
|||||III IIII
US005465357A

United States Patent (19) 11 Patent Number: 5,465,357
Bealkowski et al. (45) Date of Patent: Nov. 7, 1995

54 METHOD AND APPARATUS FOR AN 5,210,875 5/1993 Bealkowski et al. 395/700
AUTOMATED DYNAMIC LOAD OF AN 5,220,667 6/1993 Ichieda 395/700
ABIOS DEVICE SUPPORT LAYER IN A 5,230,052 7/1993 Dayan et al. 395/700

5,230,058 7/1993 Kumar 395/800
COMPUTER SYSTEM 5,247,659 9/1993 Curran et al. 395/575

s 5,257,378 10/1993 Sideserf et al. 395/700
I75) Inventors: Richard Bealkowski, Delray Beach; all f :

Douglas R. Geisler; Michael R. 5,269,022 12/1993 Shinjo et al. 395/700
Turner, both of Boca Raton, all of Fla. Primary Examiner Thomas M. Heckler

ra w Attorney, Agent, or Firm-Robert S. Babayi
73) Assignee: International Business Machines

Corporation, Armonk, N.Y. (57) ABSTRACT

A personal computer system is disclosed which is compat
(21) Appl. No.: 902,315 ible with application programs and operating system soft
22 Filed: Jun. 22, 1992 ware. The personal computer system includes a micropro

cessor electrically coupled to a data bus, non-volatile
51 Int. C. a a road - a a a -a as a a a a a a a G06F 9/24 memory electrically coupled to the data bus, volatile

52 U.S. Cl. 395/700, 364/DIG. 1; memory electrically responsive to the data bus, and a direct
364/231; 364/280.9 access storage device electrically responsive to the data bus.

58 Field of Search ... 395/700 The non-volatile memory stores a first portion of operating
system microcode and stores a load indicator. The direct

56) References Cited access storage device stores the second portion of operating
U.S. PATENT DOCUMENTS system microcode which is loaded into the volatile memory

by the inialization program based upon the load indicator.
5,136,713 8/1992 Bealkowski et al. 395/700
5,175,831 2/1992 Kumar 395,425
5,187,792 2/1993 Dayan et al. 395/725 8 Claims, 16 Drawing Sheets

600

BEGINOPERATING
SYSTEM BOOTSTRAP

PRELIMINARY O.S.
INITIALIZATION

O.S. LOADSABIOS
"PATCH MODULES

O.S, SSUES CBIOS
CALLS TO

INTALZE ABOS

O.S. CONTINUEO
NITAZATION

U.S. Patent Nov. 7, 1995 Sheet 1 of 16 5,465,357

FIG, A

U.S. Patent Nov. 7, 1995 Sheet 2 of 16 5,465,357

FG, B
"LOCALAREANETWORK"

5,465,357 Sheet 3 of 16 Nov. 7, 1995 U.S. Patent

N •

022

5,465,357 Sheet 4 of 16 Nov. 7, 1995 U.S. Patent

5,465,357 Sheet 5 of 16 Nov. 7, 1995 U.S. Patent

HETTIOHINOO Ldfn {-}HELNI

HETTOH LNO OWVH SOWO ESTROW/XOOTO
/ GEVOEXEX

?7?72092
HO LOENNOO | TVIHES

282

HELc]\/CIV
EL LEXSIC]| || HO LOENNOO ELLEXISIC]

Sheet 8 of 16 Nov. 7, 1995 U.S. Patent

20€

357 5,465 Sheet 10 of 16 Nov. 7, 1995 U.S. Patent

007

ZZ?7 SSE HOJOV TVOOT TWOOT HOSSE OOHc]
ZOZ

5,465,357 Sheet 11 of 16 Nov. 7, 1995 U.S. Patent

?789 E STIE V LVCI

XIHO / NEÐ

A LIHVd| ||

007

(8 SSH?C?GIVXnW)
992

FIG. 5B

554 552 550

U.S. Patent Nov. 7, 1995 Sheet 12 of 16 5,465,357

500 SYSTEMADDRESS SPACE
O

LOW MEMORY FIG. 5A
5O2

VIDEO SPACE AOOOOHEX
504

BOOOO HEX

FEATURESPACE COOOOHEX

OOOOOHEX

SYSTEM FIRMWARE EOOOO HEX
SPACE
508

FOOOO HEX

1 MEGABYTE

HIGH MEMORY
510

TOP

U.S. Patent Nov. 7, 1995 Sheet 13 of 16 5,465,357

FIG. 8

800

CBOS CALL
FIG 6 INT 15HAH=04, AH=05

600

BEGINOPERATING
SYSTEM BOOTSTRAP

FAR ENDIRECTION
THROUGH ABIOS HEADER

PRELIMINARY O.S.
INTIALIZATION

PERFORM CALS
FOR SYSTEM ABIOS

O.S. LOADSABIOS PERFORM ROM SCAN
"PATCH" MODULES FOR ABIOS

O.S. ISSUES CBOS
CALLS TO

INTIALIZE ABIOS

PERFORM RAMSCAN
FOR ABIOS

O.S. CONTINUED
NITAZATION

ABIOS INITIALIZATION
CAL COMPLETE

U.S. Patent Nov. 7, 1995 Sheet 14 of 16 5,465,357

FIG. 7

552 550

ABIOS CBIOS POST

U.S. Patent Nov. 7, 1995 Sheet 15 of 16 5,465,357

FIG. 9

Field Offset Length

Signature = AA55H (Word Value) 2

1

1

1

Device D och 2
Numberonatalontable enties Tosh
Buildiniataonable enty Point Tosh
seconday deviced och
Revision oDH
Benson headerlenahn be oth 2
Reserved 10H 2

2

Initialization ROutine Offset 2

U.S. Patent Nov. 7, 1995 Sheet 16 of 16 5,465,357

FIG. 1 OA

FIG. OC

LOW MEMORY 52

OW-MEMORY-SIZE

O6
ABIOS-REGURED-FLAG

OOO

EARLY POST OPERATION

READ ABIOS-RECURED-FLAG

ABIOS-REQUIRED-FLAG =
YES

1002

1020
ABIOS OAD AREA

EXTENDED BIOS
DATA AREA

OO4.
1018

1006

1008

FIG. 1 OB

1OO

O12

1014

5,465,357
1.

METHOD AND APPARATUS FOR AN
AUTOMATED DYNAMIC LOAD OF AN
ABIOS DEVICE SUPPORT LAYER INA

COMPUTER SYSTEM

Related Applications
The following patent applications, which are filed on even

date herewith, are incorporated by reference:
Patent application Ser. No. 07/902,311 Filed Entitled Jun.

22, 1992, “A METHOD AND APPARATUS FOR
DYNAMIC LOAD OF AN ABIOS DEVICE SUPPORT
LAYER IN A COMPUTER SYSTEM" (Further identified
as Attorney Docket BC9-92-018).

Patent application Ser. No. 07/902,330, Filed Jun. 22,
1992, Entitled “A METHOD AND APPARATUS FOR
PROVIDING AMODULAR ABIOS DEVICE SUPPORT
LAYER IN A COMPUTER SYSTEM" (Further identified
as Attorney Docket BC9-92-019).

Patent application Ser. No. 07/902,134 Filed Entitled “A
METHOD AND APPARATUS FOR CONFIGURING AND
INSTALLING ALOADABLE ABIOS DEVICE SUPPORT
LAYER IN A COMPUTER SYSTEM" (Further identified
as Attorney Docket BC9-92-071).

FIELD OF THE INVENTION

This invention relates to personal computer systems and,
more particularly, to a method and apparatus for loading and
initializing firmware.

BACKGROUND OF THE INVENTION

Personal computer systems in general, and IBM personal
computers in particular, have attained widespread use for
providing computer power to many segments of today's
society. A personal computer system can usually be defined
as a desk top, floor standing, or portable computer that
includes a system unit having a system processor, a display
monitor, a keyboard, one or more diskette drives, a fixed
disk storage, an optional pointing device such as a "mouse,”
and an optional printer. These systems are designed prima
rily to give independent computing power to a single user or
small group of users and are inexpensively priced for
purchase by individuals or businesses. Examples of such
personal computer systems are sold under the trademarks:
IBM's PERSONAL COMPUTER, PERSONAL COM
PUTER XT, PERSONAL COMPUTER AT and IBM's
PERSONAL SYSTEM/2 Models 25, 30, 50,55, 56, 57, 60,
65, 70, 80,90 and 95 (hereinafter referred to as the IBM PC,
XT, AT, and PS/2, respectively).

These systems can be classified into two general families.
The first family, usually referred to as Family 1 Models, uses
abus architecture exemplified by the AT computer and other
"IBM compatible' machines. The second family, referred to
as Family 2 Models, uses IBM's MICRO CHANNEL bus
architecture exemplified by IBM's PS/2 Models 50 through
95. The bus architectures used in Family 1 and Family 2
models are well known in the art.

Beginning with the earliest personal computer system of
the Family 1 models, the IBM PC, and through the current
Family 2 models, the system processor of the personal
computer is from the Intel 86 Family of microprocessors.
The Intel 86 Family of processors includes the 8088, 8086,
80286, 80386, and 80486 processors commercially available
from Intel Corporation. The architecture of the Intel 86
Family of processors provides an upwardly compatible

10

15

20

25

30

35

40

45

50

55

60

65

2
instruction set which assists in preserving software invest
ments from previous processors in the 86 Family of proces
sors. This upward compatibility preserves the software
application base of the personal computers which use this
family of processors. A variety of commonly available and
well known software operating systems, such as a DOS or
an OS/2 operating system, operate on various members of
the Intel 86 Family of processors.
The PC and XT computers use the Intel 8088 processor.

The AT computers use the Intel 80286 processor. The PS/2
line spans several of the Intel processors. More specifically,
a PS/2 Model 30, which is similar to the IBM PC and XT,
uses an Intel 8086 processor. The PS/2 Models 50 and 60
both use the Intel 80286 processors. The Intel 80386 pro
cessor is used in the IBM PS/2 Model 80 and certain
versions of the IBM PS/2 Model 70. Other versions of the
IBM PS/2 Model 70, as well as the PS/2 Models 90 XP 486
and 95 XP 486, use the Intel 80486 processor.
The processors in the Intel 86 Family support a variety of

operating modes. Real mode, which supports a one mega
byte system address space, is the only operating mode of the
8088 and 8086 processors. The 80286 supports both a real
and a protected operating mode. Protected mode provides a
mode of operation which prevents an application from
interfering with the operation of other applications or the
operating system. The 80286 provides extended addressing
capabilities, allowing up to sixteen megabytes of memory to
be addressed directly. To maintain downward compatibility,
the 80286 can be operated in real mode to emulate the real
mode of the 8088 or 8086. The 80386 and 80486 can address
up to four gigabytes of physical memory. The 80386 and
80486 also support a virtual 86 mode of operation. The
virtual 86 mode supports the operational characteristics of
the real mode within the overall confines of the protected
mode environment.
With personal computers, software and hardware com

patibility is of great importance. To provide software and
hardware compatibility, an insulation layer of system resi
dent code, also referred to as microcode, was established
between the hardware and the software. This code provided
an operational interface between a user's application pro
gram or operating system and the hardware device to relieve
the user of the concern about the characteristics of hardware
devices. Eventually, the code developed into a basic input/
output system (BIOS), for allowing new hardware devices to
be added to the system, while insulating the application
program/operating system from the peculiarities of the hard
ware devices. The importance of BIOS was immediately
evident because it freed a device driver from depending on
specific hardware device characteristics while providing the
device driver with an intermediate interface to the hardware
device. Because BIOS was an integral part of the computer
system and controlled the movement of data in and out of the
system processor, it was resident on a system planar board
of the system unit and was shipped to the user in either a
read-only memory (ROM) or an erasable programmable
read-only memory (EPROM). BIOS in the original IBM PC
occupied 8K bytes (a kilobyte or “K byte' refers to a
quantity of 1024 bytes) of ROM resident on the planar
board. The ROM also contained a power-on self test (POST)
program which was used to test and initialize the computer
system. The accumulation of code resident in the computer
system ROM became known as the "system firmware,” or
simply firmware." Thus, the firmware included a POST
portion and a BIOS portion. Sometimes, BIOS was defined
to include the POST program.
As new models of the personal computer family were

5,465,357
3

introduced, the firmware was updated and expanded to
support new hardware devices such as new input/output
(I/O) devices. As could be expected, the firmware started to
increase in memory size. For example, with the introduction
of the IBM AT, the firmware required 32K bytes of ROM.
With the introduction of the PS/2 line, a significantly new
BIOS, known as Advanced BIOS, or ABIOS, was devel
oped. However, to maintain software compatibility, BIOS
from the Family 1 models had to be included in the Family
2 models. The Family 1 BIOS became known as Compat
ibility BIOS or CBIOS. Thus, BIOS evolved to include more
than one type of BIOS. Present architectural definitions for
personal computer systems allow for up to 128K bytes of
system firmware address space.

Personal computer systems may be linked to form a
network of computers (e.g., a Local Area Network (LAN))
so that users can exchange information, share I/O devices,
and utilize a particular direct access storage device (DASD)
such as a particular hardfile or diskette. Typically, the LAN
includes a client and a server. A server is a computer system
which includes a DASD for supplying the storage for one or
more clients of the local area network. A client or server may
require modifications, updates, extensions or maintenances
of the system firmware.

Arrangements for storing, loading and initializing firm
ware are known. See, for example, commonly owned: patent
Application Ser. No. 07/521,050 entitled “Method and
Apparatus for Selectively Reclaiming a Portion of RAM in
a Personal Computer System,” patent Application Ser. No.
07/398,865, entitled "Initial BIOS Load for a Personal
Computer System,” patent application Ser. No. 07/777,844,
entitled "Programmable Firmware Store for a Personal
Computer System,” patent application Ser. No. 07/799,486,
entitled "Automated Programmable Firmware Store for a
Personal Computer System,” and patent application Ser. No.
07/590,749, entitled "Apparatus and Method for Loading
BIOS into a Computer System from a Remote Storage
Location,' which are all incorporated herein by reference.

SUMMARY OF THE INVENTION

It has been discovered that by linking a first portion of
microcode, e.g., a CBIOS portion, to a second portion of
microcode, e.g., an ABIOS portion, it is possible to remove
the ABIOS portion of microcode from the address space
which is reserved for microcode.

Aprincipal object of the present invention is removing the
ABIOS program from the "ROM" address spaces of a
personal computer system.

Another object of the present invention is to provide more
"free” space in the system and feature ROM address space.

Yet another object of the present invention is loading an
ABIOS device support software layer in an automated
mode.

Yet a further object of the present invention is to continue
to provide ABIOS support in a compatible fashion on both
disk-based and medialess computer systems.

BRIEF DESCRIPTION OF THE DRAWING

Further and still-other objects of the present invention will
become more readily apparent in light of the following
description when taken in conjunction with the accompa
nying drawing, in which:

FIG. 1A is a perspective view of a typical personal
computer system;

10

15

20

25

30

35

40

45

50

55

60

65

4
FIG. 1B is a diagram of a typical local area network;
FIG. 2 is a block schematic diagram of a unified planar

board for the computer system of FIG. 1A;
FIG. 3 is a block schematic diagram of an alternative

planar board for the computer system of FIG. 1A;
FIG. 4 is a block schematic diagram of a processor card

for use with the alternative planar board of FIG. 3;
FIG. 5A is a diagram of the system address space for the

computer system of FIG. 1A;
FIG. 5B is a diagram of a typical firmware memory map;
FIG. 6 is a flow diagram of a system initialization

sequence as it pertains to ABIOS;
FIG. 7 is a diagram of an enhanced delivery mechanism

for ABIOS;
FIG. 8 is a flow diagram of the internals of ABIOS

initialization;
FIG. 9 is an ABIOS program module header;
FIG. 10A is a diagram of NVRAM showing a data area

used in the present invention;
FIG. 10B is a flow diagram of an ABIOS load procedure

of the present invention and
FIG. 10C is a diagram of the low memory address space.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

Referring to FIG. 1 A, there is shown a personal computer
system 100 which employs the present invention. The per
sonal computer system 100 includes a system unit 102
having a suitable enclosure or casing 103, output device or
monitor 104 (such as a conventional video display), input
devices such as a keyboard 110, an optional mouse 112, and
an optional output device such as a printer 114. Finally, the
system unit 102 may include one or more mass storage
devices such as a diskette drive 108 (operable with a
diskette-not shown) and a hard disk drive (hard file) 106.

Referring to FIG. 1B, the system unit 102 may be con
nected electronically in a well-known manner with other
system units 102B to form a local area network (LAN). In
the LAN, system unit 102 functions as the server and system
units 102B function as the clients. System units 102B are
identical to the unit 102, except that units 102B include no
drives 106, 108 and are thus referred to as medialess clients.
Other conventional I/O devices may be connected to the
system units 102, 102B for interaction therewith.

Referring to FIG. 2, there is shown a block diagram of a
unified planar 200 of the system unit 102. The planar 200
includes a printed circuit board (PCB) 201 upon which are
mounted or connected a number of input/output bus con
nectors 232 having I/O slots, a processor 202 which is
connected by a high speed CPU local bus 210 under control
of a bus control unit 214 to a memory control unit 256. The
unit 256 is further connected to a main memory such as
volatile random access memory (RAM) 264. Any appropri
ate processor 202 can be used such as an Intel 80386, Intel
80486 or the like. A system power connector 205 is mounted
on the PCB 201 for connection to a power unit (not shown)
that supplies the necessary power for the system 100.
The CPU local bus 210 (comprising address, data and

control components) provides for the interconnection of the
processor 202, an optional math coprocessor 204, an
optional cache controller 206, and an optional cache
memory 208. Also coupled onto the CPU local bus 210 is a
system buffer 212. The system buffer 212 is itself connected

5,465,357
5

to a system bus 216 which comprises address, data and
control components. The system bus 216 extends between
the system buffer 212 and an I/O buffer 228. The system bus
216 is further connected to the bus control unit 214 and to
a direct memory access (DMA) control unit 220. The DMA
control unit 220 includes a central arbiter 224 and a DMA
controller 222. The I/O buffer 228 provides an interface
between the system bus 216 and an I/O bus 230. An
oscillator 207 is connected as shown for providing suitable
clock signals to the computer system 100. Those skilled in
the art will recognize that while the preferred embodiment is
implemented on the MICRO CHANNEL bus of an IBM
PS/2 computer system, which is well known in the art,
alternative bus architectures could also be used to employ
the invention.

Connected to the I/O bus 230 is a plurality of I/O bus
connectors having slots 232 for receiving adapter cards (not
shown) which may be further connected to I/O devices or
memory (e.g., hardfile 106). Two I/O connectors 232 are
shown for convenience, but additional I/O connectors may
easily be added to suit the needs of a particular system. An
arbitration bus 226 couples the DMA controller 222 and the
central arbiter 224 to the I/O connectors 232 and a diskette
adapter 246. Also connected to the system bus 216 is the
memory control unit 256 which includes a memory control
ler 258, an address multiplexer 260, and a data buffer 262.
The memory control unit 256 is further connected to the
main memory such as the random access memory as repre
sented by the RAM module 264. The memory control unit
256 includes logic for mapping addresses to and from the
processor 202 to and from particular areas of the RAM 264.
While the system 100 is shown with a basic one megabyte
RAM module 264, it is understood that additional memory
can be interconnected as represented in FIG. 2 by optional
memory modules 266, 268, 270.
A buffer 218 is coupled between the system bus 216 and

a planar I/O bus 234. The planar I/O bus 234 includes
address, data, and control components. Coupled along the
planar I/O bus 234 are a variety of I/O adapters and other
peripheral components such as a display adapter 236 (which
is used to drive the optional display 104), a clock/CMOS
RAM 250, a nonvolatile RAM 248 (hereinafter referred to
as NVRAM), a serial adapter 240 (other common terms used
for "serial” are "asynchronous” and "RS232"), a parallel
adapter 238, a plurality of timers 252, the diskette adapter
246, a keyboard/mouse controller 244, an interrupt control
ler 254, and a firmware subsystem 242. The firmware
subsystem typically includes a nonvolatile program store
(e.g., ROM) which contains the POST and BIOS programs.
The clock/CMOS RAM 250 is used for time of day

calculations. The NVRAM 248 is used to store system
configuration data. That is, the NVRAM 248 will contain
values which describe the present configuration of the
system 100. The NVRAM 248 contains information which
describes, for example, adapter card initialization data,
capacity of a fixed disk or a diskette, the amount of main
memory, etc. Furthermore, these data are stored in NVRAM
248 whenever a configuration program is executed. This
configuration program can be a conventional Set Configu
ration program provided on a system Reference Diskette
included with IBM PS/2 computer systems. The Reference
Diskette is sometimes referred to as a diagnostic, mainte
nance or service diskette. The purpose of the configuration
program is to store values characterizing the configuration of
this system 100 to NVRAM 248 which are saved when
power is removed from the system. The NVRAM can be a
low power CMOS memory with a battery backup.

10

15

25

30

35

40

45

50

55

60

65

6
Connected to the keyboard/mouse controller 244 are a

port A 278 and a port B 280. These ports A,B are used to
connect the keyboard 110 and the mouse 112 to the personal
computer system 100. Coupled to the serial adapter 240 is a
serial connector 276. An optional device such as a modem
(not shown) can be coupled to the system through this
connector 276. Coupled to the parallel adapter 238 is a
parallel connector 274 to which a device such as the printer
114 can be connected. Connected to the diskette adapter 246
is a diskette connector 282 used to attach one or more
diskette drives 108.

Referring to FIGS. 3 and 4, system unit 102 may also use
a planar board 300 and a processor card 400 (FIGS. 3 and
4). The processor card 400 is removably mounted on and is
electrically connected to the planar board 300. Identical
element numbers of FIG. 2 correspond to identical elements
in FIGS. 3 and 4.

Referring now to FIG. 3, the planar board 300 comprises
a printed circuit board (PCB) 301 upon which are mounted
(e.g., surface mounted) various components that are inter
connected by wiring or circuits in the PCB. Such compo
nents include a suitable commercially available electrical
connector 302 into which an edge 416 of the processor card
400 is plugged for removably mounting and electrically
connecting the processor card 400 to the planar board 300.
A plurality of single in-line memory module (SIMM) con
nectors 306 is also mounted on the PCB 301 for connecting
to memory banks 308A, 308B forming the system main
memory or RAM. One or more I/O bus or expansion
connectors 232 are also mounted on the PCB 301 for
connection to different expansion adapters and options that
may be added or incorporated into the personal computer
system 100. For example, the fixed disk drive 106 may be
connected to an adapter card (not shown) having a disk
controller which is connected to a connector 232. Preferably,
each connector 232 is a commercially available connector of
the type conforming to the above-mentioned MICRO
CHANNEL architecture.

Also mounted on the planar board 300 are an interrupt
controller 254 and a keyboard/mouse controller 244 which
are connected to keyboard and mouse connectors 278, 280,
a diskette controller or adapter 246 connected to a diskette
connector 282, and serial and parallel adapters 240, 238
connected to serial and parallel connectors 276, 274 which
allow the various I/O devices to be connected into the
system. A system power connector 205 is mounted on the
PCB 301 for connection to a power unit (not shown) that
supplies the necessary power for the system. A nonvolatile
memory (NVRAM) 248 and a time-of-day clock/CMOS
RAM 250 are also mounted on the PCB 301. The PCB 301
also has mounted thereon various oscillators (not shown) to
provide timing signals, and buffers 342, 344 (not all shown)
to isolate sections of the circuitry in a manner well known.
The wiring of PCB 301 interconnects the various com

ponents as shown in the drawing and is grouped into three
groupings, a memory bus 310 (including lines 324-338), a
channel bus 312 (including an address bus 322, a data bus
320 and a control bus 318), and miscellaneous signal lines
including interruptlines 314,316, all of which are connected
to counterpart wiring on the PCB 401 through the connec
tors 302, 416. Tapped off the bus 312 is a planar function bus
319.

Referring to FIG.4, there is shown the processor card 400
for removably mounting on the planar board 300. The
processor card 400 comprises a printed circuit board (PCB)
401 having mounted (e.g., surface mounted) thereon a

5,465,357
7

plurality of commercially available components including a
processor 202, an optional math coprocessor 204, an
optional cache controller 206, an optional cache memory
208, a direct memory access (DMA) control unit 220, a bus
control unit 214, a memory control unit 256, a firmware
subsystem 242, and parity checking units 402, 404. The
processor 202 preferably is a high performance type, such as
an Intel 80486, having thirty-two bit data paths and provid
ing thirty-two bit addressing capability. Of course, Intel
80386 and the like processors can be used. The remaining
components are selected in conventional fashion for their
compatibility with such processor. A plurality of buffers 406,
408, 410, 412, 414 is connected as shown. The buffers
provide selective isolation or connection between the cir
cuits allowing different portions to be used concurrently, for
example, to move data between the processor 202 and the
cache memory 208 while other data is being transferred
between an I/O unit and the main memory 308A, 308B. All
of the above components are electrically connected to each
other as appropriate by printed wiring circuits in PCB 401
which terminate at the edge connector 416. The edge con
nector 416 is pluggable into the edge connector 302 on the
planar board 300 shown in FIG. 3 so that the planar board
300 and the processor card 400 are electrically and mechani
cally interconnectable.
The wiring circuits of the PCB 401 include a local bus 418

including data, address and control lines 420, 422, 424,
respectively, which interconnect the processor 202 with an
optional math coprocessor 204, an optional cache controller
206 and an optional cache memory 208, as shown in FIG. 4.
The remaining circuit lines generally include interrupt lines
316, channel bus lines 312 and memory bus lines 310. The
channel bus lines 312 include control, data and address bus
lines 318, 320, 322, respectively. Memory bus lines 310
include multiplexed memory address lines 324, 332, row
address strobe (RAS) lines 328, 336 for memory banks
308A, 308B, column address strobe (CAS) line 338, data
bus A and B lines 326 and 334, and a line 330 for use in error
checking via parity check or ECC checking. An oscillator
207 is connected as shown for providing suitable clock
signals to the computer system 100. For simplicity, certain
miscellaneous lines, such as reset, grounds, power-on, etc.
have been omitted from FIGS. 2, 3 and 4.

During operation of a personal computer system 100
having a board 300 and a card 400, the card 400 is electri
cally and mechanically connected to the board 300 and
typically lies in a plane perpendicular to the board 400.

ABIOS Load and Access

System firmware includes the Power-On Self Test pro
gram (POST) and the Basic Input Output System program
(BIOS). BIOS further includes the compatibility BIOS or
CBIOS and the advanced BIOS or ABIOS. POST is the Set
of instructions which execute when the system is first
powered-on to initialize the personal computer system 100.
BIOS is the set of instructions which facilitates the transfer
of data and control instructions between the processor 202
and I/O devices.

In the medialess environment, a medialess system unit
(e.g., 102B) includes a suitable network adapter or card (not
shown) for providing a Remote Initial Program Load (RIPL)
facility within the unit 102B. The card is connected, for
example, to one of the connectors 232. The RIPL program
permits booting an operating system from a network server
102 rather than from a local storage device such as the fixed

10

15

20

25

30

35

40

45

50

55

60

65

8
disk 106 or the diskette 108. RIPL is also referred to as
simply Remote Program Load or RPL, and the terms are
used interchangeably. RPL is well understood in the art.
POST contains a bootstrap program which attempts to

locate a boot device and load a boot record. Typically, the
boot device is hard file 106 or diskette drive 108. Diskette
drive 108 requires a boot or operating system disketle to
operate. If POST successfully loads a boot record from a
boot device, then POST transfers control to the boot record,
completing the operation of the POST bootstrap program. If
a boot record was unable to be loaded and a RPL adapter is
present, then POST transfers control to an RPL program. If
no RPL program is present, then POST prompts the user
indicating that a boot source is required. CBIOS is essential
to the bootstrap operation of the computer. CBIOS provides
a number of services including access to the hardfile 106 and
diskette drive 108. ABIOS is demand initialized and nor
mally not a required part of the POST bootstrap process.

Referring now to FIG. 5A, there is shown a memory map
of the system address space 500 for a client 102B or server
102 (FIG. 1B). The system address space 500 includes a
plurality of memory address regions 502,504,506, 508, 510
which are addressable by the processor 202. The low
memory region 502 is the traditional compatibility space in
which real mode programs operate. For example, both DOS
and CBIOS are real mode programs. The video region 504
occupies a 128K byte address space beginning at a physical
location A0000 hex up through a physical location BFFFF
hex or the A000 hex and B000 hex segments. (A segment is
a real mode term used to describe a 64K byte region which
is aligned on a 16 byte boundary, i.e., a paragraph boundary.)
The video region 504 provides video regeneration buffers;
data which are stored in these buffers define what a user Sces
on the computer display 104. The feature region 506 occu
pies a 128K byte address space beginning at a physical
location C0000 hex up through a physical location DFFFF
hex or the C000 hex and D000 hex segments. The feature
region 506 is used to store adapter firmware; this region may
also provide buffer space. For example, a small computer
system interface (SCSI) disk controller adapter includes an
adapter firmware ROM containing POST, CBIOS and
ABIOS programs which during operation is stored in feature
region 506. The system firmware region 508 occupies a
128K byte address space beginning at a physical location
E0000 hex up through a physical location FFFFF hex or the
E000 hex and F000 hex segments. The system firmware
region 508 stores the system firmware including POST and
BIOS. The region above a one megabyte boundary is a high
or extended memory region 510. High memory 510 is
utilized by operating systems such as the OS/2 operating
system.

Extended memory refers to memory above the one mega
byte address location. Expanded memory refers to memory
which is bank switched into an area below the one megabyte
address location. Expanded memory bank switching pro
vides real mode applications with the ability to address more
physical memory than the real mode address space directly
allows. Expanded memory operation requires an available
address space or window to be present in the real mode
address space. Expanded memory operation also requires an
expanded memory program to manage the bank switching.
A common location for the expanded memory window is in
the feature space 506 as well as the system firmware space
508. Maximizing the amount of available space for
expanded memory windows is a competitive requirement for
personal computer systems.

Referring to FIG. 5B, a firmware image includes an

5,465,357
9

ABIOS portion 554, a CBIOS portion 552, and a POST
portion 550. For an adapter card firmware such as the IBM
SCSI adapter card, the size of the ABIOS portion is approxi
mately 11K bytes. For the system firmware such as the IBM
PS/2 Model 95 XP 486, the size of the ABIOS portion is
approximately 32K bytes. With both the adapter card firm
ware and the system firmware, ABIOS uses substantial
portion of the overall address space. In the system firmware
case, an ABIOS size of approximately 32K bytes occupies
25% of the system firmware space 508. For a computer
system with eight feature slots, an equal distribution of
feature firmware space results in 16K bytes of feature space
506 per slot or adapter. An ABIOS size of 11K bytes uses
approximately 70% of the 16K byte range. Additionally,
some adapters exceed the 16K byte range.

Referring now to FIG. 6, a flow diagram of an operating
system bootstrap and initialization process is shown. After
the computer system is powered on and the POST com
pletes, the operating system begins to bootstrap, step 600.
The operating system then begins some of its preliminary
initialization, step 602. The type and scope of operating
system preliminary initialization is well known. The oper
ating system then loads the ABIOS patch modules or files,
step 604. These patch files, normally resident on the oper
ating system boot device, provide functional corrections and
enhancements to existing resident ABIOS program code.
The ABIOS program modules can be listed in a control file
such as an ABIOS.SYS. This ABIOS.SYS list can be a text
file containing the names of the ABIOS modules such as
MODULE1.BIO, MODULE2.BIO, etc. The naming con
vention chosen is a matter of design choice. After the
operating system has loaded the ABIOS patch module or
modules, step 604, the operating system can then initialize
ABIOS, step 606. ABIOS is initialized by issuing CBIOS
function calls. Once ABIOS is initialized, step 606, the
operating system can continue further initialization, step
608.

CBIOS provides two function calls to support the initial
ization of ABIOS. These calls are accessed through a CBIOS
system services interface defined as software interrupt 15
hex (INT 15H). The first function call is a build system
parameter table function which is indicated by the value of
04 being placed in the AH register (a shorthand notation for
this function call is AH=04). The entry requirements of the
AH=04 call are a pointer to a memory buffer where the caller
wants the system parameters table to be built (this pointer is
indicated by the notation ES:DI) and a segment with an
assumed offset of Zero which indicates the ABIOS extension
area (this segment is indicated by the notation DS and the
corresponding pointer would be DS:O). The second function
call is a build initialization table function which is indicated
by the value of 05 being placed in the AH register (AH-05).
The entry requirements for the AH=05 call are a pointer to
a memory buffer where the caller wants the initialization
table to be built (ES:DI) and a segment with an assumed
offset of Zero which indicates the ABIOS extension area
(DS). ABIOS initialization is more clearly defined in the
IBM Personal System/2 and Personal Computer BIOS Inter
face Technical Reference Manual.

Referring to FIG. 7, in an enhanced delivery mechanism
for ABIOS, the ABIOS 554 is physically separated from the
remaining firmware, and packaged as a file on diskette 700
or other media. By being physically separated from the
remaining firmware, the space occupied by ABIOS in firm
ware address space 506, 508 is freed. Moving ABIOS 554
applies to both the system firmware ABIOS as well as
feature space ABIOS. Accordingly, the space normally occu

10

15

20

25

30

35

40

45

50

55

60

65

10
pied by ABIOS in system firmware space 506 is freed and
the space normally occupied by ABIOS in feature space 508
is freed.

Referring now to FIG. 9, an ABIOS module header is
shown. The field at offset +14H (an offset of 14 hex bytes or
20 decimal bytes), which prior to the present invention was
a reserved field, stores an offset of the ABIOS initialization
programs. These ABIOS initialization programs are
accessed through the CBIOS system services functions
AH=04 and AH-05. Of course, other means to extend a
header and provide an entry point field are possible and
matters of well known design choice. Other table entries are
set forthin the ABIOS section of the IBM Personal System/2
and Personal Computer BIOS Interface Technical Reference
Manual.

Referring to FIG. 10A, a diagram of NVRAM 248 which
includes a location for storing a load indicator (called
ABIOS-REQUIRED-FLAG) 1000 of the present invention
is shown. NVRAM 248 is accessed via standard I/O com
mands in a conventional manner. The ABIOS-REQUIRED
FLAG indicates whether ABIOS should be loaded into
RAM by POST. The loading of ABIOS is described in
greater detail in conjunction with FIG. 10B. A default value
for the ABIOS-REQUIRED-FLAG is established during the
configuration stage of computer system setup. A program,
such as a Setup program which is included with the system
Reference Diskette, establishes the initial value for the
ABIOS-REQUIRED-FLAG. A thorough description of the
Setup program is set forth in the Setup section of the IBM
Personal System/2 Hardware Interface Technical Reference
Architectures, October 1990. The ABIOS-REQUIRED
FLAG may have a low, i.e., no load, value which indicates
that ABIOS should not be loaded or a high, i.e., load, value
which indicates that ABIOS should be loaded.

Referring now to FIG. 10B, a flow diagram of the
operation of POST as it relates to the loading of ABIOS is
shown. When the computer system is first powered-on,
POST begins to execute. Early POST operation step 1002
includes tests and initialization of the various hardware
components of the system and is a matter of well known
design choice. POST then reads the ABIOS-REQUIRED
FLAG from NVRAM at read flag step 1004. The ABIOS
REQUIRED-FLAG value is checked to determine whether
it is high indicating an ABIOS load is required at check flag
step 1006. If the check of step 1006 is not high, control
passes to continue POST step 1014. If the check of step 1006
is high, then POST establishes an ABIOS load area at load
area step 1008. Preferably, the ABIOS load area is estab
lished at the top, i.e., at the highest addresses, of the low
memory region 502; the apparent amount of low memory
available is thus reduced by the amount of memory that the
ABIOS occupies. The apparent amount of low memory
available is discussed in conjunction with FIG. 10C.

Referring to FIG. 10C, a diagram of the low memory
address region 502 is shown. The low memory address
region 502 includes a low memory size value 1016 which
indicates the number of available bytes in the low memory
address region 502. The extended BIOS data area (EBDA)
1018 is a data area available for use by programs such as
CBIOS. The ABIOSload area 1020 is the area where ABIOS
can be optionally loaded.

Referring again to FIG. 10B, once the ABIOS load area is
established in load area step 1008, POST loads ABIOS into
RAM at load step 1010. POST obtains the ABIOS program
from a storage media such as disk 106. For example, a fixed
location on the disk 106, such as the last one megabyte of

5,465,357
11

storage space, may be reserved for storing the ABIOS
program. The ABIOS program is stored to disk 106 by a
program such as the Setup program. Storing data, such as the
ABIOS program, on a disk 106 is well known. POST then
stores an ABIOS-LOCATION pointer, preferably in a pre
determined location in the EBDA 1018 at store location step
1012; the ABIOS-LOCATION pointer indicates the address
of the ABIOS load area. The ABIOS-LOCATION pointer is
preferably in segment:offset form with an offset value of
Zero. POST then continues execution at continue POST step
1014; POST may include further test and initialization.
There are two primary alternatives for ABIOS load for

systems which have no local disk and are LAN connected
clients, disk emulation and stub download. Disk emulation
masks the physical location of disk 106 from programs such
as POST. In disk emulation, the traditional disk interface,
such as the CBIOS disk interface, is maintained for both
local and remote disks. For example, the RPL program,
previously described, can be implemented to intercept the
CBIOS disk requests and pass the requests on to a server.
The server services the disk request. The results of the disk
request are returned to the client through the disk emulation
portion of the RPL program. Thus a program, such as POST,
may access a remote disk in a compatible fashion to access
ing a local disk. Typically, the disk emulation portion of the
RPL program would be stored in a ROM as part of the
network adapter. In a stub download system, POST bypasses
the ABIOS load procedure of steps 1004-1012 of FIG. 10B,
and defers ABIOS load to a network boot program. The
networkboot program is a program loaded in the client from
the server by the RPL program. The primary function of the
networkboot program is to load an operating system into the
client. A secondary function of the networkboot program, in
a stub download system, is to perform steps 1004-1012 of
FIG. 10B.

Referring to FIG. 8, a flow diagram of ABIOS initializa
tion is shown. The INT 15H ABIOS initialization calls
AH=04 and AH=05 are done sequentially, AH-04 then
AH=05. An operating system, or other software program,
accesses ABIOS initialization through the CBIOS system
services calls AH-04 and AH-05 at initialization step 800.
The CBIOS system services call redirects control, at redirect
step 802, to the ABIOS initialization program now present
in RAM. When CBIOS system services begins ABIOS
initialization at initialization step 800, the CBIOS system
services code resident in the system firmware locates and
transfers control to the now RAM resident ABIOS initial
ization program. This is done using the previously described
ABIOS-LOCATION pointer, which indicates the address of
the ABIOS load area 1020. The ABIOS-LOCATION pointer
is obtained from the EBDA 1018. The value of the offset of
the ABIOS initialization routine is found at an offset of
+14H in the ABIOS header (see FIG. 9); this value is
accessed using the ABIOS-LOCATION pointer. The ABIOS
initialization offset is used in conjunction with the segment
specified by the ABIOS-LOCATION pointer to access the
ABIOS initialization program; control is transferred to this
address. The ABIOS initialization program then performs a
set of procedure calls to initialize ABIOS at perform calls
step 804. The ABIOS initialization program then performs a
ROM scan operation which locates and initializes ABIOS
which is present in the adapter firmware address space at
ROM scan step 806. The ROM scan operation is performed
by searching for a specific header pattern in the feature space
or adapter firmware space (see FIG. 5A). The ABIOS
initialization program then performs a RAM scan operation
which locates and initializes ABIOS which is present as a

10

15

20

25

30

35

40

45

50

55

60

65

12
RAM loaded extension or patch at RAM scan step 808.
Once the RAM scan operation is complete, the ABIOS
initialization is complete, and control-returns to the caller at
initialization complete step 810.

Providing an ABIOS which is loadable and separate
provides a computer system with a plurality of advantages.
A loadable ABIOS increases the amount of available address
space in both the system firmware space 508 and the feature
space 506. Increasing the amount of available space in the
system firmware space 508 and the feature space 506 allows
and enhances the operation of expanded memory manger
programs. Also, increasing the amount of available space in
the system firmware space 508 and feature space 506 allows
for larger POST and CBIOS programs to be resident in the
respective spaces. Automated loading of separate ABIOS
provides compatibility because ABIOS appears to be resi
dent when required. Additionally, development, test, distri
bution and maintenance of ABIOS becomes simplified since
ABIOS is a single entity rather than part of a POST CBIOS
ABIOS bundle.
While a preferred embodiment of the present invention

was described above, it will be understood by those skilled
in the art that various changes in detail may be made without
departing from the spirit, scope, and teaching of the inven
tion. For example, while the preferred embodiment uses
Intel processors and an IBM PS/2 MICRO CHANNEL bus
for illustrative purposes, this invention can be implemented
on other processors and/or bus types. Likewise, those skilled
in the art will recognize that many elements of the invention
can be implemented either in hardware or software. Accord
ingly, the invention should be limited only as specified by
the appended claims.
What is claimed is:
1. A personal computer system compatible with applica

tion programs and operating system software, the personal
computer system comprising:

a data bus;
a microprocessor electrically coupled to said data bus;

said microprocessor having different first and second
modes of operation; said first and second modes having
respective different first and second memory address
ing ranges, said second range being greater than Said
first range, said microprocessor operating in Said first
mode during initialization of said system and continu
ing after said initialization to operate either in said first
mode or in said second mode; said microprocessor
being capable of handling application programs while
operating in either said first mode or said second mode,
said microprocessor using different first and second
portions of operating system microcode when operat
ing respectively in said first and second modes:

non-volatile memory electrically coupled to the data bus,
and accessible to said microprocessor via said data bus;

said non-volatile memory storing said first portion of
operating system microcode for use by said micropro
cessor in said first mode,

said first portion of operating system microcode including
an initialization program,

said non-volatile memory also storing a load indicator,
inspected by said microprocessor during initialization
of said system, for indicating if said personal computer
system does or does not require access to said second
portion of operating system microcode for Subsequent
operations;

volatile memory electrically coupled to the data bus, and
accessible to said microprocessor via said bus; and,

5,465,357
13

a direct access storage device electrically coupled to the
data bus, and accessible to said microprocessor via said
bus, said direct access storage device storing said
second portion of operating system microcode, said
microprocessor being responsive to said load indicator
for loading said second portion of operating system
microcode into said volatile memory during execution
of said initialization program when said load indicator
indicates that said personal computer requires access to
said second portion of operating system.

2. The computer system of claim 1 wherein
said first portion of operating system microcode includes

compatibility operating system microcode used by said
microprocess for compatibly handling application pro
grams written only for said first mode of operation of
said microprocessor, and

said second portion of operating system microcode
includes advanced operating system microcode for
enabling said microprocessor to handle application
programs written for either said first or second mode of
operation of said microprocessor.

3. The computer system of claim 1 wherein
said non-volatile memory includes separate first and sec
ond non-volatile memory storage spaces;

said first non-volatile memory storage space storing said
first portion of said operating system microcode, and

said second non-volatile memory storage space storing
said load indicator.

4. The computer system of claim 1 wherein
said direct access storage device is remote from said

microprocessor and is accessed by said microprocessor
via a network.

5. An apparatus for loading an operational interface used
in the operation of a personal computer system containing a
system processor, a non-volatile memory, a volatile memory,
and a direct access storage device, said volatile and non
volatile memories and said direct access storage device
being accessible to said system processor, said non-volatile
memory storing a first portion of an operational interface
used by said system processor for initializing said computer
system and potentially for handling application programs
after initialization of said system; said direct access storage
device storing a second portion of an operational interface
which also may be used by said system processor after
initialization of said system, said first and second portions
having respective different first and second memory address

5

10

15

25

30

35

40

45

14
ing range capabilities; said second addressing range con
taining and being larger than said first addressing range, said
apparatus comprising:

load indicator means for indicating whether the computer
system requires the second portion of the operational
interface;

means for initializing the system with the first portion of
the operational interface and for conditionally relocat
ing said first portion of the operational interface in said
volatile memory upon completion of said initialization,
thereby freeing up a portion of the memory addressing
space available to said computer system in said first
addressing range which space had been allocated to
said first portion prior to said relocation;

said means for initializing loading the second portion of
the operational interface from said direct access storage
device into said volatile memory when said load indi
cator means indicates that such loading of said second
portion is required.

6. The computer system of claim 5 wherein
the first portion of the operational interface includes

compatibility operating system microcode required by
said system processor for initializing said system and
for providing compatible handling of application pro
grams written to address only said first address range,
and

the second portion of the operational interface includes
advanced operating system microcode enabling said
system processor to handle program applications
involving addressing of memory in either one of said
first and second memory addressing ranges.

7. The computer system of claim 5 wherein
said non-volatile memory includes first and second non

volatile memory storage spaces,
said first non-volatile memory storage space storing said

first portion of said operating system microcode, and
said second non-volatile memory storage space storing

load indicator information controlling the action of said
load indicator means.

8. The computer system of claim 7 wherein
the first portion of the operational interface includes a
power on self test program including a portion which in
conjunction with said system processor forms said load
indicator means.

