taxatae FROM
ATRWANRANSESCONTROL

Sheet 1 of 10 5,410,699

FIG. 1

Apr. 25, 1995 U.S. Patent

* ——, No.vº

Sheet 2 of 10 5,410,699 Apr. 25, 1995 U.S. Patent

§ --E+F

NV, 5)\/IC] wou 62

| | | | | | |

WVHS I "ILNO Sñ8HETTIOHINOO | | HETTIOHINOO* gs |
| %-- ;| |AHOWEWHETTIOHINOO || .| || ------------------------------##-----------------

U.S. Patent Apr. 25, 1995 Sheet 3 of 10 5,410,699

FIG.3
ROM-BIOS

POST STAGE 1

NTAL BIOS
LOAD ROUTINE

DIAGNOSTICPANEL

HARDWARE
COMPATIBILITY DATA

U.S. Patent Apr. 25, 1995 Sheet 4 of 10

FIG. 4
BLOVERVIEW

1OO

POST COLD START ENTRYPOINT

O2

STAGE 1 POST (ROM BASED) INITIALIZES
AND TESTSSYSTEM FUNCTIONS
NEEDED FOR BL FROMMEDIA

IBL ROM ROUTINE READS BOOT
RECORD FROM SELECTED MEDIA
TO RAMANDTRANSFERS CONTROL

106

BL BOOT RECORD READS
STAGE POST/BIOS 128KIMAGE FROM

MEDIATO RAMANDTRANSFERS CONTROL

108

POST WARMSTART ENTRYPOINT

11 O

STAGE POST (RAMBASED) INITIALIZES
AND TESS REST OF SYSTEM
NEEDED FOR PL SEQUENCE

112

NTIAL PROGRAMLOAD LOADS
OPERATING SYSTEM BOOT RECORD

FROMMEDIA ANDTRANSFERS CONTROL

114

OPERATING SYSTEM

5,410,699

U.S. Patent Apr. 25, 1995 Sheet 5 of 10 5,410,699

FIG. 5

122
MBR DENTIFIER

"ABC"

MASTER BOOT 12O
RECORDCODESEGMENT

124

126

128

130

132

MBR PATTERN

MBRVERSION DATE

SYSTEMPARTITION PTR

SYSTEM PARTITION TYPE

MBR CHECKSUM

COMPATIBLE PLANARDS
134

COMPATIBLE PROCESSOR 136
MODEL& SUBMODEL BYTES

MBR MAPLENGTH

MBR MEDIASECTOR SIZE

FIRSTBLOCKPOINTER

FIRST BLOCKLENGTH

SECOND BLOCKPOINTER

SECOND BLOCKENGTH
138

LAS BLOCKPOINTER

LAST BOCKLENGTH

U.S. Patent Apr. 25, 1995 Sheet 6 of 10 5,410,699

FIG. 6A
153

155
INTIALIZE YES
DISKETTE CONTAIN B

SUBSYSTEM MEDIA

150 No
NTAZE HARD FILE

152

DRIVEC
CONTAIN BL

MEDIA
OMPATIBLE

MBR RECORD

154
N . /
ERROR NVAD ERROR INCOM
DSKMASTER PATBLE MASTER SE
BOOT RECORD BOOT RECORD

U.S. Patent Apr. 25, 1995 Sheet 7 of 10 5,410,699

2OO

2O2

FIG. 6B
204

2O6 226

m 210

MEDIALOAD
ERROR 7 ERROR (AH=2)

DRIVECBLOAD FAILURE

NCREMENT LOAD
COUNT BY 1

222
LOAD
COUNT

BLD 8
CHECKSUM

YVALID

ERROR (AH=1)
BADDRIVE CIBLMEDIA

212

SET CARRY FLAG

214

CEAR CARRY FLAG

U.S. Patent Apr. 25, 1995 Sheet 8 of 10 5,410,699

230
GET DRIVE PARAMETERS

232
BLOAD LOCATION =

LAST3 SECTORS ON MEDIA FIG. 6C

234
READ THREESECTORS
ATIBLOAD LOCATION

MEDIALOAD ERROR (AL=2)
ERROR 7 DRIVE ABOAD FAILURE

ERROR (AL=1)
BAD ORVEABL RECORD

BLD 8
CHECKSUM
VAD 2

240

SET CARRYFLAG

242

CLEAR CARRY FLAG

U.S. Patent Apr. 25, 1995 Sheet 10 of 10 5,410,699

3OO 3O2
UNICRUE NO ERROR
PATTERN -

IN ROM NO PATTERNIN ROM

. ERROR

NCOMPATIBE BL
BOOT RECORD

MEDIA LOAD
ERROR 7

NO

COMPUTE CHECKSUM

ERROR BAD POSTIBIOS
CHECKSUM 316

<s 305
YES

320 322

SAVE SYSTEMPARTITION TRANSFERTO
TYPE AND PONTER STAGE POST

5,410,699
1.

APPARATUS AND METHOD FOR LOADING BOS
FROMA DSKETTE N APERSONAL COMPUTER

SYSTEM

This is a continuation-in-part of application Ser. No.
07/399,631 filed on Aug. 25, 1989, abandoned.
CROSS REFERENCE TO RELATED PATENT

APPLICATIONS
The present patent application is one of a group of

applications which concern the same overall computer
system but which individually claim different inventive
concepts embodied in such computer system. These
related patent applications were filed on the same date,
namely Aug. 25, 1989, are specifically incorporated by
reference herein, and are more particularly described as
follows:

(1) Application Ser. No. 07/398,865, now U.S. Pat.
No. 5,210,875, entitled "Initial BIOS Load for a Per
sonal Computer System', the inventors being Bealkow
ski et al.;

(2) Application Ser. No. 07/398,860, now U.S. Pat.
No. 5,136,713, entitled "An Apparatus and Method for
Decreasing the Memory Requirements for BIOS in a
Personal Computer System', the inventors being Bealk
owski et al.; and

(3) Application Ser. No. 07/398,820, now U.S. Pat.
No. 5,022,077, entitled "An Apparatus and Method for
Preventing Unauthorized Access to BIOS in a Personal
Computer System', the inventors being Bealkowski et
al.

FIELD OF THE INVENTION
This invention relates to personal computer systems

and in particular to a method and device for loading
BIOS from a diskette into a personal computer system.

BACKGROUND DISCUSSION

Personal computer systems in general and IBM per
sonal computers in particular have attained widespread
use for providing computer power to many segments of
today's modern society. Personal computer systems can
usually be defined as a desktop, floor standing, or por
table microcomputer that consists of a system unit hav
ing a single system processor, a display monitor, a key
board, one or more diskette drives, a fixed disk storage,
and an optional printer. One of the distinguishing char
acteristics of these systems is the use of a motherboard
or system planar to electrically connect these compo
nents together. These systems are designed primarily to
give independent computing power to a single user and
are inexpensively priced for purchase by individuals or
small businesses. Examples of such personal computer
systems are IBM's PERSONAL COMPUTER AT and
IBM's PERSONAL SYSTEM/2 Models 25, 30, 50, 60,
70 and 80.
These systems can be classified into two general fami

lies. The first family, usually referred to as Family I
Models, use a bus architecture exemplified by the IBM
PERSONAL COMPUTER AT and other 'IBM com
patible' machines. The second family, referred to as
Family II Models, use IBM's MICROCHANNEL bus
architecture exemplified by IBM's PERSONAL SYS
TEM/2 Models 50 through 80.

Beginning with the earliest personal computer system
of the family I models, such as the IBM Personal Com
puter, it was recognized that software compatibility

5

10

15

20

25

30

35

40

45

50

55

65

2
would be of utmost importance. In order to achieve this
goal, an insulation layer of system resident code, also
called “microcode', was established between the hard
ware and software. This code provided an operational
interface between a user's application program/operat
ing system to relieve the user of the concern about the
characteristics of hardware devices. Eventually, the
code developed into a BASIC input/output system
(BIOS), for allowing new devices to be added to the
system, while insulating the application program from
the peculiarities of the hardware. The importance of
BIOS was immediately evident because it freed a device
driver from depending on specific device hardware
characteristics while providing the device driver with
an intermediate interface to the device. Since BIOS was
an integral part of the system and controlled the move
ment of data in and out of the system processor, it was
resident on the system planar and was shipped to the
user in a read only memory (ROM). For example, BIOS
in the original IBM Personal Computer occupied 8K of
ROM resident on the planar board.
As new models of the personal computer family were

introduced, BIOS had to be updated and expanded to
include new hardware and I/O devices. As could be
expected, BIOS started to increase in memory size. For
example, with the introduction of the IBM PER
SONAL COMPUTERAT, BIOS grew to require 32K
bytes of ROM.

Today, with the development of new technology,
personal computer systems of the Family II models are
growing even more sophisticated and are being made
available to consumers more frequently. Since the tech
nology is rapidly changing and new I/O devices are
being added to the personal computer systems, modifi
cation to the BIOS has become a significant problem in
the development cycle of the personal computer sys
tem.
For instance, with the introduction of the IBM Per

sonal System/2 with Micro-Channel architecture, a
significantly new BIOS, known as advanced BIOS, or
ABIOS, was developed. However, to maintain software
compatibility, BIOS from the Family I models had to be
included in the Family II models. The Family I BIOS
became known as Compatibility BIOS or CBIOS.
However, as previously explained with respect to the
IBM PERSONAL COMPUTER AT, only 32K bytes
of ROM were resident on the planar board. Fortu
nately, the system could be expanded to 96K bytes of
ROM. Unfortunately, because of system constraints,
this turned out to be the maximum capacity available
for BIOS. Luckily, even with the addition of ABIOS,
ABIOS and CBIOS could still squeeze into 96K of
ROM. However, only a small percentage of the 96K
ROM area remained available for expansion. With the
addition of future I/O devices, CBIOS and ABIOS will
eventually run out of ROM space. Thus, new I/O tech
nology will not be able to be easily integrated within
CBIOS and ABIOS.
Due to these problems, plus the desire to make modi

fication in Family II BIOS as late as possible in the
development cycle, it became necessary to off-load
portions of BIOS from the ROM. To accomplish this,
portions of BIOS were stored and loaded from a fixed
disk. However, it quickly became evident that loading
only from a fixed disk had some limitations. Mainly, if
the disk became incapacitated, the system was unusable.
Also, updates to the system would lead to compatibility
problems between BIOS and the new system configura

5,410,699
3

tion. Therefore, a need exists for loading BIOS from a
direct access storage device other than the fixed disk.
Also it is highly desireable to provide a priority and
recovery mode for the diskette loaded BIOS. In the
priority mode, BIOS is loaded immediately from dis
kette. In the recovery mode, BIOS is loaded from dis
kette only after failing to load from disk.

SUMMARY OF THE INVENTION

The present invention has been developed for the
purpose of alleviating the above mentioned problems.
Accordingly, the invention has as one of its objects an
apparatus and method for storing and loading a portion
of BIOS from a diskette drive. Another objective of the
present invention is to provide an apparatus and method
for loading BIOS from a diskette drive in personal com
puter system which normally loads BIOS from a fixed
disk drive.
Yet another objective of the present invention is to

provide an apparatus and method which confirms the
compatibility between BIOS stored on the diskette
drive and the hardware configuration of the personal
computer system.
The personal computer system according to the pres

ent invention comprises a system processor, a random
access memory, a read only memory, a diskette drive, a
switching means and normally a disk drive. The read
only memory includes a first portion of BIOS which in
operation, initializes the system and detects the state of
the switching means electrically coupled to the system
processor. If the switching means is in a priority posi
tion, a master boot record is immediately loaded from
the diskette drive (priority mode) without testing for
the fixed disk drive. If the switching means is in a recov
ery position the first portion of BIOS attempts to load
the master boot record from the fixed disk. If the fixed
disk is not available, non-operational, or the master boot
record on the disk is invalid, the first portion of BIOS
reads in the master boot record from the diskette drive
(recovery mode).
Whether loaded from the fixed disk or diskette, the

master boot record includes a data segment and an
executable code segment. The data segment includes
data representing system hardware and a system config
uration which is compatible with the master boot re
cord. The first BIOS portion transfers control to the
executable code segment which confirms the master
boot record is compatible with the system hardware by
verifying that the data from the data segment of the
master boot record agrees with data stored in the read
only memory representing the system processor, system
planar, and planar I/O configuration.

If the master boot record is compatible with the sys
tem hardware, the executable code segment confirms
that the system configuration has not changed and loads
in the remaining BIOS portion from either the disk
drive, or the diskette drive into random access memory.
The executable code segment then verifies the authen
ticity of the remaining BIOS portion and vectors the
system processor to begin executing the remaining
BIOS now in random access memory. BIOS executing
in random access memory then boots up the operating
system to begin operation of the personal computer
system. The first portion of BIOS, being no longer
addressable and superseded by the remaining portion of
BIOS, is abandoned.
Broadly considered then, the apparatus and method

for loading BIOS from diskette media includes a signal

10

15

20

25

30

35

45

50

55

60

65

4
producing means, the first BIOS portion, the master
boot record, signal responding means, and the remain
ing portion of BIOS. The signal producing means, such
as the switching means, produces a signal representative
of the mode for diskette loading. The signal responding
means included within the first BiOS portion is respon
sive to the signal to determine if BIOS is loaded from
diskette. The first BIOS portion initializes the system
and then, if necessary, initializes the diskette to effect
the loading of the master boot record into random ac
cess memory. The master boot record includes execut
able code which is activated by the first BIOS portion
to effect the loading of the remaining portion of BIOS
into random access memory.
BRIEF DESCRIPTION OF THE DRAWINGS

The foreground aspects and other features of the
present invention are explained in the following written
description, taken in connection with the accompanying
drawings, wherein;

FIG. 1 illustrates a cut away view of a personal com
puter system showing a system planar board connected
to a plurality of direct access storage devices;
FIG.2 shows a system block diagram for the personal

computer system of FIG. 1;
FIG. 3 is a memory map for the ROM BIOS included

on the planar board;
FIG. 4 is a flowchart describing the overall process

for loading a BIOS image from a direct access storage
device;
FIG. 5 illustrates the record format for the master

boot record;
FIG. 6A is a flowchart describing the operation of

the IBL routine;
FIG. 6B is a flowchart showing the steps for loading

the master boot record from a fixed disk;
FIG. 6C is a flowchart showing the steps for loading

the master boat record from a diskette;
FIG. 6D is a flowchart showing greater detail in

checking the compatibility between the master boot
record and the planar/processor; and
FIG. 7 is a detailed flowchart showing the execution

of the master boot record to load the BIOS image from
a direct access storage device.

DESCRIPTION OF A PREFERRED
EMBODIMENT

The following detailed description is of the best pres
ently contemplated mode for carrying out the inven
tion. This description is not to be taken in a limiting
sense but is made merely for the purpose of illustrating
the general principles of the invention since the scope of
the invention is best defined by the appended claims.

Referring now to the drawings, and in particular to
FIG. 1, there is shown a cutaway version of a personal
computer system 10, having a plurality of DASD (Di
rect Access Storage Devices) 12-16 connected to a
system or planar board 24 through a plurality of I/O
slots 18. A power supply 22 provides electrical power
to the system 10 in a manner well known. The planar
board 24 includes a system processor which operates
under the control of an operating system to input, pro
cess, and output information.

In use, the personal computer system 10 is designed
primarily to give independent computing power to a
small group of users or a single user and is inexpensively
priced for purchase by individuals or small businesses.
In operation, the system processor operates under the

5,410,699
5

operating system, such as IBM's OS/2 Operating Sys
tem or DOS. This type of operating system includes a
BIOS (previously discussed and defined) interface be
tween the DASD 12-16 and the Operating System. A
portion of BIOS divided into modules by function is
stored in ROM on the planar 24 and hereinafter will be
referred to as ROM-BIOS. BIOS provides an interface
between the hardware and the operating system soft
ware to enable a programmer or user to program their
machines without an in depth operating knowledge of a
particular DASD. For example, a BIOS diskette mod
ule permits a programmer to program the diskette drive
without an indepth knowledge of the diskette drive
hardware. Thus, a number of diskette drives designed
and manufactured by different companies can be used in
the system. This not only lowers the cost of the system
10, but permits a user to choose from a number of dis
kette drives.

Prior to relating the above structure to the present
invention, a summary of the operation in general of the
personal computer system 10 may merit review. Refer
ring to FIG. 2, there is shown a block diagram of the
personal computer system 10. FIG. 2 illustrates compo
nents of the planar 24 and the connection of the planar
24 to the I/O slots 18 and other hardware of the per
sonal computer system. Located on the planar 24 is the
system processor 26 comprised of a microprocessor
which is connected by a local bus 28 to a memory con
troller 30 which is further connected to a random access
memory (RAM) 32. While any appropriate micro
processor can be used, one suitable microprocessor is
the 80386 which is sold by Intel.
While the present invention is described hereinafter

with particular reference to the system block diagram
of FIG. 2, it is to be understood at the outset of the
description which follows, it is contemplated that the
apparatus and methods in accordance with the present
invention may be used with other hardware configura
tions of the planar board. For example, the system pro
cessor could be an Intel 80286 or 80486 microprocessor.

Accessible by the processor is a planar identification
number (planar ID). The planar ID is unique to the
planar and identifies the type of planar being used. For
example, the planar ID can be hardwired to be read
through an I/O port of the system/processor 26 by
using switches.
The local bus 28 is further connected through a bus

controller 34 to a read only memory (ROM) 36 on the
planar 24.
An additional nonvolatile memory (NVRAM) 58 is

connected to the microprocessor 26 through a serial/-
parallel port interface 40 which is further connected to
bus controller 34. The nonvolatile memory can be
CMOS with battery backup to retain information when
ever power is removed from the system. Since the
ROM is normally resident on the planar, model and
submodel values stored in ROM are used to identify the
system processor and the system planar I/O configura
tion respectively. Thus these values will physically
identify the processor and planar I/O configuration.
The NVRAM is used to store system configuration
data. That is, the NVRAM will contain values which
describe the present configuration of the system. For
example, NVRAM contains information describing the
capacity of a fixed disk or diskette, the type of display,
the amount of memory, time, date, etc. Additionally,
the model and submodel values stored in ROM are
copied to NVRAM whenever a special configuration

10

15

20

25

30

35

45

50

55

65

6
program, such as SET CONFIGURATION, is exe
cuted. The purpose of the SET configuration program
is to store values characterizing the configuration of the
system in NVRAM. Thus for a system that is config
ured properly, the model and submodel values in
NVRAM will be equal respectively to the model and
submodel values stored in ROM. If these values are not
equal, this indicates that the configuration of the system
has been modified. Reference is made to FIG. 6D,
where this feature in combination with loading BIOS is
explained in greater detail.

Continuing, our discussion with reference to FIG. 2,
the bus controller 34 is further coupled to I/O slots 18,
a signal producing means such as switch 29, the serial/-
parallel interface 40 and peripheral controller 42 by an
I/O planar bus 43. The peripheral controller 42 is fur
ther connected to a keyboard connector 44, mouse
connector 46, diagnostic panel 47, and diskette control
ler 64. Beside the NVRAM 58, the serial/parallel inter
face 40 is further connected to a serial port 48 and paral
lel port 50 to input/output information to a printer, hard
copy device, etc. As is well known in the art, the local
bus 28 can also be connected to a cache controller 52, a
cache memory 68, a co-processor 54, and a DMA con
troller 56.
The signal producing means provides signals to the

processor 26 depending upon the position of the switch
29. For instance, the switch 29 is positioned to generate
a signal on line 33 for effecting a diskette recovery
mode in the system. Similarly, switch 29 is positioned to
generate a signal on line 35 for a diskette priority mode.
It is also understood that switch 29 can be replaced with
hardware jumpers for effecting signals online 33 or line
35. Additionally, as will be explained later, lines 33 and
35 can be combined into a single line for effecting a
special function of the priority and recovery modes. It is
also noted that switch 29 can be positioned so as not to
produce either signal on line 33 or line 35.
The system processor 26 controls its internal opera

tion as well as interfacing with other elements of the
personal computer system 10. For example, system
processor 26 is shown connected to a small computer
system interface (SCSI) I/O card 60 which is further
connected to a DASD, such as a fixed disk drive 62. It
is to be understood that other than a SCSI disk drive/a-
dapter can be used as a fixed diskin accordance with the
present invention. In addition to the fixed disk 62, the
system processor 26 can be interfaced to the diskette
controller 64 which controls a diskette drive 66. With
respect to terminology, it is also to be understood that
the term "hardfile' describes fixed disk drive 62 while
the term "floppy” also describes diskette drive 66.

Previous to the present invertion, ROM 36 could
include all of the BIOS code which interfaced the oper
ating system to the hardware peripherals. According to
one aspect of the present invention, however, ROM 36
is adapted to store only a portion of BIOS. This portion,
when executed by the system processor 26, inputs from
either the fixed disk 62 or diskette 66 a second or re
maining portion of BIOS, hereinafter also referred to as
a BIOS image. This BIOS image supersedes the first
BIOS portion and being an integral part of the system,
must be resident in main memory such as RAM. 32. The
first portion of BIOS (ROM-BIOS) as stored in ROM
36 will be explained generally with respect to FIGS.
3-4 and in detail with respect to FIGS. 6A-D. The
second portion of BIOS (BIOS image) will be explained
with respect to FIG. 5, and the loading of the BIOS

5,410,699
7

image with respect to FIG. 7. Another benefit from
loading a BIOS image from a DASD is the ability to
load BIOS directly into the system processor's RAM
32. Since accessing RAM is much faster than accessing
ROM, a significant improvement in the processing
speed of the computer system is achieved.
The explanation will now proceed to the operation of

the BIOS in ROM36 and to the operation of loading the
BIOS image from either the fixed disk or diskette to
succeed the first portion of BIOS. In general, ROM
BIOS prechecks the system and loads a BIOS master
boot record into RAM. The master boot record in
cludes a data segment having validation information
and a code segment having executable code. The exe
cutable code uses the data information to validate hard
ware compatibility and system configuration. After
testing for hardware compatibility and proper system
configuration, the executable code loads the BIOS
image into RAM. The BIOS image succeeds ROM
BIOS and loads the operating system to begin operation
of the machine. For purposes of clarity, the executable
code segment of the master boot record will be referred
to as MBR code while the data segment will be referred
to as MBR data.

Referring to FIG. 3 there is a memory map showing
the different code modules which comprise ROM
BIOS. ROM-BIOS includes a power on self test
(POST) stage I module 70, an Initial BIOS Load (IBL)
Routine module 72, a Diskette module 74, a hardfile
module 76, a video module 78, a diagnostic-panel mod
ule 80, and hardware compatibility data 82. Briefly,
POST Stage I 70 performs system pre-initialization and
tests. The IBL routine 72 determines whether the BIOS
image is to be loaded from disk or diskette, checks com
patibility and loads the master boot record. Diskette
module 74 provides input/output functions for a dis
kette drive. Hardfile module 76 controls I/O to a fixed
disk or the like. Video module 78 controls output func
tions to a video I/O controller which is further con
nected to a video display. Diagnostic panel module 80
provides control to a diagnostic display device for the
system. The hardware compatibility data 82 includes
such values as a system model and submodel values.
These values are described later with respect to FIG. 5.

Referring now to FIG. 4, there is shown a process
overview for loading a BIOS image into the system
from either the fixed disk or the diskette. When the
system is powered up or reset, the system processor is
vectored to the entry point of POST Stage I, step 100.
POST Stage I initializes the system and tests only those
system functions needed to load the BIOS image from
the selected DASD, step 102. In particular, POST
Stage I initializes the processor/planar functions, diag
nostic panel, memory subsystem, interrupt controllers,
timers, DMA subsystem, fixed disk BIOS routine
(Hardfile module 76), and diskette BIOS routine (Dis
kette module 74), if necessary.

After POST Stage I pre-initializes the system, POST
Stage I vectors the system processor to the Initial BIOS
Load (IBL) routine included in the Initial BIOS Load
module 72. The IBL routine first, selects the media (disk
or diskette) for loading the BIOS image; and second,
loads the master boot record from the selected media
into RAM, step 104. The master boot record includes
the MBR data and the MBR code. The MBR data is
used for verification purposes and the MBR code is
executed to load in the BIOS image. A detailed descrip

10

15

20

25

30

35

45

50

55

60

65

8
tion of the operation of the IBL routine is presented
with respect to FIGS. 6A-D.
With continuing reference to FIG. 4, after the IBL

routine loads the master boot record into RAM, the
system processor is vectored to the starting address of
the MBR code to begin execution, step 106. The MBR
code performs a series of validity tests to determine the
authenticity of the BIOS image and to verify the config
uration of the system. For a better understanding of the
operation of the MBR code, attention is directed to
FIG. 7 of the drawings wherein the MBR code is de
scribed in greater detail.
On the basis of these validity tests, the MBR code

loads the BIOS image into RAM and transfers control
to the newly loaded BIOS image in main memory, step
108. In particular, the BIOS image is loaded into the
RAM address space previously occupied by ROM
BIOS. That is if ROM BIOS is addressed from E0000H
through FFFFFH, then the BIOS image is loaded into
this RAM address space, thus superceding ROM-BIOS.
Control is then transferred to POST Stage II which is
included in the newly loaded BIOS image thus aban
doning ROM-BIOS. POST Stage II, now in RAM,
initializes and tests the remaining system in order to
load the operating system boot, step 110. After the
system is initialized and tested, Stage II POST transfers
control to the operating system boot to load the operat
ing system, steps 112-114.
For clarity, it is appropriate at this point to illustrate

a representation for the format of the master boot re
cord. Referring to FIG. 5, there is shown the master
boot record. The boot record includes the executable
code segment 120 and data segments 122-138. The
MBR code 120 includes DASD dependent code respon
sible for verifying the identity of the ROM-BIOS,
checking that the IBL boot record is compatible with
the system, verifying the system configuration, and
loading the BIOS image from the selected DASD (disk
or diskette). The data segments 122-138 include infor
mation used to define the media, identify and verify the
master boot record, locate the BIOS image, and load
the BIOS image.
The master boot record is identified by a boot record

signature 122. The boot record signature 122 can be a
unique bit pattern, such as a character string "ABC" in
the first three bytes of the record. The integrity of the
master boot record is tested by a checksum value 132
which is compared to a computed checksum value
when the boot record is loaded. The data segments
further include at least one compatible planar ID value
134, compatible model and submodel values 136. The
master boot record's planar ID value defines which
planar that the master boot record is valid for. Simi
larly, the master boot record's model and submodel
values define the processor and planar I/O configura
tion respectively that the master boot record is valid
for. It is noted that the boot record's signature and
checksum identify a valid master boot record, while the
boot record's planar ID, boot record's model and boot
record's submodel comparisons are used to identify a
boot record compatible with the system and to deter
mine if the system configuration is valid. Another value,
boot record pattern 124 is used to determine the validity
of the ROM-BIOS. The boot record pattern 124 is com
pared to a corresponding pattern value stored in ROM.
If the values match this indicates that a valid ROM
BIOS has initiated the load of a BIOS image from the
selected media.

5,410,699
9

The following description further describes in greater
detail each of the values in the master boot record and
their functions:
MBR Identifier (122): The first three bytes of the IBL
boot record can consist of characters, such as
“ABC'. This signature is used to identify a boot re
cord.

MBR Code Segment (120): This code verifies the com
patibility of the boot record with the planar and pro
cessor by comparing corresponding planar ID and
model/submodel values. If these values match, it will
load the BIOS image from the chosen media to sys
tem. RAM. If the system image (BIOS image loaded
into memory) checksum is valid and no media load
errors occur, the MBR code will transfer control to
the POST Stage II routine of the system image.

MBR Pattern (124): The first field of the IBL boot
record data segment contains a pattern, such as a
character string “ROM-BIOS 1989”. This string is
used to validate the ROM-BIOS by comparing the
Boot Pattern value to the corresponding value stored
in ROM (ROM-Pattern).

MBR Version Date (126): The master boot record in
cludes a version date for use by an update utility.

System Partition Pointer (128): The data segment con
tains a media pointer to the beginning of the media
system partition area for use by Stage II POST. On an
IBL diskette, the pointer is in track-head-sector for
mat; on disk the pointer is in Relative Block Address
(RBA) format.

System Partition Type (130): The system partition type
indicates the structure of the media system partition.
There are three types of system partition struc
tures-full, minimal and not present. The full system
partition contains the setup utility and diagnostics in
addition to the BIOS image and master boot record.
The minimal system partition contains just the BIOS
image and master boot record. It may occur where a
system does not have access to a hardfile having an
IBL image, in this circumstance the system partition
type indicates “not present'. In this instance, IBL
will occur from the diskette. These three system par
tition types allow flexibility in how much space the
system partition takes up on the media.

Checksum value (132): The MBR checksum value of
the data segment is initialized to generate a valid
checksum for the record length value (1.5k bytes) of
the master boot record code.

MBRPlanar IDValue (134): The data segment includes
a value, such as a string of words defining compatible
planar IDs. Each word is made up of a 16 bit planar
ID and the string is terminated by word value of zero.
If a system's planar ID matches the planar ID value in
the master boot record, such as one of the words in
the string, the IBL media image is compatible with
the system planar. If the system's planar ID does not
match any word in the string, the IBL media image is
not compatible with the system planar.

MBR model and submodel values (136): The data seg
ment includes values, such as a string of words defin
ing compatible processors. Each word is made up of
a model and submodel value and the string is termi
nated by a word value of zero. If a system's model
and submodel value (stored in ROM) match one of
the words in the string, the IBL media image is com
patible with the system processor. If the ROM model
and ROM submodel values do not match any word in

5

10

5

20

25

30

35

45

50

55

60

65

10
the string, the IBL media image is not compatible
with the system processor.

MBR Map length (138): The IBL map length is initial
ized to the number of media image blocks. In other
words, if the BIOS image is broken into four blocks,
the map length will be four indicating four block
pointer/length fields. Usually this length is set to one,
since the media image is one contiguous 128k block.

MBR Media Sector Size (138): This word value is ini
tialized to the media sector size in bytes per sector.

Media image block pointer (138): The media image
block pointer locates a system image block on the
media. Normally, there is only one pointer since the
media image is stored as one contiguous block. On an
IBL diskette, the pointers are in track-head-sector
format; on disk the pointers are relative block address
format.

Media image block length (138): The media image block
length indicates the size (in sectors) of the block lo
cated at the corresponding image block pointer. In
the case of a 128k contiguous media image, which
includes space for BASIC, this field is set to 256,
indicating that the BIOS image block takes up 256
sectors (512 bytes/sector) starting at the media image
block pointer location.
Referring now to FIGS. 6A-D, there is shown a

detailed flow chart of the operation of the IBL routine.
Under normal circumstances, the IBL routine loads the
master boot record from the system fixed disk into
RAM at a specific address and then vectors the system
processor to begin executing the code segment of the
master boot record. The IBL routine also contains pro
visions for a diskette priority mode and recovery mode
in which the master boot record is loaded from diskette.
In the priority mode, the master boot record is loaded
directly from diskette before attempting to load from
the fixed disk. The purpose of the priority mode is to
bypass the error checking procedure of the disk BIOS
load process. The diskette BIOS load process does not
include the validity checks that are used in the fixed
disk BIOS load process. This permits system updates to
be loaded from diskette into the system. For example, if
a new processor is added to the system, a new BIOS
image is required. Since a different processor will cause
a validity error when loading from fixed disk, the IBL
routine provides the ability to bypass these tests by
loading the BIOS image from diskette. Thus the new
BIOS image, included on diskette, can be given to the
user to update the BIOS image on the fixed disk.
The recovery mode permits the system to bypass

testing a password stored in NVRAM. The purpose of
the password is to prevent unauthorized loading from
diskette, however, a recovery mode is included within
the system to allow a customer engineer or the like to
load from diskette for diagnostic testing. It is noted that
the priority mode and recovery mode can be activated
by a single switch to accomplish the same results. In this
configuration, if the diskette media is not available dur
ing the priority mode, the user is given extra time (to the
recovery mode check) to insert the diskette to accom
plish a BIOS load from diskette. This appears to the
user as a priority mode load, but in actuality is a recov
ery mode operation. If the IBL routine is not able to
load the master boot record from either fixed disk or
diskette, an error message is generated and the system is
halted.

Referring now to FIG. 6A, the switching means is
tested to detect activation of the priority mode, step

5,410,699
11

151. If the priority mode is activated, the diskette sub
system is initialized, step 153. Assume for purposes of
illustration that the fixed disk is configured for Drive C
of the personal computer system. Similarly, assume
Drive A is designated as the diskette drive. The IBL
routine then examines Drive A to determine whether it
contains IBL media or not, step 155. Attention is di
rected to FIG. 6C which describes in detail this process.
If Drive A does not contain IBL media, the system
attempts to load IBL media from the fixed disk, step
150. Referring back to step 155, if Drive A does include
IBL media, the master boot record is loaded into RAM,
step 160.

Referring back to step 151, if the priority mode is not
activated, the fixed disk subsystem is initialized 150, and
the IBL routine then examines Drive C to determine
whether it contains IBL media, step 152. Attention is
directed to FIG. 6B which describes in detail this pro
cess. If Drive C does not contain IBL media, an error is
reported step 154.

Referring back to step 152, if Drive C does contain
IBL media, the IBL routine starts reading from the
fixed disk at the last three sectors and continues reading,
decrementing the media pointer, for 99 sectors or until
a valid master boot record is found. If a master boot
record is found, it is checked for system planar and
processor compatibility, step 156. If no master boot
record is found on the last 99 sectors of the fixed disk
(primary hardfile) or if it is not planar or processor
compatible, then an error is reported, step 158.

Referring back to step 156, if a master boot record is
found, a series of validity checks are performed to de
termine if the master boot record is compatible with the
computer system. Additionally, the configuration of the
system is checked. Attention is directed to FIG. 6D
which discloses this process in greater detail. If the boot
record is compatible with the planar ID, model and
submodel, and if furthermore the system configuration
has not changed the master boot record is loaded and
the code segment of the master boot record is executed,
step 160.

Referring back to steps 154 and 158, if an error occurs
in loading the master boot record from the fixed disk or
if a fixed disk is not available, the system determines
whether the recovery mode is activated, step 157. If the
recovery mode is activated a test for a valid password in
NVRAM 162 is bypassed and the diskette subsystem is
initialized, step 166. If the recovery mode is not acti
vated, the system determines if a valid password is in
cluded in NVRAM, step 162. This password determines
whether the BIOS image can be loaded from diskette by
an unauthorized user. Note that the password will only
exist in NVRAM when a user has installed it. If a pass
word is installed in NVRAM, all users are prevented
from loading the BIOS image from diskette, (other than
a customer engineer) step 164. This ensures the integrity
of the operation of the system by causing the system to
be loaded only with the correct configuration of the
BIOS image on the fixed disk. If a password exists, the
diskette subsystem can not be accessed and the system
halts, step 172. This password can be loaded into
NVRAM during system configuration, such as when
the SETUP program is executed. The password can
take the form of a string of characters stored in
NVRAM.

Referring back to step 162, if a valid password in
NVRAM is not present, thus allowing BIOS image to
be loaded from diskette, the IBL routine initializes the

10

15

20

25

30

35

45

50

55

60

65

12
diskette subsystem, step 166. The IBL routine then
determines if Drive A includes the IBL media on a
diskette, step 168. If Drive A does not include IBL
media, an error is generated to notify the user that an
invalid diskette has been inserted in the drive, step 170.
The system then halts, step 172. Attention is directed to
FIG. 6C for a more detailed discussion of step 168.

Referring back to step 168, after Drive A is checked
for IBL media, the master boot record is loaded into
RAM and the code segment included in the master boot
record is executed, step 160. It is important to note that
for diskette the IBL routine does not include the valid
ity checks that are used with the fixed disk system. As
stated before, the reason for the absence of the validity
checks is to allow future modifications in loading a new
IBL image from diskette.
To recapitulate, the priority mode is tested for first.

In the priority mode, if the diskette drive does not con
tain IBL media the system tests the fixed disk. If the
fixed disk includes IBL media, the master boot record is
checked for compatibility with the system through
matching the system planar ID and processor model/-
submodel values to the boot record values. For disk,
this check is done first in the IBL routine 72 and then
done again in the IBL boot record. The first check (in
the IBL routine) is done to make sure the boot record is
compatible with the system; the second check (in the
boot record) is done to ensure a compatible ROM.
passed control to the boot record. Notice that the check
done in the disk boot record will never fail for a com
patible ROM since the IBL routine will have already
checked the compatibility. In contrast, the compatibil
ity check is not done in the IBL routine for diskette.
The planar/processor compatibility is checked only
during diskette boot record execution. This method
allows future modifications in loading a new BIOS
image from a diskette. If the disk does not contain IBL
media, the recovery mode and/or password are tested.
If the recovery mode is activated or the password is
absent, IBL media is loaded from diskette. If the recov
ery mode is not activated and the password is present,
an error is generated and the system halts.

In view of the description of the IBL routine of FIG.
6A, the explanation will now proceed to a comprehen
sive and full understanding of the validity tests dis
cussed above. Referring to FIG. 6B, there is shown a
detailed flowchart of step 152 of FIG. 6A, to determine
if a valid master boot record is on drive C. The process
begins by obtaining the drive parameters to enable the
IBL routine to access drive C, step 200. An IBL load
location is set to the last three sectors from the disk (the
last three sectors normally contain the master boot re
cord), step 202. A load count indicating the number of
attempts to read a master boot record from disk is set to
1, step 204. Three sectors are read from disk at the IBL
load location, step 206. Any disk drive errors are de
tected and if a disk drive read error occurs it is reported,
steps 208-210. The process then returns with an error .
indication, steps 212-214.

Referring back to step 208, if no drive error occurs,
the disk record is scanned for the master boot record
signature, step 216. The boot record signature, such as
the characters "ABC', are compared to the first three
bytes of the disk record. If the disk record does have a
valid boot record signature (characters “ABC') and the
checksum computed from the disk record loaded into
memory equals the boot record checksum, the disk

5,410,699
13

record is indicated as being a valid boot record with no
errors, step 218. The process then returns, step 214.

Referring back to step 216, if the boot record signa
ture or checksum is invalid, the load count is incre
mented by 1, step 220. The load count is then compared
to a predetermined constant such as 99, step 222. If 99
attempts to read a boot record have resulted in failure,
an error is indicated and the process returns, steps 224,
212 and 214. If less than 99 attempts to read a boot
record have occurred, the IBL load location is decre
mented by one and three new sectors are read from the
new load location, steps 226 and 206. Thus if a valid
IBL boot record cannot be loaded from the last 99
sectors (equivalent to 33 copies) then an error condition
is set and control returns to the IBL routine.

Referring now to FIG. 6C, there is shown a detailed
flow diagram for loading the master boot record from
diskette on drive A. First, the diskette drive parameters
to access drive A are retrieved, step 230. The IBL load
location is set to the last 3 sectors on diskette (cylinder,
head and sector format), step 232. The last 3 sectors are
read, step 234. If a diskette drive error is detected, an
error is indicated, steps 236-238. An error condition is
set and control is returned to the IBL routine, steps
240-242.

Referring back to step 236, if no drive error is de
tected, the diskette record is checked for boot record
signature and the checksum is calculated, step 244. If
the boot record signature is missing or the checksum is
invalid, an erroris indicated and control returned to the
IBL routine, steps 244, 246, 240 and 242. If a valid boot
record signature and valid checksum are detected an
indication is set and control is returned to the IBL rou
tine, steps 248 and 242. It is noted that in a diskette load,
the IBL routine does not search through the media as in
the fixed disk load. Therefore, in a diskette load, the
IBL media must be stored in a specific location of the
diskette.

Finally, FIG. 6D shows how the IBL routines tests
for system planar and processor compatibility and for a
proper system configuration. The master boot record is
checked for compatibility with the system planar by
comparing the boot record planar ID value to the sys
templanar ID read by the system processor, step 260. If
the system planar ID does not match the boot record
planar ID value, this indicates this master boot record is
not compatible with this planar. An error is indicated
and control return to the IBL routine, steps 262, 264,
and 266.

If the master boot record is compatible with the pla
nar, the master boot record is checked for compatibility
with the processor, step 268. The boot record model
value and submodel value are compared to the model
value and submodel value stored in ROM respectively.
A mismatch indicates a new processor has probably
been inserted and this boot record is not compatible
with the new processor. An error is indicated and con
trol returned to the IBL routine, steps 270,264 and 266.
If the master boot record is compatible with the planar
and processor, the processor checks to determine if
NVRAM contains reliable information, step 272. If
NVRAM is unreliable, an error exists and control is
returned to the IBL routine, steps 274 and 266. If
NVRAM is reliable, the system configuration is
checked, step 276. A change in system configuration is
indicated if the model and submodel values stored in
NVRAM do not match the model and submodel values
stored in ROM. Note that this last comparison will only

10

15

14
indicate a configuration error. If a configuration erroris
indicated, an error is generated for the user. This error
notifies the user that the configuration of the system has
changed since the last time SET Configuration Pro
gram was run. The user is notified of the changed con
figuration and control passed back to the IBL routine
steps 278, 264, and 266. This error is not fatal itself, but
notifies the user that SET configuration (configuration
program) must be executed. Referring back to step 276,
if the system model/submodel values match, an indica
tion of compatibility is set and the routine returns, step
276, 274 and 266. Thus, the compatibility between the
master boot record and the system are tested along with
determining if the system configuration has been modi
fied. .

After the IBL routine loads the master boot record
into RAM, it transfers control to the MBR code starting
address. Referring to FIG. 7, the executable code seg
ment of the master boot record first verifies the boot
record pattern to the ROM pattern, step 300. If the
pattern in the master boot record does not match the
pattern in ROM, an error is generated and the system
halts, steps 302 and 305. The check for equality between
ROM and boot record patterns ensures that the master

25

30

35

45

50

55

60

65

boot record loaded from either the disk or diskette is
compatible with the ROM on the planar board. Refer
ring back to step 300, if the pattern in ROM matches the
pattern in the boot record, the MBR code compares the
system planar ID value, model and submodel value
against the corresponding master boot record values,
step 304. This process was discussed in greater detail
with respect to FIG. 6D. If the values don't match, the
master boot record is not compatible with the system
planar and processor, or the system configuration has
changed, and an error is generated, step 306. The sys
tem will halt when the IBL record is incompatible with
the planar, model, or submodel value, step 305.

Referring back to step 304, if the system planar ID
value, model and submodel values match the corre
sponding master boot record values, the MBR code
loads the BIOS image from the selected media into the
system RAM, step 308. If a media load error occurs in
reading the data, step 310, an error is generated and the
system halts, step 312 and 305. Referring back to step
310, if no media load error occurs, a checksum is calcu
lated for the BIOS image in memory, step 314. If the
checksum is invalid an erroris generated and the system
halts, step 318 and 305. Referring back to step 316, if the
checksum is valid, the system partition pointers are
saved, step 320, and the system processor is vectored to
POST Stage II to begin loading the system, step 322.
Thus, there has been shown a method and apparatus

for loading BIOS from a diskette drive in a personal
computer system normally having a fixed disk drive.
BIOS is loaded depending upon the position of a switch.
In a priority position, BIOS is loaded from diskette
before testing the fixed disk drive. In a recovery mode,
BIOS is loaded from diskette after testing the fixed disk
drive. In a default mode, BIOS is loaded after testing
the fixed disk and for the presence of a purposely set
password.
While the invention has been illustrated in connection

with a preferred embodiment, it should be understood
that many variations will occur to those of ordinary
skill in the art, and that the scope of the invention is
defined only by the claims appended hereto and equiva
lent.
We claim:

5,410,699
15

1. An apparatus for loading an operational interface
from diskette media included in a diskette drive for a
personal computer system normally connected to a
hardfile, the personal computer system having a system
processor, a read only memory, a random access mem
ory and the diskette drive, said apparatus comprising:
means for initializing the system with a first portion
of the operational interface resident in the read
only memory;

means for loading a master boot record saved on the
diskette media, said master boot record including
an executable code segment;

means for producing a signal, said signal being repre
sentative of loading the operational interface from
the diskette drive;

signal responding means being responsive to said
signal, said signal responding means determining if
the operational interface is to be loaded from the
diskette drive or hardfile, wherein if the opera
tional interface is to be loaded from the diskette
media, said first portion of the operational interface
initializes the diskette drive to effect the loading of
said master boot record into the random access
memory;

a remaining portion of the operational interface being
included in the diskette media, wherein said first
portion of the operational interface transfers con
trol to the executable code segment of the master
boot record in order to effect the loading of the
remaining portion of the operational interface into
the random access memory.

2. The apparatus of claim 1, wherein said signal pro
ducing means generates a priority signal, said priority
signal being representative of a mode wherein said mas
ter boot record and remaining portion of the opera
tional interface are loaded into random access memory
before attempting to access the hardfile.

3. The apparatus of claim 2, wherein said signal pro
ducing means generates a recovery signal, said recovery
signal being representative of a mode wherein said mas
ter boot record and remaining portion of the opera
tional interface are loaded into random access memory
after attempting to load the operational interface from
the hardfile.

4. The apparatus of claim 3, further including a non
volatile memory electrically coupled to the system pro
cessor, wherein in the absence of said priority signal and
said recovery signal said master boot record and said
remaining portion of the operational interface are
loaded into random access memory after attempting to
load the operational interface from the hardfile and
detecting the absence of a password normally included
in the nonvolatile memory.

5. The apparatus of claim 1, wherein said signal pro
ducing means comprises a switch electrically connected
to a system planar, said system planar being electrically
coupled to the system processor.

6. The apparatus of claim 5, wherein said switch
comprises a hardwired jumper resident on the system
planar.

7. The apparatus of claim 1, wherein the master boot
record further includes a data segment, the data seg
ment representing a hardware configuration of the per
sonal computer system which is compatible with said
master boot record, and further wherein the read only
memory includes data representing a hardware configu
ration of the system processor, wherein before said
remaining portion of the operational interface is loaded

10

15

20

25

30

35

45

50

55

60

65

16
into random access memory, said executable code seg
ment compares the hardware configuration data from
the master boot record with the hardware configuration
data from the read only memory to verify the master
boot record is compatible with the system processor.

8. The apparatus of claim 7, wherein the data segment
of the master boot record includes a value representing
the system planar which is compatible with the master
boot record and further wherein the system planar fur
ther includes a means for uniquely identifying the sys
templanar in order to verify that the master boot record
is compatible to the system planar.

9. The apparatus of claim 7, wherein the hardware
configuration data on the master boot record includes a
model value and a submodel value, wherein the model
value identifies a system processor which is compatible
with said master boot record and the submodel value
represent an I/O configuration of the system planar
which is compatible with the master boot record, and
further wherein said read only memory includes a cor
responding model value identifying the system proces
sor and submodel value representing the I/O configura
tion of the system planar, wherein said model value and
submodel value of the master boot record are compared
to the corresponding model and submodel values of the
read only memory respectively, in order to verify that
the master boot record is compatible with the system
processor and the I/O configuration of the system pla
12.

10. The apparatus of claim 1, wherein said master
boot record includes a predetermined character code in
order to distinguish the master boot record from other
records included on the diskette drive.

11. The apparatus of claim 1, wherein said signal
producing means generates a recovery signal, said re
covery signal being representative of a mode wherein
said master boot record and said remaining portion of
the operational interface are loaded into random access
memory after attempting to load the operational inter
face from the disk drive.

12. An apparatus for loading an operational interface
from diskette media included in a diskette drive for a
personal computer system normally connected to a
hardfile, the personal computer system further having a
system processor electrically coupled to a read only
memory, random access memory and nonvolatile mem
ory, said apparatus comprising:

a first portion of the operational interface resident in
the read only memory, said first portion of the
operational interface initializing the system and
determining if the hardfile is operational;

a master boot record included in the diskette media,
said master boot record including an executable
code segment;
password normally included in the nonvolatile
memory, wherein upon determining if the hardfile
is non-operational and said password is not de
tected, said first portion of the operational interface
initializes the diskette drive to read in said master
boot record; and

a remaining portion of the operational interface being
included in the diskette media, wherein the first
portion of the operational interface transfers con
trol to the executable code segment of the master
boot record in order to effect the loading of the
remaining portion of the operational interface into
the random access memory.

5,410,699
17

13. The apparatus of claim 12, wherein the master
boot record further includes a data segment, the data
segment representing a hardware configuration of the
personal computer system which is compatible with
said master boot record, and further wherein the read
only memory includes data representing a hardware
configuration of the system processor, wherein before
said remaining portion of the operational interface is
loaded into random access memory, said executable
code segment compares the hardware configuration
data from the master boot record with the hardware
configuration data from the read only memory to verify
the master boot record is compatible with the system
processor.

14. The apparatus of claim 13, wherein the data seg
ment of the master boot record includes a value repre
senting system planar which is compatible with the
master boot record and further wherein the system
planar further includes a means for uniquely identifying
the system planar in order to verify that the master boot
record is compatible to the system planar.

15. The apparatus of claim 13, wherein the hardware
configuration data on the master boot record includes a
model value and a submodel value, wherein the model
value identifies a system processor which is compatible
with said master boot record and the submodel value
represent an I/O configuration of the system planar
which is compatible with the master boot record, and
further wherein said read only memory includes a cor
responding model value identifying the system proces
sor and submodel value representing the I/O configura
tion of the system planar, wherein said model value and
submodel value of the master boot record are compared
to the corresponding model and submodel values of the
read only memory respectively, in order to verify that
the master boot record is compatible with the system
processor and the I/O configuration of the system pla
2.

16. The apparatus of claim 13, wherein said execut
able code segment generates a first error to indicate the
master boot record is not compatible with the system
hardware.

17. The apparatus of claim 12 wherein the nonvolatile
random access memory includes data representing the
system configuration, said data being updated when the
configuration of the system is changed, wherein said
executable code segment compares said data in the
nonvolatile random access memory to corresponding
data in the read only memory to determine if the config
uration of the system has changed.

18. The apparatus of claim 17, wherein said execut
able code segment generates a second error to indicate
that the system configuration has changed.

19. The apparatus of claim 12, wherein said master
boot record includes an identifying means to identify
the record in order to distinguish the master boot re
cord from other records included on the diskette drive.

20. The apparatus of claim 19, wherein said identify
ing means comprises a predetermined character code.

21. The apparatus of claim 20, wherein said predeter
mined code is prefatory to said code segment of the
master boot record.

22. The apparatus of claim 19, wherein said master
boot record includes a checksum value to verify the
validity of the master boot record when loaded into the
random access memory.

23. The apparatus of claim 12, wherein said remaining
portion of the operational interface includes a checksum

10

15

20

25

30

35

45

50

55

60

65

18
value to verify the validity of the remaining portion of
the operational interface when loaded into the random
access memory. -

24. The apparatus of claim 12, wherein said master
boot record includes a predetermined pattern, and fur
ther wherein said read only memory includes a corre
sponding predetermined pattern in order to verify that
the first portion of the operational interface is included
within a predefined read only memory.

25. The apparatus of claim 22, wherein said execut
able code segment generates a third error to indicate
that the read only memory is not compatible with the
master boot record.

26. A personal computer system comprising:
a system processor;
a random access memory being the main memory and

electrically coupled to the system processor;
a diskette drive being electrically coupled to the sys
tem processor, the diskette drive capable of storing
a plurality of data records;

a master boot record included in the diskette drive,
the master boot record having a data segment and
an executable code segment, the data segment rep
resenting a hardware configuration of the personal
computer system which is compatible with said
master boot record;

a read only memory being electrically coupled to the
system processor, the read only memory having
data representing a hardware configuration of the
system;

a first portion of an operational interface being in
cluded in the read only memory, said first portion
of the operational interface initializing the system
and the diskette drive to load in said-master boot
record and transferring control to said executable
code segment, said executable code segment fur
ther comparing the hardware configuration data
from the master boot record to the hardware con
figuration data of the read only memory to verify
the compatibility of the master boot record with
the system processor;

a remaining portion of the operational interface being
included in the diskette drive, wherein, after veri
fying the compatibility of the master boot record
with the system processor, executable code seg
ment loads the remaining portion of the operational
interface into the random access memory.

27. The apparatus of claim 26 further including:
a system planar board being electrically coupled to

the system processor, wherein the data segment of
the master boot record includes a value represent
ing a system planar being compatible with the mas
ter boot record and further wherein the system
planar further includes a means for uniquely identi
fying the system planar in order to verify the com
patibility of the master boot record to the system
planar.

28. The apparatus of claim 26 further including:
a system planar board being electrically coupled to

the system processor, wherein the hardware con
figuration data on the master boot record includes
a model value and a submodel value, wherein the
model value identifies the system processor and the
submodel value represent the I/O configuration of
the system planar, said model value and submodel
value being compared to corresponding values in
the read only memory to verify the compatibility

5,410,699
19

of the master boot record to the hardware configu
ration.

29. The apparatus of claim 26, wherein the personal
computer system further includes a nonvolatile random
access memory, said nonvolatile random access mem
ory storing values representing the system configura
tion, said values being updated when the configuration
of the system is changed, wherein said first portion of
the operational interface compares said values in the
nonvolatile random access memory to corresponding
values in the read only memory to determine if the
configuration of the system has changed.

30. A method for loading an operational interface
from a diskette drive in a personal computer system
normally connected to a hardfile, the personal com
puter system having a system processor electrically
coupled to a system planar, the planar further being
electrically coupled to a read only memory, random
access memory and nonvolatile memory, said method
comprising the steps of:

(a) initializing the system with a first portion of the
operational interface resident in the read only
memory;

(b) determining if the hardfile is present;
(c) in the absence of the hardfile, searching the non

volatile memory for a password;
(d) upon detecting the absence of the password, ini

tializing with the first portion of the operational
interface the diskette drive having a master boot
record a remaining operational interface;

(c) loading with the first portion of the operational
interface the master boot record into random ac
cess memory, the master boot record including a
data segment and an executable code segment, the
data segment having data representing the hard

5

10

15

20

25

30

35

45

50

55

60

65

20
ware configuration of the system for which the
remaining operational interface is compatible;

(d) verifying the compatibility of the master boot
record with the system hardware by comparing
from the data segment the data representing the
hardware configuration record to corresponding
data stored in read only memory;

(e) executing the code segment of the master boot
record to load the remaining operational interface
code into main memory; and

(f) passing control to the remaining operational inter
face code once it is loaded into main memory.

31. The method of claim 30, wherein step (d) of veri
fying further includes the steps of:

(g) verifying that the boot record is compatible with
the planar by comparing a planar ID accessible by
the system processor with a planar ID value stored
in the data segment of the boot record; and

(h) verifying that the boot record is compatible with
the system processor by comparing respectively
model and submodel values stored in read only
memory with model and submodel values stored in
the data segment of the boot record.

32. The method of claim 30, wherein the nonvolatile
random access memory includes data representing the
system configuration, said method further including the
step of:

(i) comparing the data in nonvolatile random access
memory to the data in read only memory to deter
mine whether the system configuration has
changed; and

(j) generating an indication that the system configura
tion has changed before loading the operational
interface from the diskette.

ck sk ck ck -k

