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FIG. 5A-2 
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INJ TOKEN(L) = (STATEO & RING MASTER & ERRIN&ERRIN D1 & 
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F.G. 17 

2M ILLL LIULLL LLL LILL LIL 
REF w . . . . . . . . . . : : 
DEV 1 RARBI(L) TOKEN SENT TO DEV1 
DEV2 RARBO(L)- - - - TOKEN SENT TO DEV2 -> 

+RD/-WR C DEVICE 1 H DEVICE 2 
---------- - - 

HALE(L) DEVICE 1 DEVICE 2 

BE(0:3)(L) DEVICE DEVICE 2 

LDBADDR(0.9) - DEVICE 1 H DEVICE 2 

LDB DATA(0:31) - DEVICE 1 HDEVICE 2 

- C1 (CYCLE 1) c1 c2lc3 cal 
-DEFINED BY DEVICE 1 PASSING THE TOKEN ON TO THE NEXT 
DEVICE 

- LAST CYCLE DEVICE 1 CAN DRIVE HALE, RF-W, AND 
ADDR (0:9) (NOTE: HALE IS DRIVEN INACTIVE TO PREPARE 
FOR RELEASE.) 

-C2 (CYCLE 2) 
- LAST CYCLE DEVICE 1 CAN DRIVE OR HAVE LDS DRIVE 
DATA(0:31) 

-C3 (CYCLE 3) 
- 1ST CYCLE DEVICE 2 CAN DRIVE ADDR(0:9), HALE, AND 
R/-W 

-C4 (CYCLE 4) 
- 1ST CYCLE DEVICE 2 CAN DRIVE DATA(0:31) AND BE(0:3) 
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FIG. 19 
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FIG. 20 
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FIG. 23 

MSB SB 

E. L.; VEN 1514 13 12 1110 9 8 7 6 5 4 3 2 1 O 

WORD O RETURNO D REFERENCED DEVICE ID SB 

WORD 1 MIC CONTROL, BLOCKADDRESS MSB 

WORD BITS NAME: DESCRIPTION 

RETURN QUEUE IDENTIFICATION (RQID) NUMBER: 
INDICATES THE QUEUE NUMBER WHICH THE MIC 
WILL RETURN THE MSW TO AT THE END OF THE 
COMMAND TRANSFER. 

REFERENCE IDENTIFICATION (RID) NUMBER: 
SOFTWARE POINTERTO REFERENCE THE MCW 
WITH THE MSW 8. MPC. 
NOTE: THIS FELD HAS NO RELEVANCE TOM 
OPERATIONS AND CAN BE REDEFINED AND USED 
BYSOFTWARE. 

DEVICE IDENTIFICATION (DID) NUMBER: 
SOFTWARE POINTER ORDEVICE REFERENCE 
FIELD. 
NOTE: THIS FELD HAS NO RELEVANCE TO MC 

OPERATIONS AND CAN BE REDEFINED AND 
USED BY SOFTWARE. 

MIC CONTROL BLOCKADDRESS (MCBADDR): 
THE UPPER 16-BITS OF THE LPB MEMORY ADDRESS 
WHERE THE MCB OR FIRST MCB IN A CHAN CAN BE 
FOUND. THE STARTING MCB ADDRESSS 
GENERATED BY THE FOLLOWING, MCB LPB ADDRESS 
= MCB ADDRESS: OOOO 
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FIG. 24 

MSB SB 

IBM : 3. |g|''|''|'s VEN 15 141312||11 1 O 9 8 7 6 5 4 3 2 1 O 

WORDO OPE PCJMPCHNNOFFMTBUFPSTWAT o o o ABM LSB 
WORD 1 MICDEVICE QUEUEconTROL to ADDRESs o MPcquEUED 
WORD 2 

WORD3 source ADDREss(sb) oooooooo 
WORD 4 

WORD 5 

COMMANDED TRANSFER. 
000 = LDBTO MICRO CHANNELI/O ADDRESS SPACE. 
OO1 = LOBTO MCRO CHANNEL MEMORY ADDRESS SPACE. 
OO = MICRO CHANNELI/O ADDRESS SPACE TODB. 
O11 MICRO CHANNEL MEMORY ADDRESS SPACE TO OB. 
1XX = DBTOLDB, WRAP OPERATION. 

NOTE: THE CENFELD IN POS REGISTER 2 MUST BE DSABLED 

woRD BITS NAME: DESCRIPTION 

WHEN OPE = 1XX, LDBTODB WRAP OPERATION. 

O - 2 OPERATION (OPE): 
15-13V 

CENMUST BE ENABLED WHEN OPE = 'OXX. 

THIS FIELD DEFINES THE DATA MOVEMENT DURING THE 

3. PROGRAMCONTROLLED INTERRUPT (PCI): 
12V O = THE MICWL NOT POSTA MSW TO A CRUEUE AT THE 

END OF THE COMMANDED RANSFER UNLESS 
THERE WASANERROR. 

= THE MC WILL BUILD AND POSTA MSW TO THE 
QUEUE NUMBER DEFINED IN THE ROO AT THE END 
OF THE COMMANDED XFER. 
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FIG. 25 
word BITS NAME: DESCRIPTION 

4 JUMP (JMP): 
11 V O = NO JUMP. 

5 
OW 

6 

9 V 

= THE MC WILLUSE THE LEAST SIGNIFICANT 

7 
8 V 

16-BITS OF THE SOURCE ADDRESS FIELD 
NFORMING THE ADDRESS OF THE NEXT MCB. 

CHAIN (CHN): 
O is NO CHAINING. 
1 = THE ADDRESS OF THE NEXT MCB SEQUAL 

TO THE CURRENT STARING MCB ADDRESS 
PLUS 16 BYTES. 

NO OPERATION (NOP): 
O is NONO-OP 
1 = MC WILL ONLY PROCESS THE PC FAG. 

NOACTUAL DATA OR COMMANDED TRANS 
FER WILL OCCUR. 

FORMAT (FMT): 
THES BIT INDICATES WHETHER DATA MOVEMENT 
DURING THE COMMANDED TRANSFER WILL OCCUR. 

O = DURINGADATA BLOCKMOVE OPERATION THE 
DESTINATION ADDRESS IS SPECIFIED BY THE 
TARGET ADDRESS. 

1 = DURING ADATA BLOCKMOVE OPERATION THE 
DESTINATION ADDRESS IS READ FROM THE FREE 
BLOCKST POINTED TOBY THE MC DEVICE 
OUEUE CONTROL ADDRESS. 

FREE BLOCKREQUEST (BUF): 
O = DURING ADATA BLOCK MOVE OPERATION 

THE DESTINATION ADDRESS IS SPECIFIED BY 
THE TARGET ADDRESS. 

1 s DURING ADATABLOCKMOVE OPERATION 
THE DESTINATION ADDRESS IS READ FROM 
THE FREE BLOCKST POINTED TOBY THE 
MC DEVICE OUEUE CONTROL ADDRESS. 

POST COMMAND 1 STATUS REQUEST (PST): 
O = NO MPC WILL BESENT TO AMC DEVICEAFTER THE 

COMPETION OF THE COMMANDEO TRANSFER. 
as AMPC WILL BE BUTAND SENT TO THE CRUEUE 

DEFINED IN MPC GUEUED FELD TO THE ADDRESS 
DEFINED BY THE MC DEVICE CRUEUE CONTROL 
ADDRESSAFTER THE COMPLETION OF THE 
COMMANDED TRANSFER. 
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FIG. 26 

O WAIT (WAT) 
O = THE MC WILL PROCESS THE MCB IMMEDIATELY AND 

WILL CONTINUE TO READ THE REMAININGWORDS 
OF THE MCB. 

1 = THE MC WILL NOT PROCESS THE MCBAND WILL 
CONTINUE TO REREAD MCB WORD OUNTIL WAT=0. 

NOTE: THE MIC WILL REREADMCBWORD O 
APPROXIMATELY EVERY256 CLOCKCYCLES 
(10.24 puSEC), AUTOMATICALLY. 

11-13 RESERVEDATA VALUE OF 'O'. 
4- 2V 

14-15 ADDRESSBURST MANAGEMENT (ABM) 
1- 0 V THIS FELD DEFINES THE ABM SIZE USED FOR THE 

COMMANDED TRANSFERWRITES. THESE BITS OVERRIDE 
THE ABM FIELD DEFINED IN THE MCPOS REGISTER 
4 SUB-ADDRESS OOOO. 
OO = ABM DEFINED IN THE POSREGISTER (DEFAULT) 
O1 = 16 BYTE ADDRESS BOUNDARY. 
10 = 32 BYTE ADDRESS BOUNDARY. 
11 at 64 BYTE ADDRESS BOUNDARY. 
NOTE: THIS FIELD IS ONLY VALID WHEN OPE=OOX. 

MC DEVICE GUEUE CONTROLI/O ADDRESS: 
THIS FIELD DEFINES THE STARTING MC I/O ADDRESS 
LOCATION WHERE THE MC CAN ACCESS CONTROL 
REGISTERS NECESSARY TO COMPLETE A CRUEUE OR 
FREE BLOCK FETCHOPERATION. THESE CONTROL 
REGISTER SHOULD HAVE THE SAME FORMATAS THE 
MIC'S I/O CONTROLREGISTERS (QRC, QWC, QD, AND 
FBREGISTERS) AND SHOULD BE LOCATED AT THE 
FOLLOWINGADDRESS OFFSETS; 
QRCR = 0000, QWCR = 0100, QDR = 1000, FBR = 1100, 

MICRO CHANNELPOST COMMAND QUEUED (MPC QID): 
THIS FELD DEFINES THE CRUEUE NUMBER ON ANOTHER 
MC DEVICE WHERE THE MPC CAN BE POSTED TO, 
THE RECEIVING OUEUES BYTE COUNTS8 BYTES. 

SOURCE ADDRESS (MSB): 
THE HIGH ORDERADDRESS BITS USED TO SOURCE 
DATA WHICH WILL BE MOVED DURING THE COMMANDED 
TRANSFER. FMT MUSTEGUAL'O', TO USE THIS FIELD. 
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FIG. 27 

WORD BITS NAME: DESCRIPTION 

SOURCE ADDRESS (LSB): 
THE LOW ORDER ADDRESS BTS USED TO SOURCE DATA 
WHICH WILL BE MOVED DURING THE COMMANDED 
TRANSFER. ALSO, THESE BITS DEFINE THE MCBLPB 
ADDRESS WHEN UMP='1'. 

4. O-7 COMMAND / STATUS FLAGS: 
15-8 W FLAGS USED FOR COMMAND 1 STATUSTRANSFERS. 

THIS WORD SPECIFIES NOMIC FUNCTION AND CAN BE 
USED FOR SOFTWARE DEFINED FUNCTIONS AND FLAGS. 

8-15 RESERVEDATA VALUE OF 'O'. 
7-OW 

O-15 TARGET ADDRESS (MSB): 
15-0 V THE HIGH ORDER ADDRESS BITS USED TO TARGET 

DATA WHICH WILL BE MOVED DURING THE COMMANDED 
TRANSFER. NOTE: THE MPC DOES NOTUSE THE 
8 MSB OF THIS FELD. 

O-15 TARGET ADDRESS (LSB): 
15-0 V 

7 O-15 
15-0 V 

3 O-15 
5-0 V 

THE LOW ORDERADDRESS BITS USED TO TARGET 
DATA WHICH WILL BE MOVED DURING COMMANDED 
TRANSFER. 

BLOCKLENGTH: 
THE NUMBER OF BYTES WHICH WILL BE MOVED 
DURING THE COMMANDED TRANSFER. 
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FIG. 28 

commanded operation operatechnoMeuf 
detowcroador oxoxo oi o ox 
LDBTO MC MEMORY ADDR oxoxo o oxx 

oxoxoo. 1 x 
coaccarolds otox oxo oi o ox 
McMEMORYADDarode or x oxo oi o ox 
deroidewrap xxoxoo o ox 
posting only oxxo ox 

UMP CHN 

* - VALID CHAN AND JUMP LASTMCB 
FLAGS ARE DEFINED IN MCB = MCB -- 16 
THIS FIGURE --> MCB = SRC ADDR 

LEGAL 
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FIG.29A 
MSB LSB 

O E. s 4|| || ||''|''|'' VEN 15141312||1110 | 9 || 8 || 7 || 6 5 4 3 2 1 

WORDO 1 1 0 1 REFERENCED DEVICED 
wORD 1 000 MxSMSTATE Too o FBR MXSMRC 
WORD2 oooooooooooooooo 

LSB 

WORD 3 MIC CONTROL BLOCKADDRESS 

word BTS NAME: DESCRIPTION 
O- 3 THESE BITS DEFINE THE SOURCE ORUEUE NUMBER OF THE 
15-12V MSW, WHICHFOR THEMICIS QUEUE # D (1101") 

4- 7 REFERENCEIDENTIFICATION (RID) NUMBER: 
1 - 8 V SOFTWARE POINTERTO REFERENCE THE MCW WITH 

8-15 
7- 0 V 

MSEB 

DEVICE DENTIFICATION (DID) NUMBER: 
SOFTWARE POINTERTO REFERENCE THE MCW WITH 
THE MSW. 

RESERVEDATA VALUE OF 'O'. 

MASTER EXECUTION STATE MACHINE STATE: 
THIS FELD DEFINES THE STATE WHICH THE MASTER 
EXECUTION UNIT WAS IN AT THE END OF THE 
COMMANDED TRANSFER. IFNOERROR OCCURRED 
THEN MXSMSTATE = 'OOOOO". 

RESERVEDATA VALUE OF 'O' 

FREE BLOCKRETURN (FBR): 
THIS INDICATES THATANERROR HASOCCURRED WHICH 
REGUIRED THE MICTO RETURN A FETCHED FREE BLOCK 
FROMANOTHERMC DEVICE. F. MCB FIELD BUF='O' 
THEN THIS FIELD IS INVALID, 
O = THEMICWAS UNSUCCESSFULIN RETURNING THE FB 

TO THE MC DEVICE IT WASFETCHED FROM. 
1 = THE MC WAS SUCCESSFULIN RETURNING THE FB 

TO THE MC DEVICE IT WASFETCHED FROM. 

THE MSW. 

0- 2 
15-13 V 

3- 7 
2- 8V 

f 
7-5 W 
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2-15 MASTEREXECUTION STATE MACHINE RETURN CODE: 
3-0 W THIS FIELD INDICATES THE COMPLETON STATUS 

OF THE COMMANDED TRANSFER OPERATION. * 

0-15 RESERVEDATA VALUE OF 'O'. 
15-0 V 

0-15 MCB ADDRESS: 
15-0 W THE UPPER 16-BES OF THE LPS MEMORY ADDRESS 

WHERE THE MCB ORLAST MCBWAS USED FOR THE 
COMMANDED TRANSFER. 

FIG.29B 
FIG. 29 
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FIG. 30 
MSEB LSB 

EX, SSS''''' VEN 15 1413 12 11 1 0 | 9 || 8 || 7 || 6 || 5 || 4 3 2 1 O 

WORD 1 COMMAND/STATUS FLAGS 

WORD 2 TARGET ADDRESS (LSB) 
WORD 3 BLOCKLENGTH MSB 

O-3 MCSOURCEID/DEVICE ADDRESS: 
15-12V THESE BITS DEFINE THE MCS MICRO CHANNEL DEVICE 

ADDRESS. THESE BITS ARE ECUAL TO THE POS REC2 
DEVICE ADDR FIELD. 

REFERENCE IDENTIFICATION (RID) NUMBER: 
SOFTWARE POINTERTO REFERENCE THE MCW WITH 
THE MSW. 

DEVICE IDENTIFICATION (DID) NUMBER: 
SOFTWARE DEFINABLE, 

COMMAND/STATUS FLAGS: 
FLAGSUSED FOR COMMAND / STATUSTRANSFERS. THIS 
WORD SPECIFIES NOMIC FUNCTION AND CAN BE USED 
FOR SOFTWARE DEFINED FUNCTIONS AND FLAGS. 

TARGET ADDRESS: 
THESE BITS DEFINE THE LOWER 24BTS OF MC MEM 
ADDR WHERE THEMIC MOVEDDATATO, THIS ADDRESS 
FIELD IS EITHER THE TARGET ADDRESS DEFINED IN THE 
MCB OR THE FBADDRESS FETCHED FROM THE MC 
DEVICE, DEPENDING ON THE MCB BUFFIELD 

FREE BLOCKERROR (FER): 
THIS FELD DEFINES WHETHER THE TARGET ADDRESS 
WAS REALLY USED AS THE TARGET ADDRESS. ONLY 
VALIDF BUFs'1'. 
O = TARGET ADDRESS WALD. 
1 = TARGET ADDRESS BEING RETURNED, UNUSED 

ADDRESS. COMMANDED TRANSFER CONTAINED AN 
ERROR AND THE FREE BLOCKS BEING RETURNED. 

BLOCKLENGTH: 
THE NUMBER OF BYTES WHICH WERE MOVED DURING 
A COMPLETED CTOR WERE SUPPOSED TO BE MOVED 
FOR THE CT. 
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FIG. 33 

O 1234567BM 
LPB MEMORY ADDRESS 7 6 5 4 3 2 1 0 VEN 

0000:OOOOOOOOOOOOOOOO F 
0000:00000000:00000010 

QIR BYTE 
OR SEG Oil: h 

QUEUEO 
XXXX:00010001:00000000 NITALIZATION . 
XXXX:OOO 10001:00000011 REGISTER 

XXXX000 10001:00000100 OUEUE 1 
4 BYTES INTIALIZATION 

REGISTER 

1MBYTES 

XXXX:OOO 10001:00111000 OUEUEE 
: INITIALIZATION : 

XXXX:OOO 1000100111011 REGISTER 

XXXX0001 OOO1:00.111100 OUEUEF 
: NITIALIZATION : 

XXXX0001 0001:00.111111 REGISTER 

s w 

DON'T CARE 

1111:11111111:11111110 

1111:11111111:11111111 

XXXX0001 0001:00000111 

64 BYTES 
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FIG. 34A 
MSB LS B 

BM Al 4. 8 3|||1|1314|| VEN 1514 13 1211 1 0 || 9 || 8 || 7 || 6 5 4 3 2 1 0 

WORDO oo QBC QUEUE READ POINTER (ORP) QRPs 
WORD 1 

WORD BITS NAME: DESCRIPTION 

0-1 RESERVEDATA 'O' LEVEL 
15-14 V 

2 QUEUEBYTE COUNT(QBC): 
DEFINES THE NUMBER OF BYTES FOR A QUEUE ENTRY. 
00-4BYTES (1 KQENTRIES) 10 - UNDEFINED 
O1-8BYTES (512 QENTRIES) 11-16BYTES (256 QENTRIES) 

QUEUE READ POINTER (QRP): 
DEFINES THE CURRENT VALUE OF THE CRUEUE READ 
POINTER, 
FOR4 BYTE QUEUES ALL 10-BITS ARE VALID, FOR 8 BYTE 
QUEUES ONLY THE UPPER 9-BITS ARE VALID, AND FOR 16 
BYTE OUEUES ONLY THE UPPER 8-BITS ARE WALD. 
NON-VALD BITS MUST BE SET TO 'O'. 

QUEUE READ POINTER STATUS (QRPS): 
DEFINES THE CURRENT STATUS FOR THE READ POINTER. 

OO = POINTERISAVAILABLE AND WALD. 
Of s POINTER IS TEMP. BEING USED BY ANOTHER 

LPB DEVICE. 
1O = THE QUEUE IS EMPTY. 
11 = THE QUEUE IS NOTENABLED, POINTER IS INVALID, 

QUEUE INTERRUPT (Q): 
DEFINES THE INTERRUPT USED TO INDICATE THAT 
A CRUEUE CONTAINSA CRUEUE ENTRY. 
0000 - DSABLED 1000 - MC RQ(O) 
O001 - RESERVED 1001 - MCIRQ(1) 
0010- RESERVED 1010 - MCIRQ(2) 
O011 - RESERVED 1011 - MC RQ(3) 
01.00- LPBINTO) 1100-RESERVED 
01.01 - LPB INT(1) 110 - RESERVED 
O110 - LPBINT(2) 11 O - RESERVED 
O111 - LPB INT(3) 111 - RESERVED 
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QUEUE WRITE POINTER (QWP): 
DEFINES THE CURRENT VALUE OF THE CRUEUE WRITE 

POINTER. 
FOR4. BYTE QUEUES ALL 10-BITS ARE VALD, FOR 

8 BYTE QUEUES ONLY THE UPPER 9-BITS ARE WALID, 
FOR 16 BYTE CRUEUES ONLY THE UPPER 8-BITS ARE 
VALID. 
NON-VALID BITS MUST BE SET TO 'O'. 

QUEUE WRITE POINTER STATUS (QWPS): 
DEFINES THE CURRENT STATUS FOR THE WRITE POINTER. 
OO = POINTERISAVAILABLE AND WALD. 
O1 = POINTER ISTEMP. BEING USED BY ANOTHER 

LPB DEVICE. 
10 = THE CRUEUES FULL. 
11 = THE QUEUE IS NOT ENABLED, POINTER IS INVALID. 

FIG. 34B 

FG. 
34A 

FIG. 34 
FIG. 
34B 
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O 1234567 IBM 
LPB I/O ADDRESS 9. VEN 
- 

00000000:00000000 

00000000:00000010 
QPR BYTE 

QPR SEG Qi. h 
OUEUEO 

00010001:00000000 : RE : 
OOO 10001:00000011 REGISTERS 

O0010001:00000100 QUEUE 1 
POINTER : 4 BYTES 

OOO1 0001:OOOOO111 REGISTERs 
64KBYTES 

64 BYTES 
00010001:00111000 OUEUEE 

POINTER 
OOO 10001:00.111011 REGISTERS 

OOO 10001:00.111100 OUEUEF 
: POINTER : 

O0010001:00111111 REGISTERS 

11111111:11111110 

11111111:11111111 
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FIG. 36 
MSB LS B 

Ex lili | || ||9||9||1314|| VEN 1514|13121110 | 9 || 8 || 7 || 6 || 5 4 3 2 1 0 
WORD O 

WORD 

WORD BITS NAME: DESCRIPTION 

RESERVED. 

QUEUE READ POINTER (QRP): 
DEFINES THE CURRENT VALUE OF THE CRUEUE READ 
POINTER. 
FOR 4BYTE QUEUES ALL 10-BITS ARE VALID, FOR 8BYTE 
QUEUES ONLY THE UPPER 9-BITS ARE WALID, AND FOR 16 
BYTE QUEUES ONLY THE UPPER 8-BITS AREVALID. 
NON-VALD BITS MUST BE SET TO 'O'. 

QUEUE READ POINTER STATUS (QRPS): 
DEFINES THE CURRENT STATUS FOR THE READ POINTER. 

OO = POINTERISAVAILABLE AND WALD. 
O = POINTER STEMP. BEING USED BY ANOTHER 

LPB DEVICE. 
10 = THE QUEUESEMPTY. 
11 = THE QUEUE IS NOTENABLED, POINTER IS INVALID. 

QUEUE WRITE POINTER (QWP): 
DEFINES THE CURRENT VALUE OF THE GUEUE WRITE 

POINTER. 
FOR4 BYTE QUEUES ALL 10-BITS ARE VALID, FOR 

8 BYTE QUEUES ONLY THE UPPER 9-BITS ARE VALID, 
FOR 16 BYTE CRUEUES ONLY THE UPPER 8-BITS ARE 
VALID, 
NON-VALD BITS MUST BE SET TO 'O'. 

QUEUE WRITE POINTER STATUS (QWPS): 
DEFINES THE CURRENT STATUS FOR THE WRITE POINTER. 
OO = POINTER ISAVAILABLE AND WALD. 
Of = POINTER STEMP. BEING USED BY ANOTHER 

LPB DEVICE. 
O = THE QUEUE IS FULL. 

11 = THE QUEUE IS NOT ENABLED, POINTER IS INVALID. 
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FIG. 37 

324 
LPB MEMORY ADDRES 

O 1234567 IBM 
OSEG O POINTER 5. VEN 

3201 - - - 
RRRR: OOOOOOOOOOOOOOOO QUEUE #O 

-- -- 
ONUM OE BYTE : 

3221 3261 
RRRR:OOOO1111:11111111 OUEUE #O 

RRRR:OOO10000:OOOOOOOO OUEUE #1 
4KBYTES 

RRRR:OOO11111: 11111111 OUEUE #1 

64KBYTES 

RRRR:11100000:OOOOOOOO QUEUE #E 

RRRR: 11101111:11111111 QUEUE #E 

RRRR:11110000:OOOOOOOO OUEUE #F E. RRRR: 11111111 : 11111111 OUEUE #F 
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FIG. 38 

READ OUEUE READ POINTER 
FROM MC LPB I/O SPACE 

VERIFYPOINTER STATUS 

(BEING USED BY 
ANOTHER LPB 
DEVICE) 342 

(QUEUE DISABLED ERROR UNAVAILABLE 
OR EMPTY) AVAILABLE (BECOMES UNAVAILABLE 

FOR OTHER LPB DEVICES) 

QUEUE ERROR CONSTRUCT LPB PHYSICAL 
REPORTED TO MEMORY ADDRESS 344 
OCAL PRO 
CESSOR BY MIC LPB MEM ADDR = QSEG:ONUM: 

QPOINTER:00 

343 - READ OATA 

- 4,8, OR 16 BYTES 346 

LPB MEMADDRE 
QSEG:ONUM:QPOINTER:00 

WRITE CRUEUE READ POINTER 
TO MC LPB I/O SPACE 348 

RETURN NEW OPOINTERVALUE 

NEW OPOINTER = OPOINTER:00 +OBC 

MICVERIFIES QPOINTER Yo 
OK ERROR 

QUEUE ERROR REPORTED 
TO LP BY MIC, 

QUEUE READ POINTER 
UPDATED & MANTANED 

BY MIC OPRESTORED 

352 354 
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FIG. 39 

READ OUEUE WRITE POINTER 
FROMMIC LPB I/O SPACE 

VERIFY POINTER STATUS 

(QUEUE DISABLED ERROR UNAVAILABLE 

(BEING USED BY 
ANOTHER PB 
DEVICE) 

362 

OR FULL) AVAILABLE (BECOMES UNAVAILABLE 
FOR OTHER LPB DEVICES) 

OUEUE ERROR CONSTRUCT LPB PHYSICAL 
REPORTED TO MEMORY ADDRESS 364 
LOCAL PRO 
CESSOR BY MIC LPB MEMADDR = QSEG:ONUM: 

OPOINTER:00 

363 WRITE DATA 
4,8, OR 16 BYTES 366 

LPBMEM ADDR = 
QSEG:QNUM:OPOINTER:00 

WRITE QUEUE WRITE POINTER 
TO MC LPB I/O SPACE 368 

RETURN NEW OPOINTERVALUE 

NEW OPOINTER = QPOINTER:00 +QBC 

WHERE OBC = 4,8, OR MICVERIFIES QPOINTER Yossy Es 
OK ERROR 

QUEUE WRITE POINTER 
UPDATED & MANTAINED 

QUEUE ERROR REPORTED 
TO LP BY MIC, 

BYMC QPRESTORED 

372 374 
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FIG. 40 

O 1234567 IBM 
MC I/O ADDRESS | VEN 
-- 00000000 : 00000000 
OOOOOOOOOOOOOOO1 

CRMC I/O BASE ADDRESS 
-- 
RRRRRRRRRRROOOOO 

: QRC REGISTER 
RRRRRRRR:RRROOO11 

RRRRRRRR:RRROO1OO 
QWCREGISTER 4 BYTES 

4. BYTES 

64 KBYTES 
RRRRRRRRRRROO111 

RRRRRRRR:RRRO1 OOO 
: ODREGISTER : - BYTES 

RRRRRRRR:RRRO1011 

11111111 : 11111110 H 

11111111 : 11111111 El 
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MC I/O ADDRESS 
MIC CRMC/O BA + 00000 -> 

MIC CRMC/O BA + 00000 - oooooooo 
MIC CRMC/O BA + 00000 - oo o o o o o o 

CRMC/O BA+ 
'OOOOO' 

BITS O-3 
7 - 4W 

CRMC/O BA+ 
'OOOOO' 

BITS 4 - 5 
3-2 V 

CRMC/O BA+ 
'00000 

BITS 6 
1 V 

CRMC/O BA+ 
'OOOOO' 

BITS 7 
OW 

CRMC/O BA+ 
'00001" 

THROUGH 
'0001" 
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FIG. 41 

MSEB SE 

| 9 || 2 || | | | | Ely 7 6 5 4 || 3 || 2 || 1 || 0 VEN 

STATUS: Q#: (READ/WRITE) 
THE NUMBER OF THE QUEUE BEING REQUESTED FOR 
A CRUEUE READ OPERATION, VALUES OF 'OOOO' THROUGH 
'111'ARE WALD. 

STATUS: (READ ONLY) 
RETURN STATUS ON THE CRUEUE READ OPERATION. 
OO - OUEUE READ DATA READY 
01 - CUEUE READ DATA NOT READY 
1X - OUEUE READ DATA ERROR 

ACKNOWLEDGE (ACK): (READ ONLY) 
USED TO CLEARTHE ORC REGISTER SEMAPHORE AND 
MAKE THE MICAVAILABLE FOR ANOTHER CRUEUE 
READ OPERATION. 
O = NO EFFECT (WRITE) O = VALID (READ) 
1 = CLEAR SEMAPHORE (WRITE) 1 = INVALID (READ) 

AVAILABLE (AVL): (READ ONLY) 
THIS IS THE QRC REGISTER SEMAPHORE WHICH INDICATES 
THEAVAILABILITY OF PERFORMINGA CRUEUE READ 
OPERATION. 
O = OPERATION TEMPORARILYUNABAILABLE, CONTROL OF 

OPERATION HAS ALREADY BEEN OBTANED BY 
ANOTHER USER. 

1 = OPERATIONAVAILABLE. 

RESERVEDATA 'O' VALUE. 

5,459,839 
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MC/O ADDRESS 
MIC CRMC I/O BA + 00000 -- 

MIC CRMC/OBA + 00000 - ooooooo. 
MIC CRMC/O BA + 00000 - oooooooo 
MIC CRMC/O BA + 00000 - oooooooo 

CRMC/O BA+ 
'00000 

BITS O-3 
7-4W 

CRMC I/O BA+ 
'OOOO' 

BTS 4 - 5 
3-2 V 

CRMC/O BA+ 
'OOOO' 

BITS 6 
1 V 

CRMC I/O BA 
'OOOO' 

BITS 7 
0 W 

CRMC/O BA+ 

THROUGH 
'OO1 

Oct. 17, 1995 Sheet 53 of 56 5,459,839 

MSB LSB 

STATUS: Q #: (READ/WRITE) 
THE NUMBER OF THE QUEUE BEING REGUESTED FOR 
A QUEUE READ OPERATION, VALUES OF 'OOOO'THROUGH 
'1' ARE WALD. 

QUEUEBYTE COUNT (QBC): (READ/WRITE) 
THE QUEUE BYTE COUNT FOR OUEUE WRITE OPERATIONS. 
OO = 4 BYTES 10 RESERVED 
O1 = 8 BYTES 11 = 16 BYTES 

ACKNOWLEDGE (ACK): (READ/WRITE) 
USED TO CLEAR THE QWCREGISTER SEMAPHORE AND 
MAKE THE MC AVAILABLE FOR ANOTHER OUEUE 
WRITE OPERATION. 

O = VALID (READ) O = NO EFFECT (WRITE) 
1 = CLEAR SEMAPHORE (WRITE) 1 = INVALID (READ) 

AVAILABLE (AVL): (READ ONLY) 
THIS IS THE QWC REGISTER SEMAPHORE WHICH INDICATES 
THEAVAILABILITY OF PERFORMINGAOUEUE WRITE 
OPERATION. 
O = OPERATION TEMPORARILYUNABAILABLE, CONTROL OF 

OPERATION HAS ALREADY BEEN OBTANED BY 
ANOTHER USER. 

1 = OPERATIONAVAILABLE. 

RESERVEDATA 'O' VALUE. 
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FG. 43 

READ O READ SEMAPHORE 
FROM ORCR 

NMC MC I/O SPACE 

VERIFY AVLBIT 

AVAILABLE UNAVAILABLE AV =0 
(AVL=1) ( ) 

WRITE ONUM TO ORCR 
N MIC MC /O SPACE 

READ STATUS FROM 
QRCR IN MIC MC I/O 

STEP 3. SPACE 

STAT='10' (NOT READY) 
(Q READERROR) STAT='00' (READY) 

MC REPORTS READ OUEUE DATA 
OUEUE READERROR FROM OUEUE DATA REG 

TO OCA IN MC MC I/O SPACE 
PROCESSOR (4, 8, OR 16 BYTES) 

AVL=1 (BECOMES AVAILABLE) 

ABORTICLEAR OUEUE READ OPERATION 

WRITE ACK1 TO ORCR 
IN MIC MC I/O SPACE 

AVLE1 

MIC REPORTS POSSIBLE 
OUEUE ERRORS TO 

STEP 5. 

LOCAL PROCESSOR 
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FIG. 44 

READ O. WRITE SEMAPHORE 
FROM OWCR 

IN MC MC I/O SPACE 

VERIFY AVLBIT 

AVAILABLE UNAVAILABLE 
(AVL=1) 

(BECOMES 
UNAVAILABLE) 

(AVL=0) 

WRITE ONUM & OBC 
TO QWCR 

IN MC MC I/O SPACE 
STEP 2. 

WRITE QUEUE DATA TO 
OUEUE DATA REGISTER 
IN MC MC I/O SPACE 
(4, 8, OR 16 BYTES) 

STEP 3. 

AVL=1 (BECOMES AVAILABLE) 

ABORTICLEAR OUEUE WRITE QPERATION 

WRITE ACK-1 TO OWCR 
IN MIC MC I/O SPACE 

AV = 1 

STEP 4. 

MIC REPORTS POSSIBLE 
QUEUE ERRORSTO 
LOCAL PROCESSOR 
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FIG. 45 

O 1234567 IBM 
MC I/O ADDRESS VEN 
-- 
OOOOOOOO OOOOOOOO 

OOOOOOOOOOOOOOO1 

CRMC/O BASE ADDRESS - 
-- 
RRRRRRRRRRROOOOO ORC REGISTER 

RRRRRRRRRRROO1OO OWC REGISTER 

RRRRRRRR:RRRO1 OOO QD REGISTER 

RRRRRRRR:RRRO1100 : 
FBLREGISTER 4 BYTES 

RRRRRRRR:RRRO1111 

RRRRRRRR:RRR1OOOO JOB 
PENDING 2 BYTES 

RRRRRRRR:RRR1OOO1 REGISTER 

11111111 : 11111110 

11111111 : 11111111 El 
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SYSTEMAND METHOD FOR MANAGING 
QUEUE READ AND WRITE POINTERS 

This application is a continuation of U.S. patent appli 
cation Ser. No. 07/755,468, filed Sep. 5, 1991, by J. L. 
Swarts et al., entitled "Queue Pointer Manager' assigned to 
the same assignee as this application now abandoned. 

BACKGROUND OF THE INVENTION 

1. Technical Field 

The present invention relates in general to data commu 
nications between components of a data processing system. 
More particularly, the invention relates to a queue manage 
ment facility partially implemented in hardware resulting in 
a relatively inexpensive queuing mechanism with increased 
performance over totally software managed queue struc 
tleS. 

2. Background of the Invention 
In data processing systems, a queue is commonly used to 

store a backlog of tasks that have been assigned to a unit of 
the system by other system units. A queue is implemented as 
memory, or a portion of memory, in which items of infor 
mation-queue entries-are stored in the order in which 
they are received from the task requesting units, and from 
which they are retrieved in the same order by the task 
performing unit. Some queues have been managed by hard 
ware logic circuitry and other queues have been managed by 
program or microprogrammed routines. 
Two implementations of queues are common. One is a 

first-in/first-out (FIFO) memory, having the property that an 
item of information loaded into its input register, which is 
located at the tail end of the queue, automatically propagates 
through empty memory locations towards output registers 
located at the head end of the queue, and is stored in the first 
empty location closest to the output register. Retrieval of an 
item of information from the output register causes all items 
remaining in the FIFO to shift one location closer to the 
output register. The other common implementation of a 
queue is a circular buffer having a read and write pointer 
associated therewith. The read pointer indicates the location 
at the head end of the queue from which the next item of 
information is to be retrieved and the write pointer indicates 
the location at the tail end of the queue into which the next 
item of information is to be stored. Retrieval of an item 
causes the read pointer to point to the next consecutive 
location that holds information, while storage of an item of 
information causes the write pointer to point to the next 
consecutive free location, available for information storage. 

In conventional data processing systems, task requestors 
and the task performer are allowed to communicate to the 
queue only. That is, a task requestor may not transfer a task 
to the task performer directly, by bypassing the queue, even 
when the task performer is idle or waiting receipt of a task. 
The process of storing a task in a queue, then either 
propagating it through the FIFO queue or changing pointers 
on a circular buffer queue, and finally retrieving a task from 
the queue, takes time and hence the system is slowed down 
by these procedures and performance is adversely affected. 
Conventional queue administration systems are often not 
efficient in transferring information between devices that 
store information in the queue and devices that retrieve 
information from the queue. 

Queues implemented in hardware are expensive and 
require a lot of integrated circuitry. Hardware managed 
queue structures require memory address buses, data bus, 
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2 
and multiplexing logic. There is a great deal of complexity 
in the memory timing and control logic necessary to access 
the queue memory. Because of these timing delays, there is 
a great latency in queue data transfers because of the 
indivisible, uninterruptible memory operations needed. 

In a software managed queue structure there is a need to 
update the software and verify the queue write and queue 
read pointers. There is a need to determine queue overflow, 
underflow and other error conditions. The software must be 
used to set/clear the queue interrupts. Much internal central 
processing time and external memory sources are needed to 
hold the necessary pointer array. The programming code 
storage requirements of a software managed queue is very 
large. 
What is needed is a relatively inexpensive queuing 

mechanism with increased performance to handle high 
speed data communications within a data processing system. 

OBJECTS OF THE INVENTION 

It is therefore an object of the invention to provide a queue 
management facility partially implemented in hardware 
resulting in a relatively inexpensive mechanism with 
increased performance over a totally software managed 
queue structure. 

It is another object of the invention to provide a queue 
pointer manager that can be controlled by either hardware or 
Software. 

It is another object of this invention to provide a built-in 
public queue capability whereby a given queue may be 
written or read by more than one data processing entity. 

SUMMARY OF THE INVENTION 

These and other objects, features and advantages are 
accomplished by a queue pointer manager having its per 
formance critical functions implemented in hardware and 
the rest of the facility implemented in software. The hard 
ware function consists of a read pointer register having a 
status field. The status field specifies queue busy/available, 
empty/full, and enable/disable information. Built-in hard 
ware controls a write pointer region having a status field for 
each queue. Also in hardware is an interrupt field for each 
queue to denote which interrupt is activated when the queue 
goes non-empty, and a queue block length field for each 
queue to define the queue entry length in bytes. The hard 
ware resources are implemented in fast-access registers. The 
pointers contain memory addresses to a general purpose 
random access memory in which the physical queue ele 
ments reside. The queue pointer manager is mapped into the 
CPU memory and/or input/output spaces. The above fields 
may be initialized by one region and actual queue operations 
may be performed by another region. 
The facility software function involves reading either the 

queue read pointer or queue write pointer to perform queue 
read/write operations, checking the status of the queue, 
reading or writing the queue entry data as normal memory 
accesses and then returning the queue read pointer or write 
pointer to the queue pointer manager hardware function. 

BRIEF DESCRIPTION OF THE DRAWINGS 

These and other objects, features and advantages of the 
invention will be more fully appreciated with reference to 
the accompanying figures. 

FIG. 1 is a representation of a local area network of 
personal computers, workstations and main frames. 

FIG. 2 is a block diagram of an interface according to the 
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present invention which links a Micro Channel bus to an 
external fiber optic bus through a local data bus and a local 
processor bus. 

FIGS. 3, 3A, and 3B are a block diagram of the Micro 
Channel interface chip. 

FIGS. 4, 4A, and 4B are a diagram of the external I/O pins 
to the Micro Channel in interface controller of the present 
invention. 

FIG. 5 is a block diagram of the Micro Channel interface 
according to the present invention. 
FIGS. 6A-6E depict the logic in the control and data 

signal capturing and synchronizing block in the Micro 
Channel interface of the present invention. 

FIG. 7 is a representation of a state machine in the Micro 
Channel. 

FIG. 8 depicts a timing diagram where two words are 
written on the local processor bus. 
FIG.9 depicts atiming diagram where two words are read 

from the local processor bus. 
FIG. 10 depicts a timing diagram where a read operation 

takes place in the Micro Channel interface chip while it is in 
a slave timing mode with two 25 MHz wait states. 

FIG. 11 depicts a timing diagram where a write operation 
takes place on the Micro Channel interface chip while it is 
in a slave timing mode with two 25 MHz wait states. 

FIG. 12 is a block diagram of the protocol signal con 
nections for a two chip ring. 

FIG. 13 is a block diagram of the protocol signal con 
nections for a multi-chip ring. 

FIG, 14 is a block diagram of the local data bus ring state 
machine. 

FIGS. 15A-1 and 15A-2 are a block diagram of the local 
data bus protocol boundary logic. 

FIG. 15B is a block diagram of the TRT and THT logic 
timers on the local data bus. 

FIG. 16 is a timing diagram of the local data bus start-up 
with immediate access to the Micro Channel interface chip. 

FIG. 17 is a timing diagram for driving the local data bus 
signals. 

FIG. 18 is a timing diagram of the local data bus depicting 
a Micro Channel interface chip read of five words with no 
wait states. 

FIG. 19 is a timing diagram of the local data bus depicting 
a Micro Channel interface chip write of five words. 
FIG.20 is a timing diagram of the local data bus depicting 

a Micro Channel interface chip read of two words, write of 
two words and read of one word. 
FIG.21 is a flow diagram of the master execution process. 
FIGS. 22, 22A, and 22B are a block diagram depicting the 

relationship between the command word, the control block, 
the status word and the post command for the Micro Channel 
interface chip. 

FIG. 23 depicts the fields within the Micro Channel 
interface chip command word. 

FIGS. 24-27 depict the fields within the Micro Channel 
interface chip control block. 

FIG. 28 depicts the valid combinations of Micro Channel 
interface chip control block flags in a preferred embodiment. 

FIGS. 29, 29A, and 29B depict the fields of the Micro 
Channel interface chip status word. 

FIG. 30 shows the fields of the Micro Channel interface 
chip post command. 
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4 
FIG. 31 depicts the Micro Channel versus local data bus 

access memory map. 
FIG. 32 depicts the local processor bus to local data bus 

access memory map. 
FIG. 33 depicts the local processor bus memory map 

showing the queue initialization registers. 
FIGS. 34, 34A, and 34B show the fields in a queue 

initialization register according to the present invention. 
FIG. 35 depicts the local processorbus I/O map showing 

the queue pointer registers. 
FIG. 36 shows a preferred layout of a queue pointer 

register. 
FIG. 37 depicts the relative addresses of queues within the 

local process bus. 
FIG.38 is a flow diagram of the local processorbus queue 

read operation protocol flow. 
FIG.39 is a flow diagram of the local processorbus queue 

write operation protocol flow. 
FIG. 40 depicts the queue read control register, the queue 

write control register and the queue data register mapped 
against their Micro Channel I/O addresses. 

FIG. 41 depicts the queue read control register, 
FIG. 42 depicts the queue write control register, 
FIG. 43 is a flow diagram of the Micro Channel queue 

read operation protocol flow. 
FIG. 44 is a flow diagram of the Micro Channel queue 

write operation protocol flow. 
FIG. 45 depicts the free block list andjob pending register 

mapped against the Micro Channel I/O map. 

DETALED DESCRIPTION OF THE 
INVENTION 

The following definitions will be helpful to the reader in 
understanding the following description. 

Tern Definition 

A group of eight signal lines contained 
within a bus. 
Any device engaging in a data transfer or 
request of a bus. 

Byte 

Bus Participants 

Central A group of system logic responsible for 
Steering Logic assisting devices in maintaining and 

controlling Micro Channel data bus width 
compatibility. 

Device A block of logic which drives or receives 
information onto or from a bus, interprets 
the information and/or performs a specified 

- function. 

IIO Slave A slave device which is addressable within 
the I/O address space of the bus. 

Master A device which gains control of a bus with 
the intent of causing a data transfer 
toffrom a slave. 
A slave device which contains memory within 
the bus addressable space. 

Memory Slave 

Node A device. 
Queue A sequence of stored data or Queue Entries 

awaiting processing. 
Queue Entry 4, 8, or 16 bytes of stored data which 

together define a task, control, or 
informational data to be processed at a 
later time. 

Queue Read A pointer to the current sequential 
Pointer (QRP) location of the next Queue Entry to be 

processed. 
Queue Write A pointer to the current sequential 
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-continued 

Term Definition 

Pointer (QWP) location where a Queue Entry can be 
appended to a Queue. 

Resource A block of logic or device which makes 
itself accessible to a device for an 
information exchange. 

Semaphore A flag or indication of current status. 
Slave A device which provides or receives data 

during an operation under the control of a 
laster. 

Steering Directing the bytes contained in a bus to 
another byte within the bus. 

System A group of system logic responsible for 
Controller Micro Channel arbitration, device 

selection, system memory refresh, unique 
functions, and interfacing with the system 
processor. 

Transfer An exchange of information between two 
devices. 

Word A group of 16 signals contained in a bus, 
two bytes. 

FIG. 1 depicts a mainframe 100 such as an IBM main 
frame following the 370 architecture connected to worksta 
tions 101 and 102 and personal computers 103 and 104 by 
means of a serial bus 106. In the preferred embodiment, the 
mainframe is an IBM mainframe following the 370 archi 
tecture such as the 3090, or ES/9000 (TM), the workstations 
101 and 102 are IBM RISC System/6000's (TM) and the 
personal computers are in the IBM PS/2 (TM) family. The 
workstations 101, 102 and personal computers comprise 
well known components such as a system processor unit, 
ROM, RAM, one or more system busses, a keyboard, a 
mouse and a display. Further information can be found on 
the RISC System/6000 in IBM RISC System/6000 POWER 
station and POWER server Hardware Technical Reference - 
General Information Manual (SA23-2643), IBM RISC Sys 
tem/6000 POWERstation and POWER server Hardware 
Technical Reference - Options and Devices (SA23-2646), 
IBM RISC System/6000 Hardware Technical Reference - 
7012 POWERstation and POWERserver (SA23-2660), IBM 
RISC System/6000 Hardware Technical Reference - 7013 
and 7016 POWERstation and POWER server (SA23-2644) 
and IBM RISC System/6000 Hardware Technical Reference 
- 7015 POWER server (SA23-2645). Information on the 
PS/2 family can be found in Technical Reference Manual 
Personal System Model 50,60 Systems, Part No. 68X2224, 
Order No. S68X-2224 and Technical Reference Manual 
Personal Systems (Model 80), Part No. 68X2256, Order No. 
S68X-2256. A description of the serial bus architecture can 
be found in Serial I/O Architecture: PKD081102, Feb. 29, 
1989. Both the RISC System/6000 and the PS/2 incorporate 
the Micro Channel Bus as their systems bus. The Micro 
Channel contains a 32-bit address bus, a 32-bit data bus, an 
arbitration bus and a variety of control signals. Further 
information can be found on the Micro Channel in Low-End 
Parallel Bus Architecture, Family 2: LEPB-ADS-0002-00 
4-U7 and Personal System/2 - Hardware Interface Technical 
Reference Architectures, Part No. 84F9808, Order No. 
X84F-9808-00. All the above references are available from 
the IBM Corporation. 

All of the workstations and personal computers 101-104 
interface with serial bus 106 by means of a Micro Channel 
to Serial Bus Adapter (MCSB) card 108. FIG. 2 shows a 
functional block diagram of the various components of the 
MCSB card 108. Serial bus 106 and Micro Channel Bus 110 
are coupled to the serial interface 113 and the Micro Channel 
Interface controller (MIC) 112 respectively. The MIC chip 
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6 
112 is a high performance interface between three busses: 
the Micro Channel, a general purpose microprocessor bus 
called the Local Processor Bus 115, and a dedicated data bus 
called the Local DataBus 117. The purpose of the MIC 112 
is to translate the protocol on these three busses and allow 
for quick and efficient data and control transfers between 
them. The MIC 112 is intended to be used on high speed I/O 
or processing adapters which require preprocessing, addi 
tional processing or data management functions before/after 
data can be moved to or sent by a device on the Micro 
Channel. 

Serial interface 113 represents the serial input/output 
circuitry which includes optical digital signal conversion, 
clock recovery synchronization, serial to parallel conver 
sion, optic decoding and coding and clock conversion. The 
MIC 112 and the serial interface 113 are joined by the Local 
Processor Bus 115 and local data bus 117. The Local 
Processor 119 is preferably an INTEL80960 (TM) processor 
which provides the processing power for the Micro Channel 
to serial bus interface 108. The Local Processor 119 also 
includes programmable read only memory 120 (same or 
different chip). A Local Processor Store 121 is also coupled 
to the Local Processor Bus 115 and provides storage for the 
INTEL 80960 programs as well as storage for the MIC 112 
logic. PROM 120 contains diagnostics and initialization 
code for the devices coupled the Local Processor Bus 115. 
Other devices 122 such as printers, modems or video moni 
tors can be coupled to the Local Processor Bus 115. The 
local data bus 117 is used for the data as opposed to 
processing functions between the MIC chip 112 and serial 
interface 113. The MIC 112 and serial interface 113 share the 
local data store 123 which provides a buffer for data which 
initially comes from either the serial or Micro Channel 
Busses 106, 110. For example, some data might initially 
come in from the Micro Channel 110, the MIC 112 would 
initially store the data in local data storage 123. The MIC 
112 would then notify the Local Processor 119 that data is 
present and the Local Processor 119 would start the serial 
interface 113 to move the Micro Channel data from the local 
data store 123 to the serial bus 106. 

One preferred embodiment of the Micro Channel to Serial 
Adapter Card is described in commonly assigned copending 
application Serial No. 07/693,834, and is entitled "Serial 
Channel Adapter” filed Apr. 30, 1991 now abandoned in 
favor of U.S. patent application No. 08/206,290, filed Mar. 
7, 1994, which is hereby incorporated by reference. Other 
commonly assigned, copending applications related to the 
present invention include: "Micro Channel Interface Con 
troller' by J. L. Swarts, et al., filed Sep. 5, 1991, as U.S. 
patent application No. 07/755,477, abandoned in favor of 
U.S. patent application No. 08/101,793, filed Aug. 2, 1993, 
now U.S. Pat. No. 5,379,386 issued Jan. 3, 1995 which 
describes the functions of the MIC 112, "1-BitToken Ring 
Arbitration Architecture' by G. L. Guthrie, et al., filed Sep. 
5, 1991 as U.S. patent application No. 07/755,474, now U.S. 
Pat. No. 5,388,223 issued Feb. 2, 1995; and "Micro Channel 
Interface State Machine and Logic" by J. L. Swarts, filed 
Sep. 5, 1991 as U.S. patent application No. 07/755,476. 
Below is a summary of highlighted features/functions 

which the MIC 112 supports. 
Micro Channel Interface Features 
Master and Slave capability 
10 MHz Streaming Data transfer rate 
16/32/64-bit Streaming Data transfer widths 
Bus Steering 
Burst capability 
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Programmable Memory and I/O space utilization 
Memory Address capability of 4G bytes 
I/O Address capability of 64K bytes 
Peer to peer capability 
Fairness 

Address and Data Parity 
Up to 8 Interrupts 
Access to Vital Product Data 
Local Processor Bus Interface Features 
Intel 80C186/80960KB compatible bus. Some external 
MSI logic may be required depending on the specific 
implementation to guarantee proper interfacing with 
the microprocessor. 

Master and Slave capability 
Hardware Queue Management capability 
Memory Address capability of 1 Mbyte 
Address and Data Parity 
Local Data Bus Interface Features 

100 M bytes/sec burst transfer rate 
Master capability 
Address capability of 1 Mbyte 
Programmable Read Wait States 
Time shared bus arbitration 
Address and Data Parity 
Extensive error detection and logging 
Self-Test capability 
Internal Wrap capability 
64 byte Data Buffering 

Micro Channel Interface Controller (MIC) 
Overview 

In FIG. 3 the MIC 112 allows data transfers to occur 
between the MC 110, LDB 117, and LPB 115. To accom 
modate the high speeds of the MC 110, the MIC 112 
provides buffers 145 which improve overall throughput 
performance. 
As shown in FIG. 3, the MIC 112 is partitioned into 

several functional units. Each of these functional units are 
dedicated to perform a special operation or task which will 
in some way interact with one or more of the other func 
tional units. Each of the units contains a lower level of 
control and/or data logic specifically designed for perform 
ing its operation. Together, these units provide the MIC 112 
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with its interconnections between the MC 110, LDB 117, 
and LPB 115. 
The MCInterface 130 is responsible for implementing the 

proper timing, control, and data interfacing required to 
connect the MIC 112 to the Micro Channel 110. The MC 
Interface 130 contains logic to synchronize, to interpret, and 
to control address, data, arbitration, parity, interrupt, and 
control handshaking signals with the other units within the 
MIC 112. The MCInterface 130 allows the operation of two 
MC modes, the Basic Transfer mode and the Stream Data 
Mode. 

The Basic Transfer mode defines the default protocol of 
the MC 110. Most MC compatible devices have the ability 
to perform operations in this mode. While operating in this 
mode the MIC 112 can be defined by the following MC bus 
device types: 

Intelligent Bus Controller 
I/O Slave 
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Memory Slave 
Setup Slave 
When operating as an Intelligent Bus Controller the MIC 

112 is considered to be a MC master. The MIC 112 only 
becomes a MC Master when a commanded transfer has been 
initiated. While operating as an I/O, Memory or Setup Slave 
the MIC 112 is considered to be a MC slave. The MIC 112 
only becomes a MC slave when initiated by another device 
acting as a MC Master. 
The Stream Data mode allows the MIC 112 to participate 

in high speed data transfers with other Stream Data mode 
MC devices. Stream Data mode provides significant perfor 
mance enhancements for transfers of large blocks of data 
and automatic speed matching for clock synchronous data 
transfers. While in Stream Data mode the MIC 112 will 
operate as one of the following MC types: 

Streaming Data Master 
Streaming Data Slave 
The MIC 112 operates as a Streaming Data Master only 

when initiated by a commanded transfer and operates as a 
Streaming Data Slave when initiated by another device 
acting as a Streaming Data Master. MC Data Interface 131 
and MC Address Interface 132 are part of the MC interface 
and control the data and address information respectively. 
The Micro Channel Interface 130 also includes control code 
134 which includes code used for capturing command and 
strobe signals of the Micro Channel, the synchronous state 
machine and data validation code. 
The LPB Interface 133 is responsible for implementing 

the proper timing, control, and data interfacing required to 
connect the MIC 112 to the Local Processor Bus 115. The 
LPB Interface 133 contains logic to control the address, 
data, arbitration, interrupt, parity, error, and control hand 
shaking signals. The MIC 112 can operate as a master or as 
a slave on the LPB 115. LPB Master operations can be 
initiated by tasks necessary to execute and complete a 
commanded transfer, a MC device, a reportable error, or 
maintenance of the Prefetch FreeBlock Buffer. Slave opera 
tions are controlled by devices on the LPB 15 requesting 
access to the LDB 117, the MIC's Queue Management 
function, or error and internal MIC 112 control and initial 
ization registers. 
The LDB Interface 135 is responsible for implementing 

the proper timing, control, and data interfacing required to 
connect the MIC 112 to the Local Data Bus 17. The LDB 
Interface 135 contains logic to control the address, data, 
arbitration, parity, error, and control signals. In the preferred 
embodiment, unlike the LPB 115 and MC 110 on the LDB 
117, the MIC 112 only operates as a LDB Master. LDB 
Master operations are initiated by a commanded transfer, a 
MC device, or by a LPB device. However, when not a 
Master, the MIC 112 can monitor the LDB 117 and checkfor 
possible protocol or parity errors. The LDB Interface 135 
can be divided in the LDB Data Interface 136 and LDB 
Address 137 which can handle the data and address signals 
respectively. 
The Master Execution Unit 139 is responsible for con 

trolling and coordinating all commanded transfer activities 
between other units within the MIC 112. A list of detailed 
operations and tasks which the Master Execution Unit is 
capable of performing is shown below: 

Monitors the Queue Manager 143 for pending com 
manded transfers. 

Coordinates fetching of MIC Command Words (MCW) 
and MIC Control Blocks (MCB) with the LPB Interface 133. 
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Controls the initialization and loading of the Micro Chan 
nel Address Generator (MAG) 155, the Local Address 
Generator 156, and the Output Data Buffer (ODB) 149. 

Controls when the MC Interface 130 fetches Free Blocks 
from other MC devices. 

Coordinates the data transfer between the MC Interface 
130 and LDB Interface 135. 

Coordinates with the MC Interface 130 Queue Write 
operations for posting completion status to other MC 
devices. 

Controls the posting of MIC Status Words (MSW), which 
indicate completion status of the commanded transfer and 
possible errors which may have occurred. 
The Error Controller (EC) 141 monitors MIC internal 

activities for possible error situations or conditions. If an 
error occurs, the EC 141 is responsible for coordinating with 
the LPB Interface 133 posting of an Unsolicited Status Word 
(USW). 
The Queue Manager 143 (QM) is responsible for con 

trolling hardware pointers indicating the current locations of 
pending Command Words, Status Words, or Free Blocks and 
current locations where new Command Words, Status 
Words, or Free Blocks can be entered. In maintaining these 
pointers, queues of Command Words, Status Words, or Free 
Blocks can be stored in a FIFO like manner for later 
retrieval. The QM 143 is also responsible for indicating to 
either the MIC 112 or a LPB 119, 122 device whether a 
Queue contains pending data. The QM 143 has the ability to 
maintain pointers for 16 Queues located in the LPB Memory 
space 121 and controlling an assignable interrupt to each 
Queue. Also, the QM monitors pointer activity for possible 
errors and reports them to the LPB Interface 133 for later 
retrieval. 
The MIC 112 contains a group of six internal buffers 145. 

These buffers are used to speed match and coordinate data 
transfers between the MC, LPB, and LDB Interfaces 130, 
133,135. 
The Output Data Buffer (ODB) 149 is a 16x36-bit, 1-port 

FIFO capable of holding 64 bytes of data and byte parity. 
The purpose of the ODB 149 is to buffer MC Master data 
from the MIC LDB Interface 137 to the MC Interface 133 
or to the IDB for LDB wrap operations. The loading and 
unloading of the ODB 149 is controlled by the MIC LDB 
and MC Interface 135,130 under the guidance of the Master 
Execution unit. 

The Input Data Buffer (IDB) 150 is a 16x36-bit, 2-port 
FIFO, capable of holding 64 bytes of data and byte data 
parity. The purpose of the IDB 150 is to buffer data transfers 
during all MC Slave operations and MC Master read opera 
tions to and/or from the MICLDB Interface 135 unit, as well 
as LDB wrap operations. 
The Input Address Buffer (IAB) 151 is a 16x23-bit, 2-port 

FIFO. The purpose of the IAB 151 is to buffer addresses and 
control signals related to data stored in the IDB 150. 
Addresses buffered in the IAB 151 can be loaded from either 
the Slave Address Generator (SAG) 154 or the Local 
Address Generator (LAG) 156. 
The Queue Read Buffer (QRB) 146 is a 8x18-bit, 2-port 

FIFO. The purpose of the QRB 146 is to buffer up to 16 
bytes of Queue data and parity requested by a MC device. 
The LPB Interface 133 controls the writing of the QRB 146 
under the management of the QM 143 when a request from 
the MC 110 is made. The QRB 146 can only be read when 
the MIC 112 is a MC Slave. Read access to the QRB 146 is 
controlled by the MICMC Interface 130 using a semaphore 
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10 
and control register. 
The Prefetched Free Block Buffer (FBB) 147 is an 8x18 

bit, 2-port FIFO. The purpose of the FBB 147 is to maintain 
four byte Free Block entries for quick access by a MC 
device. These Free Block entries contain the starting physi 
cal MC Memory address needed to access an available block 
of memory on the LDB 117. When a MC device has 
removed a FreeBlock entry from the FBB 147, the MIC 112 
can fetch another FB entry from the MICLPB Interface 133. 
In the preferred embodiment, the FBB 147 can only be read 
when the MIC 112 is a MC Slave. 

The Queue write Buffer (QWB) 148 is a 16x25-bit, 2-port 
FIFO. The purpose of the QWB 148 is to buffer data, parity, 
and control, which is designed for a Queue on the LPB 115 
managed by the QM 143. Up to 32 bytes of Queue data can 
be buffered. In the preferred embodiment, the QWB 148 can 
only be written to when the MIC 112 is a MC Slave. Write 
access to the QWB 148 is controlled by the MC Interface 
130 using a semaphore and control register. Read access to 
the QWB 148 is controlled by the MIC LPB Interface 133 
and QM 143. 
The MIC 112 contains three Address Generators 153 

which provide most of the addressing requirements for data 
transfer between the MC and LDB Interfaces 130, 135. 
The Slave Address Generator (SAG) 154 is used during 

MC Streaming Data Slave and LDB wrap operations. Its 
purpose is to provide addresses to the IAB 151 which 
correlate to the data being received by the MCInterface 130. 
These addresses are then used by the MIC LDB Interface 
135. The SAG 154 can address up to 1 Mbyte of data. 
The Micro Channel Address Generator (MAG) 155 is 

used during commanded transfer operations. The MAG 155 
provides the MC Interface 130 with addresses needed for 
MC Master operations. While the MAG 155 is capable of 
accessing 4 G bytes of data, the MAG 155 can only 
increment addresses within a 64 Kbyte address range during 
a single commanded transfer. The MAG 155 also provides 
the SAG 154 with initial addresses during a LDB wrap 
operation. 
The Local Address Generator (LAG) 156 is used during 

commanded transfers to address data destined to or sourced 
from the LDB Interface 135. While the LAG 156 can access 
1 Mbyte of data, the LAG 156 can only increment addresses 
within a 64 Kbyte address range during a single commanded 
transfer. 
The Self Test Interface (STI) 157 provides a serial inter 

face for diagnostic and debug operations. The STI 157 
provides control and access to scan strings, registers, and 
clock controls within the MIC 112. The ST 157 can be 
accessed either directly or via external I/O signals. 
The definitions, protocols, electrical characteristics, and 

physical requirements of the external signal I/O, power, and 
ground pins are described in this section. Positive logic is 
used to describe the logic levels used in this document. All 
of the logic signal lines are TTL compatible. The functions 
of the external I/O pins of the MIC 112 are defined in this 
section. FIG. 4 illustrates a summary of the external signals 
which interface with the MIC 112. 

MC Interface 

This section defines the signal I/O used to interface the 
MIC 112 with the MC 110. All references to master and 
slave are for Micro Channel operations. 
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+Address Bus Bits 0 through 31: These signal lines are 
used to address memory and I/O slaves attached to the MC 
110 as well as select the MIC 112 for slave operations. The 
32 address lines allow access of up to 4 G bytes of memory. 
Only the lower 16 address bits are used for I/O operations 
and all 16 lines must be decoded by the I/O slave. 

+Address Parity Bits 0 through 3: These lines represent 
the odd byte parity of all address bits on the MC 110 during 
read and write operations. A master generates a parity bit for 
each addressbyte and the receiving slave performs the parity 
checking to ensure the integrity of the address. +APAR(0)i 
represents parity on +A(0:7)i, +APAR(1)i represents parity 
on +A(8:15)i, +APAR(2)i represents parity on +A(16:23)i, 
and +APAR(3)i represents parity on +A(24:31)i. These 
signals are also used during a 64-bit Streaming Data transfer 
and represent odd byte parity for data on the address bus. 

APAREN 
-Address Parity Enable: This signal is generated by a 

master to indicate to a slave that the address parity signal 
lines are valid. This signal is driven active by a master when 
it places an address on the MC 110. During the 64-bit 
Streaming Data mode this signal is sourced by the device 
which is sourcing the data. 

+Data Bus Bits 0 through 31: These lines are used to 
transmit and receive data to and from a master and slave. 
During a Read cycle, data becomes valid on these lines after 
the leading edge of -CMD but before the trailing edge of 
-CMD and must remain valid until after the trailing edge of 
-CMD. However, during a Write cycle, data is valid before 
and throughout the period when the -CMD signal is active. 

+Data Parity Bits 0 through 3: These signals represent odd 
byte parity on the Data Bus, +D(0:31)i. A parity bit is 
generated for each Data Bus byte. +DPAR(0)i represents 
parity on +D(0:7)i, +DPAR(1)i represents parity on 
+D(8:15)i, +DPAR(2)i represents parity on +D(16:23)i, and 
+DPAR(3)i represents parity on +D(24:31)i. 
-DPAREN 
-Data Parity Enable: This signal is generated by the 

device sourcing the data to indicate that the data parity signal 
lines are valid. 
-ADL 

-Address Decode Latch: This signal is driven by the 
master as a convenient mechanism for a slave to latch valid 
address and status bits. Slaves can latch information with the 
trailing edge of -ADL. 
-CD SFDBK 

-Card Selected Feedback: This signal is driven by the 
MIC 112 as a positive acknowledgement of its selection by 
a master. This signal is not driven when the MIC 112 has 
been selected as a setup slave. This signal can be used to 
generate the -CD DS16 and -CD DS32 signal as well. 

-Selected Feedback Return: This signal is driven by the 
system logic to return the positive acknowledgement from a 
slave to the master of its presence at the address specified by 
the master. 
-DS 1.6 RTN 

-Data Size 16 Return: This signal is driven by the system 
logic to indicate to a master the presence of a 16 bit data port 
at the location addressed. 
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12 
-DS 32 RTN 
-Data Size 32 Return: This signal is driven by the system 

logic to indicate to a master the presence of a 32bit data port 
at the location addressed. 

-BE(0:3)i 
-Byte Enable Bits 0 through 3: These lines are used 

during data transfers to indicate which data bytes will be 
valid on the MC 110. -BE(0)i enables --D(0:7)i, -BE(1)i 
enables +D(8:15)i, -BE(2)i enables +D(16:23)i, and 
-BE(3)i enables +D(24:31)i. These signals are not valid for 
8-bit or 16-bit Micro Channel Basic Transfer operations. 
--MADE 24 
+Memory Address Decode Enable 24: This signal pro 

vides an indication of usage of an unextended (24 bit) 
address on the MC 110. When active (high), in combination 
with an address, indicates that an unextended address space 
less than or equal to 16MB is on the MC110. When inactive 
(low), in combination with an address, indicates that an 
extended address space greater than 16 MB is on the MC 
110. This signal is driven by all masters and decoded by all 
memory slaves, regardless of their address space size. 
When the MIC 112 is a MC Master this signal is deter 

mined by the upper byte of the MAG 155. If the upper byte 
is equal to "00000000 then --MADE24 is active high. 
-SBHE 
-System Byte High Enable: This signal indicates whether 

the high byte of data is enabled when communicating with 
a 16-bit MC Slave. 
-MI-IO 
+Memoryf-I/O Cycle: This signal distinguishes a MC 

Memory cycle from a MC I/O cycle. 

-Status Bits 0 and 1: These signals provide the indication 
of the start and define the type of MC cycle. 

-Command: This signal is used to define when data is 
valid on the MC 110. The trailing edge of this signal 
indicates the end of a MC cycle. 

--CD CHRDY 

--Card Channel Ready: This signal allows a slave addi 
tional time to complete a bus operations. When activating 
this signal during a read operation, a slave promises that data 
will be valid on the bus within a time specified. A slave may 
also use this signal during a write operation if more time is 
needed to store the data from the bus. 
--CHRDYRTN 

Channel Ready Return: This signal is driven by the 
system logic to return the +CD CHRDY signal received 
from the slave to the master. 
-SDEN 

-Streaming Data Enable: This signal is used to enable the 
external MSI drivers when the MIC 112 has been selected as 
a MC Slave with Streaming Data capability. 
-MSDR 
-Multiplexed Streaming Data Request: This signal indi 

cates whether a MC Slave, or the MIC 112 when selected as 
a MC Slave, has the capability to perform an 8-byte Stream 
ing Data transfer. 

-SDR(0:1) 
-Streaming Data Request Bits 0 through 1: These signals 

provide information about the performance characteristics 
during Streaming Data mode. This information is used by 
the MIC 112 as a master to determine the maximum clocking 
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rate of the slave device during a Streaming Data transfer. 
-SD STB 

-Streaming Data Strobe: This signal determines when 
data is valid during a Streaming Data transfer. The maxi 
mum clock rate of this signal is determined by the 
-SDR(0:1) lines and the Streaming Data Clock input sig 
nals. 

+Arbitration Input bits 0 through 3: These signal lines are 
used to receive the arbitration level presented on the MC 
Arbitration Bus. The lowest priority ARB bus level has a 
hexadecimal value of 'F' and the highest priority ARB bus 
level has a hexadecimal value of 'O'. ARB level of 'F' should 
be used for the default MC Master. 
+ ARBO(0:3)i 
+Arbitration Output bits 0 through 3: These signal lines 

are used when the MIC 112 arbitrates for use of the MC 110. 
--ARBI-GNT 

+Arbitration?-Grant: This signal defines when an arbitra 
tion cycle begins and ends on the MC 110. 
-BURST 

-Burst: This signal is driven by an arbitrating Bus Par 
ticipant to indicate to the System Controller the extended use 
of the MC 110 when transferring a block of data. This type 
of data transfer is referred to as a burst cycle. The signal is 
shared by all Bus Participants and can only be activated by 
the participant granted the MC 110. 
-PREEMPT 

-Preempt: This signal is driven by arbitrating Bus Par 
ticipants to request usage of the MC 110 via arbitration. Any 
Bus Participant with a bus request will activate-PREEMPT 
and cause an arbitration cycle to occur. A requesting Bus 
Participant will remove its preempt upon being granted the 
MC 110. 

-IRQ(0:3) 
-Interrupt Request bits 0 through 3: These signals are 

used to indicate to the System Processor that an I/O Slave 
requires attention. 
+IRQ SEL/SS1 OUT 
+Interrupt Request Select/Scan String 1 Output: This 

signal can be used by external logic to control which set of 
four MC Interrupt Request signals can be active. This signal 
can then effectively give the MIC 112 access to eight MC 
Interrupt Requests. This signal is set in a POS Register field. 
In addition, this signal is defined as the output of scan string 
1 during LSSD test mode. 
-CD SETUP 

-Card Setup: This signal is used to individually select 
devices during a system configuration. When this signal is 
active, configuration data and the Device ID may be 
accessed. 
-CHCK 

-Channel Check: This signal is used to indicate a high 
priority interrupt to the System Controller that an exception 
condition, i.e. parity error, etc., has occurred on the MC 110. 
A field in a POS register defines whether this signal is 
synchronous or asynchronous. 

--MA-S 
+Master operation?-Slave operation: This signal gives an 

indication of the current Micro Channel operation that the 
MIC 112 is participating in. This signal can be used to 
control the direction and enabling of external Micro channel 
drivers and receivers. 
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-DOf 
+Data Output Operation?-Input operation: This signal is 

used to indicate the direction of +D(0:31)i and 
+DPAR(0:3)i. 

+Address Output Operation?-Input operation: This signal 
is used to indicate the direction of +A(0:31)i and 
+APAR(0:3)i. 
-DLOE 

-Data Low Output Enable: This signal is used to indicate 
whether the lower two bytes of the MC data bus are active. 

Local Processor Bus Interface 

This section defines the signal I/O used to interface the 
MIC 112 with the LPB 115. All references to master and 
slave are for Local Processor Bus operations. 
+ADDR/DATA(0:19)i 
+Address/Data bus bits 0 through 19: This bus is used to 

address, read from, and write to Local Processor Store 121. 
This bus provides for addressing of up to 1 Mbyte. 

+Address/Data Parity bits 0 through 2: These lines pro 
vide odd parity for +ADDRIDATA(0:19)i. +A/D PAR(0)i 
provide odd parity for the most significant 4-bits when 
address is present. +A/D PAR(1)i provide odd parity for 
+ADDR/DATA(4:11)i. +A/D PAR(2)i provide odd parity for 
+ADDR/DATA(12:19)i. 
-ALE 

-Address Latch Enable: This signal is be used to exter 
nally latch the address on the +ADDR/DATA(0:19). 

+Read/Write: This signal is used to indicate the operation 
and direction of data on the LPB 115. 
-DAV & RDY 

-Data Valid and +Ready: These two signals supply the 
MIC 112 with the necessary handshaking to determine 
whether data on the +ADDR/DATA(0:19)i bus is valid 
and/or has been accepted. 
--MA-IO 
+Memory-Input/Output: This signal is used to determine 

access to Memory or I/O space on the LPB 115. 
- BHE 

-Byte High Enable: This signal determines when the high 
byte of a two byte word is active. 
-LPB ERR 

-Local Processor Bus Error: This signal indicates to the 
MIC 112 that an error condition has occurred on the Local 
Processor Bus 115. This signal is a receive only signal and 
its purpose is to end a MIC LPB Master access, which may 
be in a dead-lock state, i.e., a not ready condition. 
-LPM/SS4 IN 
Local Processor Master/Scan String 4 Input: This signal 

indicates whether the current user is a microprocessor or 
another LPB device 122. The purpose of this signal is to 
assist the MIC 112 in determining the correct timing and 
handshaking required during LPB slave operations. In addi 
tion this signal is defined as the input for scan string 4 during 
LSSD test mode. 
-BUS REQ/SS3 OUT 
-Bus Request/Scan String 3 Output: This signal indicates 

when the MIC 112 needs to use the LPB 1.5 for a LPB 
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Master operation. In addition this signal is defined as the 
output for scan string 3 during LSSD test mode. 
-BUS GNT/SS3 IN 
-Bus Grant/Scan String 3 Input: This signal indicates 

when the MIC 112 has acquired ownership of the LPB 115 
and can perform LPB Master operations. In addition this 
signal is defined as the input for scan string 3 during LSSD 
test mode. 
-CSEL 

-Chip Select: This signal is used to enable the MIC 112 
for controlled LPB memory slave operations involving 
initialization register and accesses to LDB 117. 

-INT(0:3) 
-Interrupt Bits 0 through 3: These signals are used by the 

EC 141 and/or QM 143 to request service or attention by a 
LPB device. 

Local Data Bus Interface 

This section defines the signal I/O used to interface the 
MIC 112 with the LDB 117. As mentioned previously, in the 
preferred embodiment, the MIC 112 conducts only master 
operations on the LDB 117. 

+Address bits 0 through 9: This bus is used to address 
LDB and is capable of accessing 1 Mbyte of data. This bus 
is a multiplexed address bus providing the ability to present 
an 8-bit high address and a 10-bit low address. Together the 
high and low address create a 256 4. Kbyte paging address 
scheme. The-HALE signal is used to indicate when address 
is defined as the high address. 

+Address Parity bits 0 through 1: These signals indicate 
odd parity on +ADDR(0:9)i. +APAR(0)i indicates odd par 
ity on +ADDR(0:1)i, and +APAR(1)iindicates odd parity on 
+ADDR(2:9)i. 

+DATA(0:31)i 
+Data bits 0 through 31: This bus is used to read from or 

write to data on the LDB 117. 

+Data Parity bits 0 through 3: These signals indicate odd 
parity on each byte of the +DATA(0:31)ibus. 
--Rf-W 

+Read?-Write: This signal indicates whether data is writ 
ten to or read from the LDB 117. This signal is valid when 
either the high or the low address are valid. 

-Byte Enable Bits 0 through 3: These signals indicate 
which bytes of the +DATA(0:31)i contain valid data. 
-BE(0)i enables +D(0:7)i, -BE(1)i enables +D(8:15)i, 
-BE(2)i enables +D(16:23)i, and -BE(3)i enables 
+D(24:31)i. These signals also indicate that +ADDR(0:9)i 
contain the least significant 10-bits of the LDB address. 
-RARBO/SS2 OUT 
-Ring Arbitration Out/Scan String 2 Output: This signal 

is used to pass the LDB arbitration token to the next device 
on the LDB 117. In addition, this signal is defined as the 
output for scan string 2 during LSSD test mode. 
-RARBI/SS2 IN 

Ring Arbitration In/Scan String 2 Input: This signal is 
used to receive the LDB arbitration token. In addition, this 
signal is defined as the input for scan string 2 during LSSD 
test mode. 
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-LDB ERR 

-Local Data Bus Error: This signal indicates whether an 
error has occurred on the LDB 117. The current owner of the 
Ring Arbitration Token must terminate any transfer on the 
LDB 117 and cancel the Token when -LPB Error is active 
for more than 1 cycle. When this signal is active for only 1 
cycle, a parity error has been detected and the ring remains 
operational. 
-HALE 

-High Address Latch Enable: This signal is used to 
validate +ADDR(2:9)i as the most significant 8-bits of a 1 
Mbyte LDB access 
-ROB 

Request On Bus: This signal is used to inform the owner 
of the LDB token that another LDB device 122 wishes to use 
the bus 117. This signal enables the THT and TRT timers 
described below. 

Self Test Interface 

The STI 157 provides access to the MIC's self test 
capabilities controlled by an external diagnostic device. 

+A and B Clocks: These two clocks shall be used by the 
MIC's STI 157. The operating frequency of these two clocks 
will be a maximum of 6.25 MHz. These signals also define 
the Scan A and System B clocks for LSSD test mode. 

--DIN/SS1 N 
+Data In/Scan String 1 Input: This signal provides the 

MIC STI with serial input information. In addition, this 
signal defines the input for scan string 1 during BSSD test 
mode. 
+MODE 

+Mode: This signal determines whether the STI is oper 
ating in an Instruction/Status mode or Scan mode. 
-SEL 

-Select: This signal is used to enable STI operations. 
+DOUT/SS4 OUT 
+Data Out/Scan String 4 Output: The signal provides 

serial output information from the STI. In addition, this 
signal defines the output for scan string 4 during LSSD test 
mode. 

Miscellaneous 

--SYS CLK 
+System Clocks: These two lines provide the system 

clocks needed for the MIC 112. The operating frequency of 
these clocks is 25 MHz. Both signals receive equivalent 
clocks. These signals also define the LSSD B and C clocks 
during LSSD test mode. 

--SD CLK 
+Streaming Data Clocks: These two lines provide the 

clocks needed for MIC Streaming Data Master transfers. 
Both signals receive equivalent clocks. These signals also 
define the LSSD B and C clocks during LSSD test mode. 

- TEST C 
This signal is used during manufacturing tests to validate 

the C clock latching capability of the internal latches. 
-DI 

-Drive Inhibit: This signals forces all MIC signal drivers 
to a tri-stated condition. This signal should only be used for 
LSSD test mode. During operational mode this signal should 
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be pulled up to a '1' level. 

+Test Inhibit: This signal sets the MIC 112 into LSSD test 
mode. All internal MIC registers receive system clocks 
during LSSD test mode. During operational mode this signal 
should be a '0' level. 

--CI 
+Clock Isolate: This signal defines whether the STI A 

Clock signal is to be used as a scan clock or operational 
clock. During operational mode this signal should be a '0' 
level. 

+Scan Gate: This signal defines the component state, 
either shift or component, during LSSD test mode. During 
operational mode this signal should be a '0' level. +SYS 
RESET 

+System Reset: This signal can be driven by the System 
Controller to reset or initialize MC devices, also referred to 
as the MC +CHRESET. During a power-up sequence, this 
signal must be active for a specified minimum time of 1 
usec. This signal may be logically OR with an adapter level 
IeSet. 

Micro Channel Interface 

The protocol for Arbitration, Basic Transfer, Streaming 
Data, System Configuration and Steering for the MC are 
described below. 

Arbitration 

Arbitration is the resolution of multiple bus requests, 
awarding use of the bus to the highest priority requestor. The 
Micro Channel arbitration scheme operates as a multi-drop 
(dot-OR) mechanism. This type of arbitration scheme allows 
for up to 16 participants, in an arbitration cycle, while only 
using four signal lines. +ARBI(0:3)i and +ARBO(0:3)i with 
assistance from some external drivers comprise the four 
signals needed for arbitration on the MC 110. 
The MIC 112 requests service by activating the -PRE 

EMPT signal. The system responds by raising the +ARB/ 
GNT when the current bus owner completes its bus activity. 
The current bus owner must release control of the MC 110 
no more than 7.5 usec after activation of the -PREEMPT 
signal. When the system activates +ARB/GNT the device 
with the highest priority gains control of the MC 110. Abus 
owner may use the -BURST signal to maintain control of 
the MC 110 for extended periods of time. If Fairness is 
enabled, the MIC 112 can re-request the MC 110 only when 
all other MC devices have had their first requests serviced. 

Basic Transfers 

Basic Transfer mode is the default mode for exchange of 
information between MC devices. A Basic Transfer begins 
when a MC master, usually the bus owner, asserts the status 
lines (-S0 and -S1) and +M/IO signals, indicating the type 
of operation to be performed on the MC. The MC master 
also asserts +A(0:31)i, +APAR(0:3)i, APAREN, MADE24, 
TR32, SBHE, and -BE(0:3)i if required for the type of 
transfer. Once the address bus is stable, the -ADL is 
asserted. 

All devices on the MC monitor the signals which have 
been asserted by the MC master. When a device detects 
addresses within a predefined range, the device becomes the 
MC slave. The MC slave then asserts the -DS16, DS32, and 
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-CD SFDBK signals as positive acknowledgement of its 
selection. These acknowledgement signals are received by 
the MC master as -DS16 RTN, DS32 RTN, and -SFD 
BKRTN and signify the type of MC slave and the readiness 
of the MC slave for the transfer. 

During a write operation the +D(0:31)i and +DPAR(0:3)i 
are asserted with the -CMD signal. During a read operation, 
data on the +D(0:31)i does not become valid until the MC 
slave is ready, and+CHRDY is active, to send the data to the 
MC master. 

A MC Slave can extend a Basic Transfer cycle beyond 
200 ns by asserting the +CD CHRDY signal. AMC master 
can also maintain ownership of the MC by asserting the 
-BURST signal. Termination of the Basic Transfer mode 
and ownership of the MC 110 by the MC master occurs 
when the -BURST and -CMD are inactive. 

Streaming Data 
Streaming Data mode begins as Basic Transfer mode 

does. The MC master supplies a single address, usually, the 
starting address, in a range for which a MC slave will 
respond to. Addresses for 16, or 32-bit are aligned on four 
byte address boundaries. Addresses for 64-bit transfer are 
aligned on eight byte address boundaries. 
When the selected MC slave sends its positive acknowl 

edgement to the MC master, three additional signals are sent 
to the MC master to indicate the MC slaves ability of 
Streaming Data mode. Two of these signals, -SDR(0:i), 
determine the maximum rate at which the MC slave can 
operate in Streaming Data mode. The third signal, -MSDR, 
indicates the MC slaves ability to transfer data in the 64-bit 
Streaming Data mode. The -CMD signal is then asserted 
and held active until termination of the Streaming Data 
mode. The -SD STB and --CD CHRDY are used to indicate 
when data is valid during the Streaming Data transfer. 
The Streaming Data mode transfer can be terminated by 

either the Streaming Data master or Streaming Data slave. A 
Streaming Data master can begin termination of the transfer 
by deactivating the -S0,-S1 signals, the Streaming Data 
slave responds with deactivating the -SDR(0:1)/-MSDR 
signals. The termination will be complete when the Stream 
ing Data master deactivates-CMD. A Streaming Data slave 
can begin termination of the transfer by deactivating the 
-SDR(0:1)/-MSDR signals. The termination will be com 
plete when the Streaming Data master deactivates-S0,-S1, 
and -CMD. -SDR(0:1) will become tristated after -CMD 
deactivates. 

System Configuration 
A System Configuration protocol is used to initialize and 

read the POS registers with the MIC 112 or any other MC 
device. During a System Configuration, the selected MC 
device becomes a Setup slave. The System Configuration 
protocol is similar to the Basic Transfer mode except for the 
following modifications: 
The MC device is selected using the -CD SETUP signal 

not by decoding of the address bus or arbitration. 
Only the three least significant address bits are used or 

decoded. 
Only I/O Read/Write operations are performed. 
The selected device does not assert the -CD SFDBK as 

positive acknowledgement. 
All transfers are single byte (8-bit) transfers, which occur 

only on the least significant byte of the data bus. 
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A single configuration cycle is 300 ns. 
Parity is not supported. 

MC Steering 
To maintain bus width compatibility and flexibility the 

MIC 112 is able to operate in several bus width configura 
tions. Transfers which involve moving data between the 
LDB 117 and the MC 110 have the capability of 64, 32, 16, 
and/or 8-bits depending on the other MC device involved in 
the transfer. Transfers which involve writing to or reading 
from Queues located in Local Processor Store 121 have the 
capability of 32, 16, and/or 8-bits. POS register transfers are 
on byte boundaries only. Transfers between MC devices 
utilize their maximum bus width capability whenever pos 
sible. The MIC 112 controls steering when operating as a 
master. The MIC 112 controls steering when operating as a 
Streaming Data slave with a Streaming Data master of lesser 
width. Once a Streaming Data transfer has begun, a new 
steering configuration is not possible until termination of the 
current Streaming Data transfer. Table 1 illustrates the 
MIC's steering responsibilities during valid MC Master 
transfers. 
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nous Channel Check except that once the MC Master has 
completed the current cycle the Channel Check signal 
remains active. 

In either case, the Channel Check bit within POS register 
remains active until the system has reset it. Resetting of a 
Channel Check condition is performed using the system 
configuration protocol. 

Micro Channel Interface State Machine 

To simplify chip designs, a synchronous method of cap 
turing and validating data on the MC 110 can be used with 
minimal asynchronous clocking. By minimizing the use of 
asynchronous logic, the risks involved in an asynchronous 
design are reduced. Once the MC control signals and busses 
are synchronized, a state machine interface can determine 
the state of data and when data is valid on the MC 110. This 
task can be accomplished using three areas of logic design 
described in the following sections: Control and Data Signal 
Capturing and Synchronization, Interface State Machine, 
and Data Validation Decode logic. 

In FIG. 5, a somewhat more detailed block diagram of the 

TABLE 1. 

Master Signals Slave Signals 
MIC --A -BEC DS16 DS32 
SBHE 29:31)i 0:3)i RTN RTN MSDR Transfer Type/Description 

O 000 1111 O O 0 8 byte transfer to 64 bit slaveft 
O X00 110 X X X I byte transfer to all slaves 
O XOO 0000 1 byte transfer to 8 bit slave 
O X00 0000 O 1 2 byte transfer to 16 bit slave* 
O XOO 0000 O O X 4 byte transfer to 32/64bit slave* 
O XO1 1101 X X X 1 byte transfer to all slaves 
1 X10 1011 X X X 1 byte transfer to all slaves 
O X10 O011 O X X 2 byte transfer to 16/32/64 slave 
O X11 O X X X 1 byte transfer to all slaves 

Note: 
All above transfers are executed in the Basic Transfer mode, except noted. 
#Capable of Streaming Data Operations only. 
*Capable of both Basic Transfer and Streaming Data operations 

Interrupts 

The MIC 112 has the ability to source four programmable 
MC interrupts, with expansion capabilities of up to eight. 
These interrupts are used to inform the System Processor 
that a Queue contains job(s) or command/status words for a 
device on the MC 110 or for use by the System Processor or 
an error has occurred. Each Interrupt may be shared by up 
to four Queues. When Queues share an Interrupt a readable 
register is available to assist other MC devices and/or the 
System Processor in determining the Queue which caused 
the Interrupt. An Interrupt may also be assigned to only one 
Queue. 

Errors 

The MIC 112 provides a Micro Channel Check capability. 
A Channel Check becomes active when the MIC 112 detects 
a parity error on MC Slave writes. The Channel Check can 
either be synchronous or asynchronous to the detection of 
the error. The MIC default is synchronous. 
The synchronous Channel Check allows the current MC 

Master to receive immediate notice of aparity error detected 
by the MIC 112. Once the MCMaster completes the transfer 
in progress the Channel Check signal becomes inactive. 
The asynchronous Channel Check is similar to a synchro 
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Micro Channel Interface 130 is depicted. As mentioned 
previously, the interface 130 includes the Micro Channel 
Data Interface 131, the Micro Channel Address Interface 
132, and the Micro Channel Interface Control Logic 134. 
The Control and Data Signal Capturing and Synchronizing 
Logic 170 is largely located in the control section 134, but 
the logic devoted to capturing the data and address signals 
from the Micro Channel 110 are located in the data interface 
131 and address interface 132 respectively. The Interface 
State Machine 172 is also part of the interface control 
section. 134 and uses the synchronized signals from the 
capture logic 170 to derive a synchronous means of evalu 
ating the state of the Micro Channel 110. Finally, the Data 
Validation Decode Logic 174 takes signals from the capture 
logic 170 and the state machine 172 to determine whether 
the asynchronously latched data and address signals cap 
tured from the Micro Channel 110 represent valid data in a 
synchronous manner. 
To capture the asynchronous MC data and control, tech 

niques consistent with the LSSD guidelines are employed. 
These techniques include the capturing of narrow bus 
strobes, sampling, and synchronizing. LSSD circuits follow 
the rules generally described in U.S. Pat. Nos. 3,761,695, 
3,783,254 and 4,580,137. In addition, U.S. Pat. No. 4,580, 
137 which claims a latch circuit for synchronous and asyn 
chronous clocking also contains an exceptionally complete 
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review of the various aspects of LSSD latch design. While 
other LSSD compatible circuits may be employed to capture 
the MC control and data signals, the figures on the following 
pages illustrate the best logic known to the inventor for 
capturing the MC control and data signals. 

For quick reference to FIGS. 6A through 6E, Table 2 
contains the definitions of the signals portrayed in these 
figures. 

Referring to FIG. 6A, the logic for capturing the asyn 
chronous data valid signal, -CMD, which is the Micro 
Channel signal which indicates when data is valid on the 
Micro Channel is shown. Two synchronous internal signals 
are generated by this logic: +CMDA, which indicates when 
an active high level signal was present on the -CMD signal, 
and +CMDB, which indicates when an active low level 
signal was present on the -CMD signal. Both the +CMDA 
and +CMDB signals are used in the state machine signals 
from the Micro Channel 110. 
The circuit elements in the upper half of the diagram 180 

which produce the +CMDA signal are essentially equivalent 
to those in the lower half 182 which produce the +CMDB 
signal with the exception that the -CMD signal from the 
Micro Channel 110 is inverted before being received by 
block 182. The circuit shown is useful for capturing a signal 
which is narrower than one system clock cycle of the 
internal clocks of the MIC 112. 

In FIG. 6A, the registers 183, 184, 185, 186 are two 
latches in series, the first latch receiving the asynchronous 
signal and the first clock signal and the second latch receiv 
ing the output of the first latch and the second clock signal. 
In this way, the asynchronous signal is sampled in the first 
latch, waiting for any metastability to settle out, and then 
setting the value from the first latch into the second latch. 
The second latch contains the synchronized signal which can 
be used in the LSSD chip. If the -CMD signal were wider 
than the internal clock signals +C, +B of the MIC 112, only 
registers 184 and 186 would be necessary to provide syn 
chronized signals +CMDA, +CMDB. However, it is more 
likely that the -CMD signal will be narrower, so registers 
183 and 185 which are clocked by internal test clocks +T1, 
+T2 and their attendant AND, OR and feedback loops are 
necessary to capture the -CMD signal and its inverted signal 
and hold them until they can be synchronized by registers 
184 and 186. 

Referring to FIG. 6B, the logic for capturing the asyn 
chronous streaming data signal, -SD STB, from the Micro 
Channel 110 which is used to clock data during a streaming 
data transfer to the MIC 112. Two synchronous signals are 
produced: +STRA, the internal chip signal which indicates 
when an active high level has been captured in the -SD 
STB signal, and+STRB which indicates when an active low 
level has been captured on the -SD STB signal. +STRA 
and +STRB are produced by registers 193 and 194 in block 
190 and registers 195 and 196 in block 192 respectively. The 
logic is essentially equivalent as that depicted in FIG. 6A for 
the -CMD signal. 

In FIG. 6G, the logic for producing the internal signals for 
the Micro Channel bus status, -SOf-S1. I and that indicat 
ing the MIC 112 has been selected as a Micro Channel Slave, 
+MC SLAVE. Both of these signals use the -ADL signal 
from the MC 110 via multiplexor 200 as the second "clock" 
signal in register 202 which results in the signals being 
asynchronously latched. This technique is used because 
there is not time to synchronize the -SDL and -SO/-S1 
signals. Register 202 represents a simplification of the actual 
logic in that two separate registers are used to capture the 
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-S0/-S1 and slave decode signals both of which comprise 
two latches, the first of which uses a test clock to sample the 
data waiting for any metastability to settle out, the second of 
which using the asynchronous -ADL signal as the "clock' 
signal. The slave decode logic 204 uses the MC address bus, 
M/IO, and status signals to determine whether the device is 
being selected by the current MC Master. The +LSSD 
TEST EN and +B clock signals are used for LSSD test 
operations on the logic. 
The logic for capturing the asynchronous data, address 

and +RDY -RTN signals from the Micro Channel 110 is 
portrayed in FIG.6D. The-SD STBand-CMD signals are 
passed through the multiplexor 210 to register 212 which 
produces asynchronously latched data, address and +RDY 
RTN signals usable in the MIC 112. Similar to register 202 
in FIG. 6C, register 212 is a simplification of three separate 
registers used for the three asynchronous signals from the 
MC 110. The logic also produces a synchronized signal 
corresponding to +RDY RTN with register 214 using inter 
nal clocks +C, +B. Internal clock signals +C, B and the 
+LSSD TEST EN signal are connected to inputs of mul 
tiplexor 210 to test the logic according to LSSD operations. 

FIG. 6E depicts the logic for capturing data and address 
buses from MIC 112 to the Micro Channel 110. Data and 
address are captured in register 230, clocked by the remain 
ing clock decode logic shown in FIG. 6E. Multiplexors 220, 
224, and 226 provide selectability between operational 
clocking and LSSD test clocking for registers 222, 228, and 
230. Registers 222 and 228 clocked operationally by 
SD STB together with the three attendant XOR gates, 
provide the proper clocking control and timing necessary to 
ultimately clock data and address into register 230 and onto 
the Micro Channel 110. During idle times on the Micro 
Channel 110, -CMD provides a reset to registers 222 and 
228 so that the control logic is set in a known state awaiting 
the next data transfer. The attending OR gate with +64 
SD EN and +RDY RTN, provide additional clocking con 
trol during a 64-bit Streaming Data Transfer and datapacing 
during a 16- or 32-bit Streaming Data Transfer. These 
transfer types are described in more detail in the referenced 
Micro Channel Architecture documents. Finally, the AND/ 
OR gates providing input to multiplexor 220 allow selection 
by +MC MASTER of separate ready controls during MC 
Master (+MASTER RDY) and MC slave (+SLAVE 
RDY) operations completing the clock decode necessary to 
capture data and address into register 230. 

TABLE 2 

Signal Name Signal Definition 

-CMD The MC signal used to indicate when data 
is valid on the MC. 
The internal chip signal which indicates 
when an active high level has been cap 
tured on-CMD signal. 
The internal chip signal which indicates 
when an active low level has been cap 
tured on -CMD signal. 
Internal system and LSSD clocks. --C 
control the L1 portion of the register and 
+B controls the L2 portion of the 
register. 
Internal LSSD clocks. These clocks are 
held active during non-LSSD operations. 
+T1 controls L1 portion of the register 
and +B controls the L2 portion of the 
register. 
The MC signal used to clock data during 
a Streaming Data (SD) transfer. This 

--CMDA 

--CMDB 

SD STB 
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TABLE 2-continued 

Signal Definition Signal Name 

signal is sent by the MC Master and is 
received by the selected MC Slave 
device. 
The internal chip signal which indicates 
when an active high level has been cap 
tured on the -SD STB signal. 
The internal chip signal which indicates 
when an active low level has been cap 
tured on the -SD STB signal. 
The MC signals used to indicate bus 
Status. 
The internal and asynchronously latched 
input status. 
The MC signal used to latch and valid 
MC address. 
This signal indicates when LSSD opera 
tions are active and selects the proper 
clocks for the data registers. 
The MC 32-bit Data Bus plus byte parity. 
The internal and asynchronously latched 
input data bus plus byte parity. 
The internal synchronous output data bus 
plus byte parity, 
The MC 32-bit Address Bus plus byte 
parity. 
The internal and asynchronously latched 
input Address Bus plus byte parity. This 
bus is only valid for Streaming Data 
operations. 
This signal indicates when the chip acting 
as a MC Master is ready to begin writing 
data words onto the MC. 
This signal indicates when the chip acting 
as a MC Slave is ready to begin placing 
read data words onto the MC. 
This signal indicates when the chip is a 
MC Master. 
This signal indicates when the chip has 
been selected as a MC Slave. 
This signal is received by the MC Master 
and indicates the ready condition of the 
selected MC Slave. 
The asynchronously latched 
+RDYRTN signal, used internally to 
validate the data bus. 
The synchronously sampled and latched 
+RDY RTN signal, used internally to 
determine the ready condition. 
This signal indicates when a 64-bit 
Streaming data transfer is in progress. 

+STRB 

SOf-S1 

-SOf-S1. I 

-ADL 

+LSSD TEST EN 

--MASTERRDY 

--SLAVERDY 

+MC MASTER 

+MCSLAVE 

+RDYRTN 

+RDYRTN A 

--RDYRTNS 

--64 SD EN 

Once the proper Micro Channel 110 and internal signals 
have been generated, the current state of the Micro Channel 
110 can then be determined using a synchronous state 
machine design. FIG. 7 illustrates the MC Interface State 
Machine 172. For quick reference to the state machine 172, 
Table 3 contains the State transition equations. The defini 
tions of the states are contained in Table 4. 

The state machine 172 begins in State 0 which means 
that the MIC 112 is not active on the Micro Channel 110. 

If equation b in Table 3 is satisfied, the state machines 
goes from State 0 to State 1, which means that the -CMD 
signal on the Micro Channel 110 has gone active low and the 
chip will be receiving data from the Micro Channel 110 
using either a basic or streaming data transfer. The -CMD 
signal is used to indicate when data is valid on the Micro 
Channel 110. If, on the other hand, equation c in Table 3 is 
satisfied, the state machine goes to State 3, which means 
that both the -CMD and the -SD STB signals have gone 
active low and that MIC 112 will be receiving data from the 
Micro Channel 110 using a streaming data transfer. The 
-ST STB signal is a Micro Channel 110 signal used to 
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clock data during a streaming data transfer. The signal is sent 
by the master on the Micro Channel 110 and received by the 
slave device on the Micro Channel 110. If on the other hand, 
equation d is satisfied, the state machine goes from State 0 
to State 5 which means that-CMD has gone active low and 
the chip will be presenting or has already presented valid 
data on to the Micro Channel 110. Also, the --RDYRTN 
signal is in active low indicating that the Micro Channel 110 
is in a not ready condition. 

If equation e in Table 3 is satisfied, state machine goes 
from State 0 to State 6 which means that the -CMD 
signal has gone active low and the chip will be presenting or 
has already presented valid data on to the Micro Channel 110 
and the +RDY RTN signal is active high indicating that the 
Micro Channel 110 is ready for data transfer. The state 
machine will go from State 0 to State 7 if equation f is 
satisfied. In State 7, the -CMD and -ST STB signals have 
gone active low and data is presented by the MIC 112 on to 
the Micro Channel 110 for a streaming data transfer. 

State 4 is reached from State 3 if equation kin Table 3 
is satisfied. In State 4, the -ST STB signal has gone active 
high and the chip is waiting for valid data to be latched in. 
State 8 is reached from State 7 when equation win Table 
3 is satisfied. In State 8 the -ST STB signal has gone in 
active high and the chip is waiting for the next valid to be 
clocked out on to the Micro Channel 110. Other transitions 
and points of stability are described by the equations in 
Table 3 in conjunction with FIG. 7. For example, as long as 
equation a is satisfied, the state machine will remain in 
State 0 which means that the MIC 112 is not active on the 
Micro Channel 110. The state machine is used with standard 
components such as a register and associated logic for each 
of the eight states in the state machine. In the state machine, 
States 1, 3 and 4 define data states in which the MIC 112 
will be receiving data from the Micro Channel 110 and 
States 5, 6, 7 and 8 define data states in which the MIC 112 
will be transmitting data on the Micro Channel 110. 

TABLE 3 

State Machine State Equations 

(g e Reset 
a = State 0 & be c8 de E& f 
b = State 0 & --CMDB & STRB& 

(+MC SLAVE & -SO I) / (+MC MASTER & -SI)) 
c = State 0 & --CMDB & STRB & 

(+MC SLAVE & -SOI), 1 (MCMASTER & -S I)) 
de State 0 & --CMDB & RDYRTNS& 

(+MCSLAVE & -SI) I (MC MASTER & -SO I) 
e = State 0 & --CMDB & STRB& RDYRTNS & 

(+MC SLAVE & -Si-I) / GMC MASTER & 
-S0 I)) 

fic State 0 & --CMDB & +STRB & +RDYRTN S & 
(+MC SLAVE & -SI) I (MCMASTER & -SO IO) 

g = State 1 & --CMDA &-STRB 
h a State 1 & CMDA& STRB 
ir State & CMDA& +STRB 
j = State 3 & --STRA 
k = State 3 & STRA 
lic State 4 & CMDA & STRB 
m = State 4 & --CMDA& STRB 
in a State 4 & --CMDA& STRB 
o = State 5 & CMDA - 
p = State 5 & 4RDY RTNS&+CMDA 
q = State 5 & 4-CMDA&+STRB& +RDY RTN S 
r = State 5 & --CMDA& STRB& +RDYRTN S 
s a State 6 & CMDA & STRB 
t = State 6 & CMDA& STRB 
u = State 6 & CMDA&. --STRB 
w - State 7 & STRA 
w a State 7 & STRA 
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TABLE 3-continued 

State Machine State Equations 

x = State 8 & --CMDA. & STRB 
y = State 8 & CMDA& STRB 
Z = State 8 & +CMDA&+STRB 

& denotes a logical AND operation 
| denotes a logical OR operation 

TABLE 4 

State Definitions 

State 0 = The chip is currently not active on the MC. 
State 1 = The MC-CMD has gone active low and the chip 
will be receiving data from the MC using either a Basic or 
Streaming Data transfer. 
State 3 = The MC-CMD and -SD STB have gone active 
low and the chip will receive data from the MC using a Streaming 
Data transfer. 
State 4 = The MC-SD STB has gone inactive high and the 
chip is waiting for valid data to be latched in, 
State 5 = The MC-CMD has gone active low and the chip 
will be presenting or has already presented valid data onto the 
MC. The MC+RDY RTN signal is inactive low indicating a 
not ready condition. 
State 6 = The MC-CMD has gone active low and the chip 
will be presenting or has already presented valid data onto the 
MC. The MC +RDY RTN signal is active high indicating a 
ready condition. 
State 7 = The MC-CMD and -SD STB have gone active 
low and valid data is presented onto the MC for a Streaming Data 
transfer. 
State 8 = The -SD STB has gone inactive high and the chip is 
waiting for the next valid data to be clocked out. 

Finally, decoding the state machine, data validation can be 
achieved in a synchronous manner. This will then allow 
processing of data without the use of any further asynchro 
nous logic of timing. The decoding equations and definitions 
are listed below. 
BTDAV=g & +RDY RTN A 
SDDAV=m/1) & +RDYRTN A/+64 SD EN 
SDGND=f/r/u/y & (+RDY RTN A1+64 SD EN)) 
The BTDAV signal indicates that the chip has received 

and latched valid data during a MC Basic Transfer cycle. 
The +D(0:31)/P I bus is now valid. The SDDAV signal 
indicates that the chip has received and latched valid data 
during a Streaming Data cycle. The +D(0:31)/P I and 
+A(0:31)/P I are now valid. The SDGND signal indicates 
that valid data has been transferred and taken on the MC 
during a Streaming Data transfer. New data can be fetched 
and presented on the +D(0:31)/P O and +A(0:31)/PO 
busses on the following clock cycle. 
As shown above, the capturing logic, state machine, and 

decode logic together can provide a reliable method for 
interfacing with and determining the state of the Micro 
Channel as well as satisfying LSSD rules and requirements. 
In addition, internal chip designs are simplified by the 
minimal use of asynchronous logic and control within the 
chip. 

Micro Channel Timing 
Timing diagrams for Micro Channel Basic Transfer, 

Streaming Data, arbitration and parity timing functions can 
be found in Personal System/2 - Hardware Interface Tech 
nical Reference - Architecture, Order No. 84F9808, Form 
No., S84F-9808-00, by the IBM Corporation and is hereby 
incorporated by reference. 
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Local Processor Bus Interface 

The MIC 112 arbitrates for the LPB 115 by activating the 
-BUS REQ signal. Once the MIC 112 detects that the -BUS 
GNT signal has gone active (low), the MIC 112 will become 
the master and continue to assert-BUS REQ active. 
Once the master, the MIC 112 will not release ownership 

until it detects: either-BUS GNT has gone inactive OR the 
MIC 112 no longer needs the bus. When the MIC 112 detects 
that it should give up ownership of the bus, -BUS REQ will 
become inactive (high). This indicates that the MIC 112 is 
currently performing its last access. 
Once the MIC 112 has made its -BUS REQ inactive the 

MIC 112 will not request the LPB 115 back until it detects 
that -BUS GNT has gone inactive. This allows no time 
restrictions on the external LPB arbitration logic to make 
-BUS GNT inactive relative to the MIC making-BUS REQ 
inactive. 

Master Operations 
When the MIC 112 gains ownership of the LPB 115 the 

MIC 112 becomes a LPB master. As a master, the MIC 112 
is able to read/write data to and from the LPS. The MIC 112 
as a LPB Master will always perform word (2 byte) 
aCCCSSCS. 

The MIC 112 begins master operations by supplying an 
address on the +ADDR/DATA(0:19)i. This address is then 
latched by the -ALE signal. Once the address is latched, the 
+ADDR/DATA(0:19)i bus can be used for the transfer of 
data. The +M/-IO signal determines whether the address is 
in the memory space or I/O space of the LPB 115. The +R/W 
signal determines the direction the data will flow on +ADD/ 
DATA(0:19)i. Data transfers only utilize the lower 16-bits of 
+ADDR/DATA(0:19)i. Odd parity for +ADDR/ 
DATA(0:19)i is generated/received on +A/D PAR(0:2)i. 
The -DAV and +RDY signals are used for handshaking 

and validation during the data transfer. -DAV, sourced by 
the LPB Master, becomes active when valid data exists on 
+ADDR/DATA(0:19)i bus. +RDY, sourced by the LPB 
Slave, is used to inform the MIC that a LP device is 
ready/not ready to receive data during a write or send data 
during a read. 

LPB Slave Operations 
The MIC 112 becomes a LPB slave when-CSEL is active 

and/or a predefined address has been decoded. When the 
MIC 112 is a slave, a LPB device 119, 122 has the ability to 
access additional resources, such as initialization registers, 
direct access to the LDB 117, and the Queue Printers. -ALE 
and +R/W become inputs controlled by the LPB device. 
-DAV becomes an input representing when valid data is to 
be written or when the master is ready to accept read data. 
+RDY becomes an output from the MIC 112 validating a 
write or read data to the LPB device. MIC Slave accesses to 
the Initialization and Control register must be on a word (2 
byte) boundary. LDB window accesses may be on 1 or 2 
byte boundaries. 

Interrupts 
The MIC 112 supplies four programmable interrupts, 

-INT(:3). These interrupts inform a LPB 119, 122 device 
that a queue which the MIC 112 is managing contains a 
job(s) or an error has occurred. The MIC 112 provides a 
readable register to indicate the status of jobs within the 
Queues. An interrupt is cleared by either removing all jobs 
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from a Queue or clearing the error condition. 

Errors 

All errors detected by the MIC 112 on the LPB 115 are 
indicated by an interrupt. An error interrupt can be generated 
by a USW being posted to a Queue or if a Queue error occurs 
via the Queue error register. 
The LPB Error signal is used to clear the MIC 112 of a 

hang condition. If the MIC 112 is a LPB Master and the 
slave device does not respond with a ready condition, then 
the LPB error should be used to allow the MIC 112 to 
terminate the current transfer. If the LPB Error signal 
becomes active then a USW is posted. The MIC 112 only 
receives the LPB Error signal, the MIC 112 never drives it. 

Local Processor Bus Timing 
FIGS. 8 through 11 illustrate LPB timing for slave and 

master operations. The following conventions were used in 
FIGS. 8 through 11, depicting the LPB Timing diagrams: 

First, data was skewed in relation to the rising edge of the 
system clock to illustrate which edge the MIC 112 uses to 
send and receive data. When the MIC 112 drives the signal, 
the data is shown to change slightly after the rising edge of 
the clock. When the MIC 112 is receiving the signal, that 
data is drawn such that it is stable around the rising edge the 
MIC 112 will clock it on. Second, the right hand column of 
each timing diagram lists who is controlling the signal 
(M=master, S=slave, A-arbitration logic, and m=not driven 
by MIC 112 when master, controlled externally). Third, the 
dashed line represents a pull-up holding the signal high 
while it is not being driven. Fourth, with the exception of the 
-ALE which is always valid, any signals sent to the MIC 112 
during an access is in a don't care state in those cycles where 
the dashed line appears. Any signal the MIC 112 controls 
during that access may require the pull-up to hold it active 
(i.e. +RDY). Fifth, ":" at the top of the diagrams represents 
the clocking edge for the MIC 112. 

Local Data Bus Interface 

Referring to FIGS. 2 and 3, the LDB interface 137 is a 100 
MB interface that is designed to handle high speed data 
transfers between LDS memory 123 and any device con 
nected to the LDB 117. The data bus shall consists of 32 bits 
of data with 4 bits of odd byte parity. The address bus shall 
consist of 10 bits of address and 2 bits of odd parity. The 
address bus 137 allows for the access to an address range of 
1 MB by using a page address scheme that consists of an 8 
bit high address (HA) followed by a 10 bitlow address along 
with four byte enables. 

Arbitration on LDB 117 is accomplished by the use of a 
one-bit token ring protocol. This protocol allows for mul 
tiple LDB devices, programmable time sharing among the 
LDB devices, minimal latency during passing of bus own 
ership, parity and protocol error detection, and error recov 
ery. Also included is an error signal called LDB Err and a 
request signal called LDB ROB. 

Referring to FIGS. 12 and 13, several signals are used for 
the 1-bit token ring protocol used on the LDB 117. In FIG. 
12, a two-chip ring is depicted. Chips 1 and 2,240 and 242, 
depicted generally in the figure, are the MIC 112 and the 
serial Interface 113 respectively. As shown in FIG. 13, the 
protocol connections can be extended for a multi-chip ring 
with the same number of I/O signal connections which 
allows other devices 124,125 coupled to the LDB 117 to act 
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as the LDB master. 
To accommodate multiple users on the LDB bus 117, the 

protocol signals are coupled such that the RARBI and 
RARBO form a ring 244 for the token to rotate on while the 
LDB ROB 248 and LDB Err 246 signals are hooked to 
form a hardwired dot OR function. Unlike typical token 
rings, the ring 244 of the present invention is used for 
arbitration only. The lines dedicated to the LDB 117 are 
separate from those used for the ring 244 and ROB 248 and 
error 246 signals. 

Positive logic is used to define the active levels of the I/O 
signals. The RARBI(L) signal, or Ring Arbitration. In signal, 
is an input to the chip which is used to receive the token 
when passed from another user on the ring. The RARBO(L) 
signal, or Ring Arbitration Out signal, is an output from the 
chip which is used to send the token to the next device on 
the ring. Both the RARBI and RARBO signals are passed on 
the ring 244. In the preferred embodiment, the token appears 
as a 1 cycle active low pulse. The LDB ERR(L) signal 246 
is abidirectional signal which indicates that there is an error 
on the LDB 117. In the preferred embodiment, the driver 
type is open collector with a pull-up resistor external to the 
chip. This signal is to indicate to all ring participants that an 
error has been detected on the ring. The severity of the error 
is preferably indicated by the number of cycles the Bus Error 
signal 246 is held active. The Bus Error signal is active low. 
The ROBOL) signal, or Request to Own the Bus signal, 

248 is also bidirectional. In the preferred embodiment, the 
driver type is an open collector with a pull-up resistor 
external to the chip. The purpose of this signal is to notify 
the current device holding the token that another device is 
waiting to use the bus. The current holder of the token uses 
the ROB signal to enable its internal counter which indicates 
how long it can hold the token. All other devices use the 
ROB line on the LDB 117 to enable an internal counter 
which indicates how long it should take for the token to 
rotate around the ring. 

Each ring member 240, 242 may contain two timers. 
These two timers allow for programmable bus arbitration 
latencies. The rate and implementation of these timers may 
be determined by the designer, system environment, and/or 
chip clock rate. The Token Hold Timer (THT) defines the 
maximum time that a device may hold onto the arbitration 
token. The Token Rotation Timer (TRT) defines the maxi 
mum time between the release of the token to receiving the 
token back. 
The TRT may be defined as illustrated in the equation 

below: 

TRTOX)>-Q+2N-THT (X)+ THT(1)+... THT (N), where N 
> 

Q=Time delay constant determined by the environment. 
2N=N is the number of chips in the 1-bit Token Ring. The 

multiplication factor of 2 represents the two registers in the 
token path per device, namely TokIn and TokOut. 
X=The chip being designed. 
With the use of the LDB ROB line, each chip can 

provide an enable for incrementing its THT and TRT timers. 
If the LDB ROB signal does not become active, the token 
can be held by a chip accessing the bus for as long as it needs 
it because the THT timer is not enabled. Once the LDB 
ROB line becomes active, the chip holding the token has 
until its THT timer expires before it must release the token. 

Only those bus participants with a high potential demand 
for the shared bus resource need the Token Hold Timer. The 
timer is not needed for the chips which will only hold onto 
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the local data bus 117 for a short period of time. Also, only 
one ring member needs the Token Rotation Timer to detect 
the lost token condition in the ring 244. 
As all bus members participate in the arbitration of access 

to the LDB 117, fairness is inherently provided. Further, the 
ROB signal 248 helps improve the efficiency of the LDB 117 
as a processor need not relinquish control unless another 
processor requires the resource as well as providing bus 
monopolization. 
The Ring state machine consists of 4 basic states: Ring 

Down (RD), Idle (Id), Token Master (TM), and the Error 
Detected (ED) state. Each LDB ring device should follow 
the state transitions shown in FIG. 14. The LDB ring state 
machine controls initial start-up, arbitration, and error recov 
ery. FIG. 15A also shows the boundary logic the MIC 112 
uses to interface the ring state machine to the LDB control 
signals. All ring devices should have a two cycle delay from 
their RARBI to RARBO to ensure proper removal of the 
token when the ring goes down. Active levels of signals in 
the following figures are represented by a "(H)” or "(L)” 
suffix. Active and Inactive states of signals are represented 
by the lack of an overscore (active) or the presence of an 
overscore (inactive). 

FIG. 15B illustrates the implementation of the logic for 
the two timers, the Token Hold Timer (THT) and the Token 
Rotation Timer (TRT). Every high demand bus member 
must have the THT to determine how long after the ROB 
signal is received it can maintain control of the bus. At least 
one bus member must have the TRT to detect a lost token 
condition on the ring. As shown in FIG. 15B, the current 
register?counter is loaded with the inverse of the THT or the 
TRT. When enabled, the current register/counter counts up 
until it contains all 1's and generates a carry out. As shown, 
the signals to the multiplexer are controlled by the states and 
other signals generated by the state machine and associated 
logic in FIGS. 14 and 15A. 

System reset is required to initialize all devices into the 
Ring Down state. Prior to the ring start up, each device 
should have its TRT and THT values initialized. Once all 
members of the LDB 117 have been initialized, one chip on 
the ring must be made the Ring Master. The Ring Master is 
responsible for initiating a new token when the ring is down 
and all LDB 117 error conditions have cleared. Once the 
token is initiated onto the ring, it will be received and passed 
by each device until it makes one full revolution. This initial 
revolution will bring all chips into a Idle State. There should 
never be more than one token rotating around the LDBring. 
In one preferred embodiment, the MIC 112 is the Ring 
Master. 
Once in the Idle State, a device is free to activate the 

LDB ROB line in an effort to gain ownership of the LDB 
117 by capturing the token. Once a device detects the token, 
the device should transition to the Token Master State. If, 
while waiting in the Idle State the TRT expires, that device 
should activate the error signal and transition to the Error 
Detect State. 
Once a device enters the Token Master State, it can either 

pass the token on to the next device or hold onto it. If the 
device holds onto the token, it is free to access LDS 123. 
While in the Token Master State, the device should incre 
ment its THT whenever it detects the LDB ROB signal is 
active. Once this timer expires, the Token Master must finish 
its access, release the token, and go back to the Idle State. 
An LDB ring device enters the Error Detect state when 

ever that device detects that there has been an error in the 
LDB protocol. The two basic conditions that will cause this 
transition are a lost token, i.e., TRT expires, or the detection 
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of a second token on the ring. If either of these conditions 
exist, that device should activate the LDB Err signal for at 
least two consecutive cycles which will send all the LDB 
devices into the Ring Down State. 

All ring devices will enter a Ring Down state upon 
detecting that the LDB Err signal has gone active for at 
least two consecutive cycles. In this state, each device will 
discard any tokens that they receive while the Bus Error line 
is still active. Once the Bus Error line goes inactive, the 
device enabled as the Ring Master should re-initiate the 
token to start the ring back up. 
The local processor that is handling error recovery has the 

capability of controlling the restart of the ring after it goes 
down. If the processor wants the ring to automatically restart 
once the error has cleared, it should leave one device in the 
ring initialized as the Ring Master. If the processor wants to 
prevent the automatic restart, it should first activate one 
device as the Ring Master for initial start up, and then 
deactivate that device as the Ring Master. 
Upon detecting an error, a device can notify the other ring 

devices that an error has occurred by activating the Bus 
Error line. Any device not activating the LDB Err signal 
can determine the severity of the error by detecting the 
number of consecutive cycles the Bus Error signal is active. 
There are are two categories of errors defined on the LDB: 
1) non-recoverable, 2) recoverable. 
Non-recoverable errors are errors that require the ring to 

be brought down and restarted due to protocol errors such as 
a lost token or the detection of two tokens on the ring. The 
non-recoverable error conditions are detected when the Bus 
Error line is active for at least two consecutive cycles. Once 
the token has been passed to the next device on the ring, the 
TRT value is loaded into a counter. This counter should be 
enabled when the LDB ROB signal is active. If the token 
does not return by the time the TRT counter has expired, the 
device should activate the LDB Err signal for at least 2 
cycles signifying a non-recoverable error. Another non 
recoverable error is when a device finds two tokens: If a 
second token is detected while a device is holding the token, 
the device should activate the LDB Err signal for at least 
two cycles signifying a non-recoverable error. 

Recoverable errors are errors which have not damaged the 
protocol on the ring, thereby not requiring the bus to be 
brought down and restarted. Recoverable errors should be 
detected by a device that is in the Idle State and is moni 
toring the LDB data transfer of the current Token Master. 
The MIC 112 will monitor other devices for two types of 

recoverable errors: Address parity errors on a read opera 
tions, and byte enables (BE(0:3)) being active while HALE 
is active. The MIC 112 will activate the LDB Err signal 
while in the Idle State for each recoverable error it detects 
from the Token Master. This may cause the the MIC 112 to 
activate the LDB Err signal for at least two consecutive 
cycles should the Token Master continue to perform 
accesses that have either of these errors. 
Upon detecting the LDB Err(L) active for one cycle the 

Token Master has the option of continuing or releasing the 
token to the next device. If the Token Master detects the 
LDB Err active for 2 consecutive cycles it must finish its 
LDB access and enter the Ring Down State. 
The purpose of the LDB ROB signal is to give the 

current Token Master an indication as to whether a second 
ring device is waiting for access to the LDB 117 or LDS123. 
This signal should be used by the Token Master to enable its 
THT and by the devices in the Idle State to enable their TRT 
signal. 
There is no restriction on what cycle a device activates 

and deactivate the LDB ROB line as it transitions through 
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the ring state machine and in fact the signal can be perma 
nently tied to ground. This of course would not provide the 
most efficient use of the bus, since a device may be forced 
to give up the token when no other devices needed the bus. 
The following guidelines can be used for activating 

LDB ROB which will make the most efficient use of LDS 
123. These are also the rules the MIC 112 uses in its 
preferred embodiment. Once a device determines it needs 
the LDB 117 and the token is not currently in its boundary 
in register (TokIn(L)), it should drive the the LDB ROB 
signal active in the following cycle. If the token was 
currently in the boundary in register then the device should 
capture the token and not drive the LDB ROB signal 
active. Once a device which is currently activating the 
LDB ROB signal receives the token in its boundary in 
register (TokIn(L)), it should stop driving the LDB ROB 
signal in the following cycle. The LDB ROB signal may 
remain active due to a second device. Once a device in the 
Token Master state is forced to release the token due to its 
THT expiring, it may cause the LDB ROB signal to go 
active the cycle after the token was in its boundary out 
register (RARBO active) if it wants to gain the token back. 

FIG. 16 shows the timing of the MIC 112 starting up the 
ring on the LDB 117 with another device from the Ring 
Down state. In this example, the MIC 112 is the Ring Master 
and also performs an LDB access as soon as the bus is up. 
Note that the token should rotate once around the ring before 
any device should capture it in order to gain access to the 
LDB 117. 
Whenever the LDB Err line goes active for at least two 

consecutive cycles it is the responsibility of each device to 
detect the old token and discard it once in the Ring Down 
State. This window of time in which each device discards the 
old token must be followed by each device so that each 
device can determine the difference between the old token 
that was stripped and the new token which brings the ring 
back up. The window for stripping the token while in the 
Ring Down state is defined in the equation for Take Token 
in FIG. 15A. 
The earliest point in which the Ring Master can inject the 

new token on the ring is included in the equation for the 
Inj Token(L) signal in FIG. 15A. It is preferred that one 
device have the capability of becoming the Ring Master. If 
multiple devices have the capability of issuing a token, then 
two tokens could be put on the bus if software mistakenly 
initialized the ring 244 to have two Ring Masters. This 
condition would be detected but possibly after two devices 
both tried to drive the LDB 117. 

LDB Data Transfers 

Once a LDB device has gain ownership of the LDB 117 
by becoming the Token Master, it is free to transfer data to 
and from the LDS 123 until it gives up its ownership. Each 
device on the LDB 117 can access the Local Data Store 123 
using the following signals: ADDR(0:9), APAR(0:1), 
DATA(0:31), DPAR(0:3), -HALE-R/W, and -BE(0:3). 

Addressing on the LDB 117 uses a paging scheme that 
involves an 8-bit high address (HA) and a 10-bit low address 
(LA) sent across the ADDR(0:9) bus which allows for 
addressing of up to 1 Mega Bytes. The HA only needs to be 
sent when a new 4 MB segment is to be accessed. 
Whenever a device puts out a HA on the ADDR(0:9) bus, 

the HALE(L) should be active, the RA-W should be valid, 
the byte enables BE(0:3)(L) should be inactive, the data bus 
should be tri-stated, and all 10 bits of address should be 
driven with good parity even though only the least signifi 
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cant 8 bit of the HA are used. 
Whenever a device puts out a LA on the interface, the 

HALE(L) should be inactive, the R/-W should be valid, at 
least one of the BE(0:3)(L) should be active, the 
DATA(0:31) should contain the write data with good parity 
if it a write, and all 10 bits of address should be driven with 
good parity. 
To enable LDB devices to exchange ownership of the 

LDS 123 without interfering with each others accesses, the 
following relationship should exist between the cycle the 
token is captured and released, and the cycle in which the 
LDB address, data and control signals are driven and 
released as shown in FIG. 17. This relationship will provide 
for one dead cycle on the LDB 117 during the exchange of 
ownership. 
The MIC 112 shal maintain maximum LDB bandwidth 

by making efficient use of LDB 117 as the LDB master and 
minimizing the bus latency during the exchange of owner 
ship with another device. It is recommended that all devices 
on the LDB 117 follow the timing relationship of the MIC 
112 to preserve the maximum bandwidth of the LDB 117. 
The timing specified together with the rule for putting out 
the HA relative to detecting the token will ensure that the 
latency in passing the ownership of LDB 117 is minimized 
while always keeping one dead cycle on all shared LDB 117 
signals during the exchange. The MIC 112 determines its 
last access by checking the state of the THT and LDB ROB 
when it is preparing to put a LA on the interface the 
following cycle. 
The MIC 112 shall not stop the token from propagating 

onto the next device unless it has an immediately need for 
LDS 123. 

If the MIC 112 needs to take the token in order to access 
LDS 123, the MIC 112 shall drive its HA on the interface the 
cycle after it detects the token in. 
When the MIC 112 is the LDB master, it shall release the 

token relative to its last bus operation in such a manner that 
it minimizes bus latency when passing the ownership to the 
next device. 

When the MIC 112 is a master and the last operation is a 
write, the MIC 112 will have the token on the interface in the 
same cycle the last write LA is on the interface as shown in 
FIG. 19. 
When the MIC 112 is a master and the last operation is a 

read and the MIC 112 is programmed for 0 wait states, the 
MIC 112 will have the token out on the interface one cycle 
after the last read LA is on the interface as shown in FIG. 18. 

When the MIC 112 is a master and the last operation is a 
read and the MIC 112 is programmed for 1 wait states, the 
MIC 112 will have the token out on the interface one cycle 
after the last read LA is on the interface. 
When the MIC 112 is the LDB master, it preferably drives 

HALECL) and the BE(0:3)(L) inactive (high) before tri 
stating them. This means that the pull-ups on the module are 
not required to pull these signals back inactive in one cycle 
but just for holding then inactive once the MIC releases 
them. w 

After a HA has been driven with the RA-W signal high, an 
LDB master read access is triggered when an LA is sent with 
at least one BEC0:3) active and the RA-W line high. The 
master can pipeline its reads by sending a series of read LA. 
The MIC 112 was designed to perform LDB 117 reads 

with either 0 or 1 wait state. This enables the MIC 112 to be 
used in various applications that use RAMs with different 
access times. The number of wait states the MIC 112 will 
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perform should be set during initialization by writing MIC 
LPB memory register x1006 (DBW, bit 13). If the MIC 112 
is programmed for 0 wait states, then it will put its LA on the 
interface for one 25 MHz cycle and expect the read data to 
be on the LDB interface 135 two cycles later. If the MIC 112 
is programmed for 1 wait states, then it will put the same LA 
on the interface for two 25 MHz cycles and expect the read 
data to be on the LDB interface 135 three cycles after that 
read access' first LA appeared on the interface. For both 0 
or 1 wait state reads, the MIC 112 will pipeline read 
operations. FIG. 18 shows the MIC 112 timing for an LDB 
read operations with 0 wait state. When MIC 112 performs 
LDB Reads no wait states: 

An initial HA will be put out the cycle after the MIC 112 
clocks in the token (RARBI(L)=L) when starting an access. 
A series of one or more LAs will always follow starting 

the cycle after a HA. 
One HA may be inserted in between a series of LAs each 

time the MIC 112 needs to access a different 4 KB segment. 
The MIC 112 will release the token whenever its Token 

Hold Timer expires or it no longer needs to access LDS 123. 
For reads, the MIC 112 will release the token to the next 

device (RARBO(L)=L) one cycle after it drives its last 
address. 

The MIC 112 will always drive HALE(L) and BE(0:3)(L) 
inactive before tri-stating these signals. This enables a slow 
pull-up to be used on the module to hold these signals 
inactive. 

Once an HA has been driven with the R/-W signal low, 
an LDB master write access is triggered when a LA is sent 
with at least one BE(0:3) active and the R/-W line low. The 
write data and the LA should both be on the interface at the 
same time. The 0 and 1 wait state feature mentioned above 
for reads does not effect the timing for writes. As in the case 
of reads, the master can pipeline a series of write LAs along 
with the write data. 

FIG. 19 shows the MIC timing for LDB write operations. 
As shown, when MIC 112 performs LDB Writes: 
An initial HA will be put out the cycle after the MIC 

clocks in the token (RARBI(L)=L) when starting an access. 
A series of one or more LAs will always follow the cycle 

after an HA. 

One HA may be inserted in between a series of LAs each 
time the MIC 112 needs to access a different 4KB segment. 
The MIC 112 will release the token whenever its Token 

Hold Timer expires or it no longer needs to access LDS 123. 
For writes, the MIC 112 will release the token to the next 

device (RARBO(L)=L) the cycle it drives its last address. 
The MIC 112 will drive HALE(L) and BE(0:3)(L) inac 

tive before tri-stating these signals. This enables a slow 
pull-up to be used on the module to hold these signals 
inactive. 

The LDB master during its ownership can switch from a 
read to a write access. To switch, the master's write LA must 
be on the interface at least 4 cycles after the last read LA 
appears as shown in FIG. 20. This will allow enough time 
for the read data to be received before the master drives its 
write data. Also shown in FIG.20, a new HA was sent before 
the first write LA. The sending of this new HA is optional 
but does not cause any added latency since the master 
needed to wait for the read data to be received. 
A master during a single token holding period can follow 

a write access with a read access. As the write LA and the 
corresponding write data are on the bus at the same time, the 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

34 
master could put out a read LA in the following cycle. In 
some alternative LDS memory designs, following a write 
LA with a read LA may cause the memories and the MSI 
write register pipeline to both drive momentarily while 
switching directions. For this reason, the MIC 112 prefer 
ably follows a write LA with a new read HA and LA when 
switching from a read to a write even if the new HA is the 
same as the old HA. This sending of the new HA will only 
cost one cycle when the old HA matches the new HA. 

FIG. 20 shows the LDB timing when the MIC 112 
switches from a read to a write and from a write to a read on 
LDB bus. When MIC 112 switches from a Read to a Write 
or Write to a Read on LDB 117: 

One HA will always be inserted when the MIC 112 
switches the direction of the access even though the new HA 
may be the same as the previous one. 

Before switching from a write to a read, the MIC 112 will 
check the token hold timer to make sure it has time to reverse 
the bus. When switching from a read to a write the token 
hold timer is checked as normal since no added latency is 
added when switching in this direction. 
The MIC 112 will release the token (RARBO(L)=L) 

based on the last access it performs either a read or a write. 
The MIC 112 will always drive HALE(L) and BE(0:3)(L) 

inactive before tri-stating these signals. This enables a slow 
pull-up to be used on the module to hold these signals 
inactive. 
The LDB bus 117 architecture supports an error line that 

can be used to notify all the devices on the ring that an error 
has been detected. This line should be activated when either 
of two types of error occur: 1) non-recoverable, detected 
when the LDB Err line is active for at least 2 cycles; 2) 
recoverable errors, detected when the LDB Err line is 
active for just 1 cycle. 
The MIC 112, when master of the LDB 117 checks for the 

condition of two tokens being present by determining if a 
second token is detected once it has captured the original 
token. Upon detecting this condition, the MIC 112 will 
activate the LDB Err line (for at least 2 cycle) until it has 
put a USW onto the error queue. 
The MIC 112 as master of the LDB 117 also has a 

programmable bit accessible from the LPB 115 which 
enables or disables the MIC 112 to check recoverable errors. 
As a master, this programmable bit will cause the MIC 112 
to check parity on its write data when the data is in the 
MIC's boundary register. On reads, the MIC 112 will check 
parity on the read data it receives along with the state of the 
error line. If the MIC 112 detects that the LDB ERR line 
was active on the interface the same cycle the read data was 
on the interface, an error was detected on the read address 
that was associated with this read data. 

If the MIC 112 has been set up to LDB reads with one wait 
state, the MIC 112 will detect that an address error has 
occurred when either the LDB Err line was active in the 
cycle read data was valid or if in the previous cycle, the 
LDB Err line was active. This is possible as the read low 
address was on the bus for two cycles. 
The MIC 112, when not the Bus Master will be in bus 

monitor mode. In this mode, the MIC 112 checks for a lost 
token condition. This condition, which is detected when the 
TRT timer expires, will cause the MIC 112 to take down the 
LDB 117 by activating the LDB Err line for at least 2 
cycles until it puts a USW on the error queue. The MIC 112 
uses the same programmable bit used to check recoverable 
errors as a master. In Table 5, a description of the recover 
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able errors detected by the MIC 112 when in bus monitor 
mode and the resulting actions taken are listed. 

TABLE 5 

Recoverable errors the 
MIC checks for as bus 
monitor (Idle State) MIC action 

Read and APE on LA activate error line for 1 cycle such 
that it is active 2 cycles after 
address was on interface 
put USW on error queue 
activate error line as described in 
previous case for each LA that 
follows HA until a new HA is detected 
or all BEs are inactive (master 
finished). 
put USW on error queue 

Read and APE on HA 

Read and DPE error line is NOT activated 
Write and APE error line is NOT activated 
on LA or HA put USW on error queue 
Write and DPE error line is NOT activated 

put USW on error queue 
activate error line for one cycle 
such that it lines up with first 
LAs read data 
error line is NOT activated 
put USW on error queue . 

Read and at least 
one BE(0:3) active 
while -HALE active 
Write and at least 
one BE(0:3) active 
while -HALE active 

HA - high address, detected by monitor when HALE is active 
LA - low address, detected by monitor when any of -BE(0:3) are active 
APE - address parity error 
DPE - data parity error 

The software and programming interfaces to the MIC 112 
are listed in Table 6 and 7. Table 6 illustrates bus master 
operations which can be programmed, controlled and/or 
performed by the MIC 112. Table 7 illustrates slave opera 
tions on the MC 110 and LPB 117 which allow accesses to 
the programming interfaces of the MIC 112. 

TABLE 6 

MIC Operation Bus Operation Transfer Path 

Writing LDB Data MC Mel Write MCIDB LDB 
Reading LDB Data MC Menn Read LDB IDBMC 
Writing QRC Reg MC FOWrite MC QRC Reg 
Reading QRC Reg MCO Read QRC Reg Mc 
writing QWC Reg MCIO Write MC QWC Reg 
Reading QWC Reg MCIO Read QWC Reg MC 
Writing QD Reg MCIO Write MC QWB LPB 
Reading QD Reg MCO Read LPB QRB MC 
Reading FBL MCIO Read FBB MC 
Reading JP Reg MCO Read JP Reg MC 
Writing POS Reg MC FOWrite MC POS Reg 
Reading POS Reg MC FO Read POS Reg MC 
Reading Cntl Reg LPB Mem Read Cntrl Reg LPB 
Writing Cntil Reg LPB Mem Write LPB Cntrl Reg 
Reading Queue Init LPB Mem Read QM LPB 
Writing Queue Init LPB Men Write LPB QM 
Reading Queue Cntl LPBLIO Read QM LPB 
Writing Queue Cntl LPB 1OWrite LPB QM 
Reading LDB Data LPB Mein Read LDB LPB 
Writing LDB Data LPB Men Write LPBLDB 
Reading STIIScan STI Read STI Exit Dey 
Writing STIIScan ST Write Ext Dew STI 

TABLE 7 

MIC Operation Bus Operation Transfer Path 

Write Memory Data MC Men Write ODBMC 
Read Memory Data MC Mem Read MCIDB LDB 
Write IFO Data MCIO Write ODBMC 
Read IFO Data MCIO Read MCIDB LDB 
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TABLE 7-continued 

MIC Operation Bus Operation Transfer Path 

Writing QWC Reg MCIO Write Master Exe MC 
Reading QWC Reg MCIO Read MC Master Exe 
Writing QD Reg MC FOWrite Master Exe MC 
FBLFetch MCIO Read MC Master Exe 
Write Memory Data LPB Men Write MIC LPB 
Read Memory Data LPB Mem Read LPBMC 
Write Memory Data LDB Write MIC LDB 
Read Memory Data LDB Read LDBMIC 

Commanded Transfers 

Commanded Transfers are master operations performed 
on either the MC, LPB, or LDB. This section describes in 
more detail, operations described in Table 7. The MIC is 
capable of controlling the data transfers without CPU inter 
vention. 

MC Commanded Transfer 

Commanded Transfers on the MC are initiated via a MIC 
Command Word (MCW). MCWs are located in one of the 
Queues which the MIC is managing. Queue #D is defined as 
the MIC's Command Queue (MCQ) dedicated to MCWs. As 
shown in FIG. 21, when the MCO contains an entry, the QM 
unit within the MIC interrupts the Master Execution unit to 
fetch a MCW in step 300. The MCW defines the LPB 
memory address with the MIC control block can be found, 
step 301. The MIC Master execution unit performs flag 
checks on the MCB, step 302, free-block address step 303, 
and target address information for the data move step 304 for 
the commanded transfer. Once the Commanded Transfer, 
defined by the MCB, has been completed, status of the 
transfer can be posted to a Queue existing on the LPB step 
306 and/or to a Queue existing on another MC device step 
305. The status posted to a Queue existing on the LPB is 
called the MIC Status Word (MSW). The MSW defines any 
errors which may have occurred in step 307 during the 
Commanded Transfer and the MCB used for the transfer. 
The status posted to a Queue existing on another MC device 
is called the Micro Channel Post Command (MPC). The 
MPC defines the source device, flags, and target address of 
the transfer. 

FIG. 21 illustrates a high level flow diagram of a Master 
Execution or Commanded Transfer operation described 
above. Flags, described in more detail in MIC Control Block 
below, define the direction of the flow diagram. Commanded 
Transfers (FIG. 22) illustrates the relationship between the 
MCW 310, MCB 312, MSW 318, MPC 316 and remote 
MIC free block register 314 during a MC Commanded 
Transfer. 

MIC Command Word 

The MCW consists of four bytes of information which 
exist in the MCO. The MCO is defined as Queue HD and can 
hold up to 1 KMCWs. FIG. 23 illustrates the fields within 
a MCW. The following section describes each field and its 
function. 

MIC Control Block 

The MIC supports a fixed length MIC Control Block 
(MCB) of 16 bytes. The MCB must exist in the LPB 
Memory Address space defined by the MCW. FIGS. 24 
through 27 illustrate the MCB in detail. In general, the 
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execution of the MCB is governed by the flags contained in 
the first word of the MCB. FIG. 28 illustrates the valid 
combinations of MCB flags. 

MCB Notes 

Below lists some notes on utilization of the MCB fields. 
1. The Source and TargetAddress fields MUST be defined 
on a 4 byte boundary, except when NOP='1' or FMT= 
'1'. A 4 byte boundary means that the least significant 
two bits of the Source and Target Address fields MUST 
equal '00'. 

2. The Black Length field MUST be equal to 1, 2, 3, or 
4*n, where n=0 to 16K, as indicated in FIGS. 24 and 
27. 

3. A Black Length value equal to 0, indicates a transfer of 
64 K bytes. 

4. A Black Length value MUST be chosen so that the 
Source and 

Target Address plus the Black Length field does not 
exceed or cross a 64 Kbyte address boundary. Only the 
lower 16-bits of address are allowed to increment, if a byte 
count causes the 16-bits of address to produce a ripple carry 
then the upper bits are not modified and the address will 
wrap. 

5. The MPC QID should not be equal to ‘D’ if the MC 
device receiving the MPC is another MIC. 

MIC Status Word 

FIG.29 illustrates the fields of the MSW. The MIC has the 
ability to build status after the completion of a Commanded 
Transfer. If the PCI bit in the MCB is set or an error occurs 
during the Command Transfer, the MIC will post the Queue 
indicated by the MCW RQID field with an eight byte MSW. 
The receiving Queue must have a byte count defined as eight 
bytes. The MSW provides a report of any errors which may 
have occurred during the command operation. If an error 
occurs during a chained operation then the chain is termi 
nated with status being built indicating the address of the 
errored MCB. 

Micro Channel Post Command 

FIG. 30 illustrates the MPC and defines its fields. The 
MIC has the ability to build status and post a MC device 
after the completion of a Commanded Transfer. If the PST 
bit in the MCB is set the MIC will post status to a Queue 
which exists on another MC device. This other MC device 
may be another MIC or MC device which can receive, 
understand, and/or translate the MPC message and protocol. 
The Queue being posted is determined by the MPC QID 
field in the MCB. The posted status is called the Micro 
Channel Post Command (MPC). The MPC contains eight 
bytes of data indicating the source ID, target address, and 
byte count related to the data which was moved during the 
Commanded Transfer. 

LPB Commanded Transfers 

Commanded Transfer on the LPB can be initiated from 
the Master Execution unit, the QRB, the QWB, the FBB, or 
from a reportable error within the MIC. The Master Execu 
tion unit uses the LPB to fetch MCWs and MCBs, or to post 
MSWs. The QRB uses the LPB to fetch Queue entries which 
a MC device is requesting as part of a Queue Read Opera 
tion. The QWB uses the LPB to write entries to a Queue 
loaded from the MC via a Queue Write operation. The FBB 
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38 
uses the LPB to fill FB entries which have been removed by 
devices on the MC. The LPB also allows the MIC to post 
unsolicited errors to a Queue managed by the MIC. 

LDB Commanded Transfers 

Therefore, as shown in Table 6, MIC operations on the 
LDB are commanded transfers. These transfers can be 
initiated by the Master Execution unit, the IDB, or the LPB 
Interface. All operations on the LDB are simple reads and 
writes. The MIC does not have any programmable registers 
on the LDB. 

Device Initiated Transfers 

Device Initiated transfers are slave operations performed 
on either the MC or LPB. This section describes in more 
detail, operations described in Table 6. 
The MIC allows access from the MC or LPB to the LDB, 

Queues and Control Registers. These accesses are per 
formed in the Memory or I/O address space that exist on the 
MC and LPB. The MIC decodes the MC or LPB address and 
performs the slave operation related to the selected address. 

LDB Access 

As can be seen in FIG. 19 and FIG. 20, the MIC supports 
direct access to the LDB from either the MC or the LPB. In 
both cases the MIC allows access to the LDB by monitoring 
the MC and/or LPB for addresses which are within a 
predefined range. For simplicity, figures which illustrate a 
LDB address indicate a full byte address. The MIC does not 
implement byte addressability in this way. Instead, the lower 
two address bits are not driven and are replaced by using 
four byte enables, BE(0:3), to allow for full byte address 
ability during LDB accesses. Since the MIC only allows up 
to 10-bits of the LDB address to be driven at once, the LDB 
address is split or multiplexed into two parts; a high address 
and a low address. The high address contains the upper 
8-bits of the full LDB address. The low address contains the 
next 10-bits of address. The byte enables, BE(0:3), provide 
the remaining byte controls necessary for a complete 1 
Mbyte LDB address. 

Access from MC 

For the MC to access LDB, a predefined address range is 
assigned within the MC Memory space. This range of 
addresses is defined by a base address plus an offset. The 
LDB MC base address is defined by the LDB MC Memory 
Base Address register. The LDBMC Memory Base Address 
register can be found in POS3 and 4 Sub-Address "0101'. 
The LDB MC Memory Base Address together with an offset 
allow any MC device direct memory access to the LDB 
memory space. The amount of memory space accessible 
from the MC is determined by the LDB Size field in POS 
Reg 3 Sub-Address "0000. The LDB Size field limits the 
offset the MIC will decode. LDB memory space can be 
defined as 128 K, 256 K, 512 K, or 1 Mbyte. See “MIC 
Programmable Option Select (POS) Registers' for more 
details about the LDB MC Memory Base Address registers 
and LDB Size fields. FIG. 31 illustrates the MC Memory 
map for LDB accesses and the byte address relationship 
between the MC and LDB. Note: The MC +MI-IO signal 
must be equal to '1' for LDB accesses. 
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LDB Access from LPB 

For the LPB, accessing the LDB requires a paging type 
method. The paging method requires the LPB device to load 
a segment register which defines one of 256 4. Kbyte 
windows within LDB to be accessed. The LPB to LDB 
Access Segment Register is defined at LPB Memory 
Address, "X1000. Once the segment has been initialized, an 
offset address within the LPB Memory Address space 
'X0000 through XOFFF defines a point within the 4 K 
window. FIG. 32 illustrate the LPB Memory map for LDB 
Accesses and the byte address relationship between the LPB 
and LDB. 

Queues 
Therefore, as can be seen from Table 6, the MIC provides 

hardware support for managing 16 4. Kbyte Queues stored 
within a 64Kbyte segment of LPS. MICOueue management 
includes maintenance of the Queue Read and Queue Write 
Pointers, Queue status, Queue Entry size, and assigned 
interrupt levels for each enabled Queue. All Queue mainte 
nance information and control is contained within the MIC's 
Queue Manager (QM). Access to this Queue maintenance 
information can be achieved in two different ways; director 
controlled. Access to the Queue themselves can be achieved 
from either the LPB or MC. 

Direct QM Access 

Direct access to all Queue maintenance information is 
achieved only from the LPB Memory space. Direct access 
allows the LP to initialize and manipulate the Queue main 
tenance information. Each of the 16 Queues requires a 4 byte 
register, within the MIC, to hold the Queue maintenance 
information. These registers are called the Queue Initializa 
tion Registers (QIR). The LPB address location of the QIRs 
is determined by the following; 
QR LPB Memory Address = XXXX:QIR Segment 

;Queue Number;QIRByte 
where XXXX- don't care. See note. 
where QIR Segment='0001000100 
where Queue Number="0000 through 1111 
where QIRByte='00 through 11 
FIG. 33 illustrates the relative LPB memory location of 

the OIRs, accessible via a direct access. FIG. 34 illustrates 
and describes in detail the 4-byte generic layout the QIR 
accessible via a direct access. 

Controlled QM Access 

Controlled access to Queue maintenance information is 
achieved only from the LPB I/O space. Controlled access is 
used during operational modes to allow any LPB device 
access to some of the Queue maintenance information 
contained within the OIR. With this data, a LPB device can 
determine the location and status of any Queue or current 
active Queue entry and can add or remove a Queue entry 
from any Queue. In addition, the MIC uses a controlled 
access to update Queue maintenance information, such as 
pointer and interrupt status. The Queue maintenance infor 
mation accessible via a controlled access is a subset of the 
same information available in the QIR. This subset of 
information is contained within two 2 byte registers called 
the Queue Pointer Registers (QPR). The LPB device only 
needs to access one of these 2 byte registers depending 
whether a Queue entry is to be added or removed from a 

10 

5 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

40 
Queue. FIG. 35 illustrates the relative LPB I/O space 
location of the QPR available to any LPB device via a 
controlled access. FIG. 36 illustrates the generic layout of 
one of the QPR available via a controlled access. 

Queue Access from the LPB 
From the LPB, the Queues within the LPB Memory space 

can be indirectly accessed by using the QPR within the LPB 
I/O space. A LPB device directly accesses the Queues by 
obtaining one of the two Queue Pointers from the MIC for 
the requested Queue. The QRP is read from the MIC if a 
Queue Entry is to be removed from a Queue. The QWP is 
read from the MIC if a Queue Entry is to be added to a 
Queue. The Queue Pointers contain part of the physical LPB 
Memory address of the Queue to be accessed. The remaining 
part of the physical address can be obtained from the Queue 
number and from a LPB Queue Segment. FIG.37 illustrates 
the Queues and their relative address within LPS and the 
LPB Memory address. The LPB memory address is com 
posed of Q Seg320, QNum322, Q Pointer 324 and QE byte 
326 which forms a 20-bit word. The two least significant bits 
are used as the status bits. 

LPB Queue Access Protocols 

FIGS. 38 and 39 describe the control protocol flows for a 
LPB Queue Read and Queue Write accesses. These flows 
illustrate the steps required by all LPB devices which utilize 
the MIC 112, Queue management support. Also, the MIC 
being a LPB device as well, is designed to implement these 
required steps to access a Queue. 
A queue read operation is shown in FIG.38 where a read 

queue pointeris received from the MICLPB I/O space at the 
first step in start of a read operation as depicted by block 
340. The next step shown by block 342 is to verify the 
pointer status. The pointer status is determined by looking at 
the two least significant bits of LPB memory address. If an 
error is indicated, the queue error is reported to the local 
processor by the MIC 343. If the queue is not available, that 
is it is being used by another LPB device, a retry is 
instigated. If the queue is available, the LPB physical 
memory address is constructed as shown by block 344. The 
LPB memory address is equal to the queue segment con 
catenated with the queue pointer followed by the status bits. 
Once the address is known, the data is read either in 
increments of 4, 8 or 16 bytes depending upon how the 
queue was initially set up shown by block 346. Once the data 
is read, a new read pointeris written to the MIC in block 348 
and the new queue pointer value is returned. The MIC 
verifies the queue pointer with a CPU reading to see if the 
queue read pointer is okay, as shown in block 352, where the 
queue read pointer is updated and maintained by the MIC. 
If an error is determined as shown in block 354, the queue 
error is reported to the local processor by the MIC and the 
queue pointer is restored to its original value. 

In a like manner, a queue write is performed as shown in 
FIG. 39 wherein the queue write pointer is read from the 
MIC local processorbus as depicted by block360. Checking 
the status bits verifies that the pointer is available as shown 
in block 362. When an erroris detected, a queue error report 
is sent to a local processor by the MIC as depicted by step 
363. Once the queue is available, the LPB physical memory 
address is constructed in step 364. The memory address is 
equal to the queue segment plus the queue number plus the 
queue pointer concatenated with the status bits. The data is 
written as shown in step 366 in increments of 4, 6 or 8 bytes 
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wide. Once the queue is written, the write pointer is updated 
and returned to the MIC with the new queue pointer value 
as shown in 368. The MIC verifies the pointer value 370 and 
if okay, updates and maintains the pointer value in step 372. 
If not okay, an error signal is reported in step 374 to the local 
processor by the MIC. 
What is shown is a queue pointer manager facility archi 

tected to efficiently optimize queue operation performance 
by implementing the performance critical functions in hard 
ware and the rest of the facility in software. The hardware 
functions include a read pointer register having a status field 
for each queue wherein the status field specifies the avail 
ability of the queue. A write pointer register having a status 
field is set up for each queue. An interrupt field for each 
queue denotes which interrupt signal is activated when the 
queue goes non-empty. A queue byte count field for each 
queue is used to define a queue entry length which allows 
flexibility in the queue byte entries. 
The above resources are implemented in fast access 

registers. The pointers contain memory addresses to a gen 
eral purpose, random access memory which acts as a FIFO 
in which the physical queue elements actually reside. The 
queue pointer manager is mapped into the CPU memory and 
also into the I/O spaces. 
The software function involves reading either the queue 

write pointer or the queue read pointer to perform a queue 
read or write operation. The software checks the status of the 
queue either writing or reading the queue entry data as a 
normal memory FIFO access and then returns the queue 
read/write pointer to the queue pointer hardware function. 
The queue pointer manager in the present invention has 

the following advantages over a totally hardware managed 
queue structure in that the queue pointer manager is less 
expensive than a pure hardware solution because it elimi 
nates memory address bus and data bus multiplexing logic. 
The queue pointer manager does not require memory access. 
It passes pointers to the CPU over the data bus after which 
a CPU performs memory accesses to either send or receive 
the queue elements. A total hardware solution requires that 
the queue manager have memory access capability in order 
to physically transfer the queue element data. Negligible 
performance degradation results from having queue data 
transfers performed by the CPU. The queue pointer manager 
reduces the complexity of the memory timing and control 
logic since the queue pointer manager does not require 
memory access. The queue pointer in the present invention 
minimizes access latency for other shared memory bus users 
since the queue data entry transfers are performed with 
indivisible interruptible memory operations. Contrastly, a 
purely hardware solution performs queue entry data trans 
fers with indivisible memory operations increasing the 
memory access latency for other bus users. 
The present invention has the following advantages over 

a totally software managed queue structure in that the queue 
pointer manager increases performance per queue opera 
tions because it eliminates the need for software to update 
and verify the queue write and queue read pointers. It also 
eliminates the need for software for determining queue 
overflow, underflow and other error conditions. It eliminates 
the need for software to set/clear queue interrupts. These 
three functions are the most critical with respect to degra 
dation of performance within a queue manager. Additionally, 
the queue pointer manager alleviates internal CPU or exter 
nal memory resource usage since the present invention uses 
hardware to provide the necessary pointer array. Very little 
software code storage is needed, thereby reducing the 
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pointer processing overhead. The queue pointer manager 
provides a built-in public queue capability where a given 
queue may be written or read by more than one processing 
entity. A public queue capability in a pure software solution 
requires a pointer array to be resident in a shared memory 
with a test and set function so that pointers can be accessed 
by multiple users in noninterfering fashion. This requires 
significant software processing and decreases queue opera 
tion performance. 

Queue Access from the MC 
All MC devices, as well as the MIC have access to the 

Queues which reside in LPS. For the MC, Queues are 
accessed indirectly via two control registers and a data 
register which reside within the MC I/O Address space. 
These registers are defined beginning at the address speci 
fied in the Control Register MCI/O Base Address. See"MIC 
Programmable Option Select (POS) Registers' for more 
details about the Control Register MC I/O Base Address 
register. The two control registers are defined as a Queue 
Read Control (QRC) Register and a Queue Write Control 
(QWC) Register. The data register is defined as the Queue 
Data (QD) Register. FIG. 40 illustrates these registers in the 
MC I/O Address space. 

Queue Read Control Register 

The QRC register is used to inform the MIC which Queue 
a MC device wishes to read. The QRC register also informs 
the MC device of the current status of the Queue Read 
request and the status of the Queue Read Buffer (QRB). The 
QRB is used to buffer the data received from the requested 
queue in LPS. FIG. 41 illustrates the QRC Register in more 
detail and defines the QRC Register fields. 

Queue Write Control Register 
The QWC register is used to inform the MIC which 

Queue a MC device wishes to write, as well as the Queue 
byte count. The QWC register is also used to indicate status 
of the Queue write Buffer (QWB). The QWB is used to hold 
the data received from the MC destined for the requested 
Queue in LPS. FIG. 42 illustrates the QWC Register in more 
detail and defines the QWC Register fields. 

Queue Data Register 
The QD register is used to access the QRB and the QWB. 

When the QD register is read, data from the QRB is be 
removed. When the QD registeris written, data from the MC 
is added to the QWB. The Queue Data Register is defined at 
MC I/O Address starting at MIC CRMC I/O Base Address 
+"01000' and ending at MIC CR MC I/O Base Address 
+01011. Byte Counts of 4, 8, or 16 bytes are valid for the 
QDRegister. Since the actual I/O Address space is only four 
bytes, writing and/or reading of eight or 16 bytes in the MC 
Basic Transfer mode can be accomplished by performing 
two or four 4 byte transfers. The use of the MC Streaming 
Data mode can accomplish this task in one transfer opera 
tion. 

MC Queue Access Protocol 

FIGS. 43 and 44 describe the control protocol flows for a 
MC Queue Read and Queue Write accesses. These flows 
illustrate the basic steps required by all MC devices which 
utilize the MIC Queue management support. The MIC 
being, a MC device as well, is designed to implement these 
required steps to access a Queue when performing a MPC 
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post operation. 

MC/Queue Access Procedures and Restrictions 

This section describes in more detail the MC Queue 
Access procedure. In addition, variations to the basic steps 
in performing a MC Queue Access are described as well as 
specific notes. 

MC Queue Read Operation Protocol, Method “A” 
Below, describes the recommended Queue Read proce 

dure for all systems. 

Step 1. RD QRCR. 
If AVL = '0' then goto Step 1. 
If AVL = '1' then the MIC automatically 
sets AVL to 'O' 
AND 
(goto Step 2, to continue OR goto Step 5, to cancel) 
WRQRCR (Q# = "Walid Queue Number', 
STAT = 'XXLACK = 10, AVL = 'X') 
MIC automatically begins fetching Queue Data AND 
(goto Step 3, to continue OR goto Step 5, to 
cancel) 
RD QRCR 
If STAT = '00' (Queue Read Data Ready) then 
(goto Step 4, to continue OR goto Step 5, to 
cancel) 
If STAT = "Ol' (Queue Read Data Not Ready) then 
(goto Step 3, to continue OR goto Step 5, to 
cancel) 
If STAT = '10' (Queue Read Error) then goto Step 5, to 
cancel 
Note: STAT = '11" is not possible. 
RD QDR (Data is read from the Q indicated by the Q# 
in the QRCR) 
When all required bytes have been read then the MIC 
will automatically set AVL = 1 AND 
goto Step 1. 
OR 
If all bytes have not been read then (goto Step 4, to 
continue OR goto Step 5, to cancel). 
WR QRCR (Q# = 'X', STAT = "XX", 
ACK = 1, AVL = 'X') 
then AVL = Ill AND goto Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Note: When STAT = '00', the MIC will allow the MC Master to read the 
requested Queue data WITHOUT inserting a NOT READY condition on the 
Micro Channel. 

Note: The MC Master should never read more bytes than 
is indicated for the Queue being read. Exceeding the indi 
cated byte count will cause an USW and/or a NOT READY 
condition on the Micro Channel. 

MC Queue Read Operation Protocol, Method “B” 
Below, describes the recommended procedure for com 

pleting a Queue Readin systems which only allow ONE bus 
master to perform a Queue Read operation. 

Step 2. WRQRCR (Q# = 'Valid Queue Number, 
STAT = XX.ACK = '0'. AVL = X) 
MIC automatically begins fetching Queue Data AND 
(goto Step 3, to continue OR goto Step 5, to 
cancel) 
RD QRCR 
If STAT = '00' (Queue Read Data Ready) then 
(goto Step 4, to continue OR goto Step 5, to 
cance) 
If STAT = '01" (Queue Read Data Not Ready) then 
(goto Step 3, to continue OR goto Step 5, to 
cancel) 

Step 3. 
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-continued 

If STAT = '10' (Queue Read Error) then goto Step 5, to 
cancel 
Note: STAT = 11 is not possible. 

Step 4. RD QDR (Data is read from the Q indicated by the Q# 
in the QRCR) 
When all required bytes have been read then the MIC 
will automatically set AVL = '1' AND 
goto Step 2. 
OR 
If all bytes have not been read then (goto Step 4, to 
continue OR goto Step 5, to cancel). 

Step 5. WRQRCR (Q# = 'X'...STAT = "XX", 
ACK = 1,AVL = 'X') then 
AVL = '1' AND goto Step 2. 

MC Queue Read Operation Protocol, Method "C" 
Below, describes the procedure for completing a Queue 

Read without the use of the Queue Read semaphore or status 
flags. 

Note: Method "C" is not the recommended procedure for 
Queue Reads. This method should NOT be used if one of the 
following is true; 

1. The system contains multiple masters which can per 
form Queue Read operations. 

2. The system Micro Channel NOT READY timeout of 
3.5 usec must not be violated. 

3. The system cannot recover from a Micro Channel NOT 
READY timeout error without severe implications. 

4. The system/adapter can not mask out the USW which 
occurred due to error condition "d)' described in the 
next section. 

Note: Estimating the NOT READY time when using 
Method "C" can only be determined by a detailed analysis 
of the MIC, adapter, and system hardware and software 
environments. If any of this information is unavailable or 
indeterminate then Method 'C' is not recommended. 

Step 2. WRQRCR (Q# = "Valid Queue Number', 
STAT = "XX"ACK = '0' AVL = X) 
MIC automatically begins fetching Queue Data AND 
(goto Step 4, to continue OR goto Step 5, to 
cancel) 
RD QDR (Data is read from the Q indicated by the Q# 
in the QRCR) 
When all required bytes have been read, goto Step 2 
OR 
If all bytes have not been read then (goto Step 4, to 
continue OR goto Step 5, to cancel). 
WRQRCR (Q# = 'X'...STAT = XX", 
ACK = '1',AVL = 'X') 
then AVL = 1 AND goto Step 2. 

Step 4. 

Step 5. 

MC Queue Read Operation Error 
Conditions/Cautions 

The MIC will generate a USW if one of the following 
conditions occur; 

1. Step 2 is performed anytime after the completion of 
Step 2 and before the completion of either Step 4 OR 
Step 5. 

Note: The QRCR does not get updated if this error occurs. 
2. The number of bytes read in Step 4 are greater than the 
number of byte fetched for the Queue. 

3. Step 4 is performed before Step 2. 
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4. Step 4 is performed when STAT='01, OR STAT='10'. 
5. Step 5 is performed anytime after Step 2, except when 

STAT='10'. 
Note: The MIC does NOT generate a Channel Check 

condition if one of the above errors occurs. Instead, posting 
the USW to the Error Queue causes a LPB Interrupt to 
become active. It is then up to the adapter and/or system to 
determine the error recovery procedure. 

Note: Performing Step 4 before Step 2 WILL cause a 
NOT READY condition on the Micro Channel, which can 
only be cleared by the master aborting the cycle. This may 
cause either a Micro Channel Timeout or Channel Check 
condition. 

Note: Performing Step 4 after Step 2 without completing 
Step 3 may cause a NOT READY condition, (STAT='01), 
on the Micro Channel, followed by one of the following 
conditions to occur; 

a) Step 4 will complete normally, if STAT='00'. OR 
b) the NOT READY condition will continue, if STAT= 

'10", until cleared by the master aborting the cycle. This 
may cause either a Micro Channel Timeout or Channel 
Check condition. 

Note: Method "A", Method 'B', and Method "C" should 
NOT be used together in a system. 

Note: See the Queue Error Register defined on the LPB 
for additional errors which may be reported. Errors which 
cause STAT='10' are defined in the Queue Error Register. 

Queue Write Operation Protocol, Method "A" as 
Shown in FIG. 44 

Below, describes the recommended Queue Write Proce 
dure for all systems. 

Step 1. RD QWCR 
If AVL = 'O' then goto Step 1. 
If AVL = 1 then the MIC will automatically set 
AVL at 'O' AND 
(goto Step 2, to continue and modify the QWCR 
OR 
goto Step 3, to continue and do not modify the QWCR 
OR 
goto Step 4, to cancel). 
WR QWCR (Q# = Walid Q#", 
QBC = Walid Q Byte Count, ACK = "0", 
AVL = 'X') 
Goto Step 3, to continue OR goto Step 4, to cancel. 
WR QDR (Data is written to the Q indicated by the Q# 
in the QWCR with the number of bytes indicated by 
the QBC in the QWCR) 
When all valid bytes have been written then the MIC 
automatically sets AVL = '1' when space becomes 
available for another QW operation AND goto Step 1. 
OR 
If all valid bytes have not been written then (goto 
Step 3, to continue OR goto Step 4, to cancel). 
WR QWCR (Q# = 'X',QBC = 'X', 
ACK = 1,AVL = "X") 
then the MIC automatically ends the Q operation and 
sets AVL = '' 
when space becomes available for another QW operation 
AND goto Step 1. 

Step 2. 

Step 3. 

Step 4. 

Note: AVL='1' indicates that the MIC is capable of 
performing either a 4, 8, or 16 byte Queue Write operation 
WITHOUT inserting a NOT READY condition on the 
Micro Channel. 

Note: When Method "A' is used, a MC Master should 
never write more bytes than is indicated by the QBC field in 
the QWCR. Exceeding the indicated byte count may cause 
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an USW and/or a NOT READY condition on the Micro 
Channel. 

MC Queue Write Operation Protocol, Method “B” 
Below, describes the procedure for completing a Queue 

Write without the use of the Queue Write semaphore. 
Note: Method "B" is not the recommended procedure for 

Queue Writes. This method should NOT be used if one of 
the following is true; 

1. The system contains multiple masters which can per 
form Queue Write operations. 

2. The system Micro Channel NOT READY timeout of 
3.5 usec must not be violated. 

3. The system can not recover from a Micro Channel NOT 
READY timeout error without severe implications. 

Note: Estimating the NOT READY time when using 
Method "B" can only be determined by a detailed analysis 
of the MIC, adapter, and system hardware and software 
environments. If any of this information is unavailable or 
indeterminate then Method "B' is not recommended. 

Step 0. If the QWCR needs modification then goto Step 2, 
OR 
If the QWCR does not need modification then goto Step 
3. 

Step 2. WRQWCR (Q# = 'Valid Q#", 
QBC = 'Valid Q Byte Count, ACK = '0', 
AVL = 'X') 
Goto Step 3, continue OR goto Step 4, to cancel. 

Step 3. WR QDR (Data is written to the Q indicated by the Q# 
in the QWCR) 
When all valid bytes have been written 
then goto Step 0 
OR 
If all valid bytes have not been written 
then (goto Step 3, to continue OR goto Step 4, to 
cancel). 

Step 4. WRQWCR (Q# = 'X',QBC = 'X',ACK = '1', 
AVL = 'X') 
then the MIC automatically ends the current Q 
operation AND goto Step 0. 

Queue Write Operation Error Conditions/Cautions 
The MIC will generate a USW if one of the following 

conditions occur; 
1. Step 2 is performed anytime (after the completion of 

Step 2, or after the start of Step 3) AND (before the 
completion of either Step 3 or Step 4). 

Note: The QWCR does not get updated if this error 
OCCTS. 

2. The number of bytes written in Step 3 is greater than the 
QBC AND Step 1 was performed before Step 3. 

Note: This erroris only valid for method “A” and may not 
occur if performed in the MC Basic Transfer mode. 

3. The Queue Write Buffer experienced a Queue overflow 
condition. 

Note: This error should not be possible. 
Note: The MIC does NOT generate a Channel Check 

condition if one of the above errors occurs. Instead, posting 
the USW to the Error Queue causes a LPB Interrupt to 
become active. It is then up to the adapter and/or system to 
determine the error recovery procedure. 

Note: Performing Step 3 without performing Step 1 may 
cause a NOT READY condition on the Micro Channel, 
which may extend greater than 3.5 usec. This may then 
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cause either a Micro Channel Timeout or Channel Check 
condition. 

Note: Performing Step 4 after Step 3 has started and 
before Step 3 has completed will cause the MIC to terminate 
the Queue write operation and a Queue Error for the QF 
defined in the QWCR will be indicated to the Local Pro 
CSSO. 

Note: Method 'A' and Method 'B' should NOT be used 
together in a system. 

Note: See the Queue Error Register defined on the LPB 
for additional errors which may be reported. 

Queue Access from the MIC 

The MIC has direct access to the Queue Manager func 
tion. This allows the MIC access to the Queues without 
arbitrating for the MC or LPB. A priority scheme within the 
MIC resolves contention for the Queue Pointers requested 
by the LPB or MC. 

Specialized Queues and Registers 

Besides the QM function the MIC supports three special 
ized Queues and a specialized register. The three Queues are 
as follows; 
Queue "D' MIC Command Queue. This Queue stores 
MCWs which are used to initiate MIC Commanded 
Transfers. 

Queue "E' Unsolicited Status Word Queue. This Queue 
stores USWs which have been generated by the MIC as 
a result of an error. 

Queue “F” Free Block List Queue. This Queue stores 
starting pointers for available blocks of memory within 
the LDB. 

The specialized register is called the Job Pending Register 
(JPR). This register is used by either a LPB or MC device to 
determine which of the 16 available Queues contains a 
pending Queue entry or job. 

MIC Command Queue 
The MIC automatically monitors the status of the MIC 

Command Queue (MCQ), Queue "D." If a Queue entry is 
appended to this Queue then the MIC initiates a Com 
manded Transfer. See "Commanded Transfers' for more 
details of a Commanded Transfer. The MCQ can hold up to 
1 KMCWS. 

Free Block List 

The MIC manages a special Queue defined as the LDS 
Free Block List. This Queue contains 4 byte entries which 
represent the starting address of a range or block within the 
LDB. Up to 1 KLDS Blocks can be defined for use. The size 
of these blocks is dependent on the addresses defined in the 
FBL Queue and the available memory space. 

Note: Since only 1 Mbytes of data is accessible within 
LDB, only the 20 least significant bits of the 4 byte Free 
Block entry are valid. 
The FBL is controlled in the same manner as the other 

Queues. The FBL can be loaded during initialization with 
4-byte Queue entries equivalent to the starting physical 
address of the Block in LDS. An interrupt does not need to 
be assigned for the FBL. 
A free block can be removed from the FBL by either a 

LPB Queue Read operation, a MCQueue Read operation, or 
reading of the MC Free Block Register. Once removed it is 
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the responsibility of the removing device to utilize and 
manage this block. 
When use of the block is no longer required, the block can 

be added back into the FBL, by either a LPB Queue Write 
or MC Queue Write operation. This then makes the block 
available for use by another device. 

Note: The MIC does not automatically return a block to 
the FBL. It is the responsibility of the Local Processor or 
System Processor to initiate a block return to the FBL. 

MC Free Block List Register 

To improve performance of MC devices which need 
access to this Queue, the MIC prefetches four 4-byte entries 
from the FBL. This allows a MC device quick access to Free 
Blocks in the MCI/O Address space. The four 4-byte entries 
are temporarily stored within the Prefetch Free Block Buffer 
until read by a MC device. A 4-byte Prefetched Free Block 
can be read from the MC Free Block List Register starting 
at a MC I/O Address of MIC CR MC I/O Base Address 
+"01100. FIG. 45 illustrates this register relative to the MC 
I/O Address space. 
The MCFBLRegister provides access to the FBL for any 

MC device. The FBL Register provides a 4-byte address 
which represents the starting MC Memory address to a block 
within the LDB. Reading this register removes one of the 
4-byte Free Block entries from the Prefetched Free Block 
Buffer, causing the MIC to begin prefetching another, auto 
matically. 

Since only 20 bits are valid from the Free Block List, the 
MIC must construct a valid 32-bit MC Memory Address. 
The upper 12 bits are taken from the LDBMC Memory Base 
Address Register in POS 3 and 4, Subaddress "0101. The 
lower 20 bits are taken from the Free Block List. 

In addition, the MIC provides a status bit for the MC 
device. This status bit indicates whether the Free Block 
Entry is valid or not. The Status can also be used to 
determine whether a FB fetch retry is necessary or termi 
nation of the transfer is required. 

Note: The least significant 2 bits of the FBL Entry has 
been used to represent the FB Status. In doing so, this forces 
all Free Blocks read from the MC via the FBR to be on 4 
byte address boundaries. Note: The MC FBR is a READ 
ONLY register. 

Job Pending Register 

The Job Pending Register (JPR) is used to indicate 
whether a Queue contains a Queue entry or not. When 
Queues share a hardware interrupt, the JPR can be used to 
determine which Queue is causing the interrupt. The JPR is 
16 bits wide and contains a bit for each Queue. The JPR is 
accessible from either the LPB or the MC. The JPR is 
located at LPB I/O address="1140' and at MC I/O address= 
'CRMC I/O Base Address:10000'. Note: The JPR can only 
be written from the LPB when LPM-'0'. 

Control, Status, and Initialization Registers 
The MIC allows devices on the LPB and the MC to access 

necessary initialization, control, and status registers. Regis 
ters related to LPB operations are contained within the LPB 
Memory and I/O address space. Registers related to MC 
operations are contained within the MC POS Registers. 
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ALPB device can have access to some of the MIC control 
registers as well as status and initialization registers. The 
control registers are defined in the LPB memory space and 
reside within addresses 1002 through “100F and addresses 
1100 through 1146. Note: To access these control regis 

ters, -CSEL MUST be active. 
A status register is available to a LPB device via the LPB 

I/O space which indicates possible Queue errors which may 
have occurred. This register is called the Queue Error 
Register (OER) and can be found at LPB I/O address “1142. 
The QER can only be written when LPM-'0'. 

MIC Programmable Option Select (POS) Registers 
The MIC provides software programmable system con 

figuration registers which replace hardware switches and 
jumpers. These registers are referred to as Programmable 
Option Select (POS) registers. The POS registers provide 
configuration and identification data for the MIC and system 
processor. These registers are loaded with configuration 
information immediately after system power on reset (POR). 
The System Configuration protocol is used to access the 
POS registers. The POS registers consist of eight bytes 
located at POSI/O addresses XXX0 through XXX7. Several 
of the POS registers contain required information. 
The POS registers also support the use of the Sub-Address 

feature. The Sub-Address feature allows access to additional 
registers. These additional registers include programmable 
LDS size, MC memory slave addresses for accesses to LDS, 
Interrupt assignments, timers, and MC I/O slave addresses 
for accesses to the Queues and status. Sub-Addressing is 
also used to access the Vital Products Data (VPD), necessary 
for proper MC identification. 
An adapter ADF file provides the initial values of all POS 

registers. The system setup procedure is responsible for 
loading the values from the ADF file to nonvolatile system 
memory. The system is also responsible for conflict check 
ing of keywords. During the system POR setup procedure, 
the values for an adapter's POS registers are read from the 
nonvolatile RAM and written to the adapter. 

Note: 

1. Current PS/2 setup software is not capable of accessing 
or utilizing the POS sub-address feature. Instead, the 
adapter programmer must either incorporate the load 
ing of these registers in either the device driver or as a 
separate executable program. 

2. The GObitMUST be set by the LP before the MIC can 
respond to any MC activity, this INCLUDES POS 
registers. The GObitMUST be set within 1 msec from 
system POS or the MIC will indicate a NOT READY 
condition on the MC. 

3. A System Reset or STI Reset Instruction to the MIC 
will cause the contents of all POS Registers which 
contain a default state, to return to their default states. 

POS 0/1 and VPD Initialization 

Information required for POS registers 0 and 1, as well as 
the VPD is located in LPS. The VPD LPB Base Address 
register, defines the starting address where the values for 
POS reg 0/1 and VPD can be found. This base address 
register MUST be initialized before the system setup soft 
ware accesses these registers. 
When the system setup procedure reads either POS reg 
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ister 0, 1 or the VPD registers, the MIC will fetch the 
required data from LPS using the VPD base address. This 
operation requires that the MIC arbitrate for the LPB and 
become a LPB Master. The adapter designer must guarantee 
that the MIC can access this data within 1 msec, per MC 
specifications. 

Testability Interface 
The STI is used as a serial test interface to the MIC. The 

STI allows access to the MIC's Self Test and Scan control 
logic. Having access and control to registers and functions 
allows for improved test and debug of the MIC. The STI 
allows for two different operations to be performed; 

1. Instruction/Status Operation 
2. Scan Operation 
These modes allow the capability for self-testing to be 

performed. Self-test can be used to determine the state or 
health of the MIC chip itself. 

Self-test 

Self-test verifies a large percentage of the MIC's internal 
logic by using internal scan strings, clock control logic, a 
Random Pattern Generator (RPG) and a Multiple Input 
Signature Register (MISR). Using a known starting value 
within the RPG, a signature can be generated in the MISR 
which reflects the state or health of the MIC chip itself. 
What has been described is a queue pointer manager 

providing a queue management facility partially imple 
mented in hardware, resulting in a relatively inexpensive 
queuing mechanism with increased performance over a 
Software managed queue structure. 
Although a specific embodiment of the invention has been 

disclosed, it will be understood by those having skill in the 
art that changes can be made to that specific embodiment 
without departing from the spirit and the scope of the 
invention. 
What is claimed is: 
1. In a data processing system, a queue management 

subsystem for transferring data between a system bus and a 
remote bus, comprising: 

a local data processor coupled to a local data bus and 
coupled to a memory address bus, for executing stored 
program instructions; 

a local addressable memory having an address input 
coupled to said memory address bus and a data port 
coupled to said local data bus, for storing data from said 
local data bus in reconfigurable queues at locations 
identified by addresses on said address bus; 

said local addressable memory having a total number of 
2**Tbytes, where T is a number of address lines to the 
local addressable memory, said local addressable 
memory partitioned for storing a total number of I 
reconfigurable queues, where I has a binary value 
represented by an integer from 1 to 2**N, each recon 
figurable queue containing program instructions for 
controlling read and write operations, with an Ith queue 
having 2**Pelements, each element therein containing 
2**M bytes, where P-T-N-M; 

stored program instructions in said Ith queue of said local 
addressable memory for controlling read or write 
operations; 

a register file having an address input coupled to said 
memory address bus and a data port coupled to said 
local data bus, for storing queue pointer address values 
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at locations identified by addresses on said address bus; 
said register file having 2**N registers, each said register 

including a queue read pointer field, a queue read 
pointer status field, a queue write pointer field, a queue 
write pointer status field and queue byte count field, 
with an Ith register in said register file having P bits in 
an Ith queue read pointer field as a read pointer value, 
P bits in an Ith queue write pointer field as a write 
pointer value and a value representing 2**M in an Ith 
byte count field; 

said local data processor reading said Ith queue write 
pointer value from said queue write pointer status field 
and constructing a memory address by concatenating 
the binary value of I with said Ith queue write pointer 
value, and accessing said memory with the resulting 
write address, to store 2**M bytes of data from said 
data bus into an element of said Ith queue in said 
memory; 

said local data processor adding said value of 2**M to 
said Ith queue write pointer value, forming a next Ith 
queue write pointer value; and 

a comparator means coupled to said queue read pointer 
field, for comparing the relative magnitude of a queue 
read pointer value in said Ith queue read pointer field 
with said next Ith queue write pointer value, indicating 
a valid status in said queue write pointer status field if 
the comparison is not equal and storing said next Ith 
queue write pointer value in said Ith write pointer field. 

2. The queue management subsystem of claim 1, wherein: 
when the comparison from the comparator means is equal, 
the comparator means indicates a full status in said queue 
write pointer status field and omits storing said next Ith 
queue write pointer value in said Ith queue write pointer 
field. 

3. The queue management subsystem of claim 1, wherein: 
said local data processor reading said Ith queue read 

pointer value from said register file and constructing a 
memory address by concatenating the binary value of I 
with said Ith queue read pointer value, and accessing 
said memory with a resulting read address, to transfer 
2**M bytes of data to said data bus from an element of 
said Ith queue; 

said local data processor adding said value of 2**M to 
said Ith queue read pointer value, forming a next Ith 
queue read pointer value; 

said comparator means comparing the relative magnitude 
of an Ith queue write pointer value in said Ith queue 
write pointerfield with said next Ith queue read pointer 
value, indicating a valid status in said queue read 
pointer status field if the comparison is not equal and 
storing said next Ith queue read pointer value in said Ith 
read pointer field. 

4. The queue management subsystem of claim3, wherein: 
when the comparison from the comparator means is 

equal, the comparator means indicates an empty status 
in said queue read pointer status field and omits storing 
said next Ith queue read pointer value in said Ith queue 
read pointer field. 

5. The queue management subsystem of claim3, wherein: 
said Ith register in said register file includes an assigned 

interrupt level value for said local data processor, when 
said Ith queue contains data in at least one of said 
elements thereof. 

6. The queue management subsystem of claim 5 wherein: 
said local data processor is coupled to a second data bus 
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which is coupled to a first high speed data device; 

said local data processor is coupled to a third data bus 
which is coupled to a second high speed data device; 

said local data processor sensing said assigned interrupt 
level value in said Ith register and in response thereto, 
fetching said stored program instructions from said Ith 
queue for execution thereof to control data flow 
between said second data bus and said third data bus; 

7. The queue management subsystem of claim 6, wherein: 
said second data bus is a micro channel. 
8. The queue management subsystem of claim 6, wherein: 
said queue management subsystem occupies a unitary 

circuit card onto which is mounted said local data 
processor, said addressable memory and said register 
file. 

9. The queue management subsystem of claim 7, wherein: 
when the comparison from the comparator means is 

equal, the comparator means indicates a full status in 
said queue write pointer status field and omits storing 
said next Ith queue write pointer value in said Ith queue 
write pointer field. 

10. The queue management subsystem of claim 9, 
wherein: 

when the comparison from the comparator means is 
equal, the comparator means indicates an empty status 
in said queue read pointer status field and omits storing 
said next Ith queue read pointer value in said Ith queue 
read pointer field. 

11. In a data processing system, a queue management 
method for transferring data between a system bus and a 
remote bus, comprising the steps of: 

executing stored program instructions in a local data 
processor coupled to a local data bus and coupled to a 
memory address bus; 

storing data from said local data bus in reconfigurable 
queues at locations identified by addresses on said 
address bus, in a local addressable memory having an 
address input coupled to said address bus and a data 
port coupled to said local data bus; 

partitioning said local addressable memory having a total 
number of 2**T bytes, where T is a number of address 
lines to the local addressable memory, said local 
addressable memory partitioned for storing a total 
number of Ireconfigurable queues, where I has a binary 
value represented by an integer from 1 to 2*N, each 
reconfigurable queue containing program instructions 
for controlling read and write operations, with an Ith 
queue having 2**P elements, each element therein 
containing 2**M bytes, where P=T-N-M; 

storing program instructions in said Ith queue for con 
trolling read or write operations; 

storing queue pointer address values at locations identi 
fied by addresses on said memory address bus, in a 
register file having an address input coupled to said 
address bus and a data port coupled to said local data 
bus; 

partitioning said register file into 2**N registers, each 
said register including a queue read pointer field, a 
queue read pointer status field, a queue write pointer 
field, a queue write pointer status field and queue byte 
count field, with an Ith register in said register file 
having Pbits in an Ith queue read pointerfield as a read 
pointer value, Pbits in an Ith queue write pointer field 
as a write pointer value and a value representing 2**M 
in an Ith byte count field; 
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reading said Ith queue write pointer value from said queue 
write pointer status field and constructing a memory 
address by concatenating the binary value of I with said 
Ith queue write pointer value, and accessing said 
memory with the resulting write address, to store 2**M 
bytes of data from said data bus into an element of said 
Ith queue, 

adding said value of 2**M to said Ith queue write pointer 
value, forming a next Ith queue write pointer value; and 

comparing the relative magnitude of a queue read pointer 
value in said Ith queue read pointer field with said next 
Ith queue write pointer value, indicating a valid status 
in said queue write pointer status field if the compari 
son is not equal and storing said next Ith queue write 
pointer value in said Ith write pointer field. 

12. The queue management method of claim 11, which 
further comprises the steps of: 

indicating in said write pointer status field a full status and 
omitting storing said next Ith queue write pointer value 
in said Ith write pointer field if said comparison is 
equal. 

13. The queue management method of claim 11, which 
further comprises the steps of: 

reading from said register file said Ith queue read pointer 
value and constructing a memory address by concat 
enating the binary value of I with said Ith queue read 
pointer value, and accessing said memory with the 
resulting read address, to transfer 2**M bytes of data to 
said local data bus from an element of said Ith queue; 

adding said value of 2**M to said Ith queue read pointer 
value, forming a next Ith queue read pointer value; 

comparing the relative magnitude of an Ith queue write 
pointer value in said Ith queue write pointer field with 
said next Ith queue read pointer value, indicating a 
valid status in said read pointer status field if the 
comparison is not equal and storing said next Ith queue 
read pointer value in said Ith read pointer field. 

14. The queue management method of claim 13, which 
further comprises the steps of indicating in said read pointer 
status field an empty status and omitting storing said next Ith 
queue read pointer value in said Ith read pointer field if said 
comparison is equal. 

15. The queue management method of claim 13, which 
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further comprises the steps of: 

including in said register file in said Ith register, an 
assigned interrupt level value for said local data pro 
cessor, when said Ith queue contains data in at least one 
of said elements thereof. 

16. The queue management method of claim 15, which 
further comprises the steps of: 

storing in said Ith queue further stored program instruc 
tions for calculating a valid status field for the read and 
write pointer status fields. 

17. The queue management method of claim 16, which 
further comprises the steps of: 

coupling said local data processor to a second data bus 
which is coupled to a first high speed data device; 

coupling said local data processor to a third data bus 
which is coupled to a second high speed data device: 

sensing said assigned interrupt level value in said Ith 
register and in response thereto, fetching said program 
instructions from said Ith queue for execution thereof 
by said local data processor to control data flow 
between said second data bus and said third data bus. 

18. The queue management method of claim 17, wherein: 
said second data bus being a micro channel. 
19. The queue management method of claim 17, wherein: 
said queue management method being performed on a 

unitary circuit card onto which is mounted said local 
data processor, said addressable memory and said reg 
ister file. 

20. The queue management method of claim 18, wherein 
the steps of: 

indicating in said write pointer status field a full status and 
omitting storing said next Ith queue write pointer value 
in said Ith write pointer field if said comparison is 
equal. 

21. The queue management method of claim 20, wherein 
the steps of: 

indicating in said read pointer status field an empty status 
and omitting storing said next Ith queue read pointer 
value in said Ith read pointerfield if said comparison is 
equal. 


